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This study aimed to investigate the protective effects of Lactobacillus plantarum 16
(Lac16) and Paenibacillus polymyxa 10 (BSC10) against Clostridium perfringens (Cp)
infection in broilers. A total of 720 one-day-old chicks were randomly divided into four
groups. The control and Cp group were only fed a basal diet, while the two treatment
groups received basal diets supplemented with Lac16 (1 × 108 cfu·kg−1) and BSC10 (1 ×
108 cfu·kg−1) for 21 days, respectively. On day 1 and days 14 to 20, birds except those in
the control group were challenged with 1 × 108 cfu C. perfringens type A strain once a
day. The results showed that both Lac16 and BSC10 could ameliorate intestinal structure
damage caused by C. perfringens infection. C. perfringens infection induced apoptosis by
increasing the expression of Bax and p53 and decreasing Bcl-2 expression and
inflammation evidence by higher levels of IFN-g, IL-6, IL-1b, iNOS, and IL-10 in the
ileum mucosa, and NO production in jejunal mucosa, which was reversed by Lac16 and
BSC10 treatment except for IL-1b (P < 0.05). Besides, the two probiotics restored the
intestinal microbiota imbalance induced by C. perfringens infection, characterized by the
reduced Firmicutes and Proteobacteria and the increased Bacteroidetes at the phyla level
and decreased Bacteroides fragilis and Gallibacterium anatis at the genus level. The two
probiotics also reversed metabolic pathways of the microbiota in C. perfringens-infected
broilers, including B-vitamin biosynthesis, peptidoglycan biosynthesis, and pyruvate
fermentation to acetate and lactate II pathway. In conclusion, Lac16 and BSC10 can
effectively protect broilers against C. perfringens infection through improved composition
and metabolic pathways of the intestinal microbiota, intestinal structure, inflammation, and
anti-apoptosis.
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INTRODUCTION

Necrotic enteritis (NE) caused by Clostridium perfringens (Cp) is
a severe gastrointestinal disease responsible for the annual loss of
at least $ 6 billion in the poultry industry worldwide (1, 2). The
disease usually occurs in two forms, including clinical and
subclinical forms. The clinical form is characterized by a sudden
rise in flock mortality with no premonitory signs, while the
subclinical form is associated with intestinal damage, impaired
absorption of nutrients, and poor overall performance in poultry
(3). Moreover, as a common foodborne pathogen that affects
humans, C. perfringens poses a serious threat to human health via
contaminated poultry (4). Antibiotics have been used as the most
effective measure to control C. perfringens infection in livestock (5).
However, due to the emergence of antibiotic-resistant bacteria and
the effect of antibiotics on the microbiome (6), there is an urgent
need to find suitable alternatives to reduce the incidence of necrotic
enteritis and maintain animal and human health in the post-
antibiotics era.

Probiotics are live microorganisms, which when administered in
adequate amounts exert their benefits on the host (7). The use of
probiotics is a promising measure for the prevention of intestinal
diseases, such as colitis (8), inflammatory bowel disease (9), and
diarrhea (10). Besides, probiotics can protect the host against
pathogen invasion by manipulating the complex gut ecosystems
through competitive exclusion, production of antimicrobial
compounds, stimulation of the host immune system development,
etc (11). Fukata et al. (12) revealed that Lactobacillus acidophilus or
Streptococcus faecalis could reduce C. perfringens infection in young
chickens. Numerous other studies have also shown that some
microorganisms, including Bacillus (13), Lactobacilli (14),
Enterococci (15), and yeast (16), could alleviate the severity and
damage of NE in chicken via different mechanisms. Lactobacillus
johnsonii BS15 was reported to prevent NE by ameliorating lipid
metabolism and intestinal microflora (14), while Lactobacillus
fermentum 1.2029 regulated the expression levels of cytokines and
TLR in chicken (17). Our previous studies also found that
Lactobacillus plantarum Lac16 and Paenibacillus polymyxa BSC10
could inhibit the growth and virulence-associated gene expressions
of C. perfringens in vitro (unpublished data) and regulate the mRNA
expression of cytokines and TLR in chicken macrophage (HD11)
cell line infected with C. perfringens (unpublished data). Therefore,
the present study aimed to investigate the protective effects of Lac16
and BSC10 against C. perfringens in broilers.
MATERIALS AND METHODS

Bacterial Strain Preparation
The Lactobacillus plantarum 16 (Lac16) (CCTCC, NO.
M2016259) was isolated by our laboratory and preserved in
China Center for Type Culture Collection. Paenibacillus
polymyxa 10 (BSC10) (CGMCC 1.10711) was obtained from
the China General Microbiological Culture Collection Center.
Clostridium perfringens (ATCC13124) was purchased from
Guangdong Microbial Culture Collection Center.
Frontiers in Immunology | www.frontiersin.org 2
Probiotics Lac16 and BSC10 were cultured in MRS or Luria–
Bertani (LB) broth overnight at 37°C in an anaerobic system or a
shaking incubator, respectively. Clostridium perfringens was
cultured in Reinforced Clostridium Medium for 24 h under an
anaerobic environment. The bacteria were harvested after
centrifugation at 4,000 × g for 15 min at 4°C, respectively.
After three-time washing with sterile phosphate buffer saline
(PBS, pH 7.3), the prepared Lactobacillus and Bacillus powders
(1 × 1010 cfu/g) were diluted with starch and added into the basal
diet to a final concentration of 108 cfu/kg, respectively. The same
amount of starch was added to each group to compensate for the
difference in the nutrient composition of the diets.
Chicken Husbandry and Experimental
Design
A total of 720 Cobb 500 broiler chicks were purchased from
ZhengDa Broilers Development Center of Zhejiang University
(Hangzhou, China) and reared in XinXin Broiler Farm (Jiaxing,
China). These 1-day-old chicks with similar weights were
randomly allocated to four groups with six replicates per group
and 30 chickens per replicate. The two probiotic treatment
groups received the diets consisting of Lac16 and BSC10 (108

cfu·kg−1 feed) for 21 days, respectively, while the control group
and Cp group were only fed the basal diet (Table 1) during the
whole trial. On day 1 and days 14 to 20, birds of all groups except
the control group were orally challenged with 1 × 108 cfu C.
perfringens type A strain once a day. The chickens were exposed
to a 24 h lighting device and kept with ambient temperature
gradually decreasing from 32°C to 26°C at the rate of 2°C per
week. Broilers were provided freshwater and feed ad libitum. The
study was carried out according to the guidelines of the Animal
Care and Use Committee of Zhejiang University.
TABLE 1 | Ingredients and nutrition composition of basal diet (%).

Item 1–21 d

Ingredients
Corn 60.00
Soybean meal 28.50
Fish meal 2.00
Wheat middling 4.50
Dicalcium phosphate 1.30
Limestone 2.25
50% choline chloride 0.15
Salt 0.30
Vitamin and mineral premix1 1.00
Total 100.00

Calculated Nutrient Level
CP 22.39
Total P 0.70
Ca 1.00
Lys 1.17
Met + Cys 0.65
Met 0.48
ME (MJ/kg) 12.22
February 2021 | Volume 11 | Article
1Premix compound each kilogram contained: vitamin A, 12,500 IU; vitamin D, 32,500 IU;
vitamin E, 18.75 IU; vitamin K, 32.65 mg; vitamin B2, 6 mg; vitamin B12, 0.025 mg; Biotin,
0.0325 mg; Folic acid, 1.25 mg; Nicotinic acid, 50 mg; vitamin B3, 12 mg; Cu, 8 mg; Fe 80
mg; Zn, 75 mg; Mn, 100 mg; Se, 0.15 mg; I, 10.35 mg.
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Sample Collection and Treatment
At the end of the experimental period, two chickens per cage
with a weight close to the average of the group were selected and
immediately slaughtered by exsanguination. The intestine was
collected by simultaneously washing with cold sterile PBS to
remove the attached impurity, and the jejunal mucosa and ileum
mucosa were gently scraped. Jejunal samples were diluted with
nine-time volumes of sterile ice-cold normal saline (0.9%) based
on the sample weight and then homogenized using a hand-held
glass homogenizer. The tissue supernatants were collected by
centrifuging at 3,500×g for 10 min at 4°C, and the concentration
of protein was determined by a BCA protein assay kit according
to the manufacturer’s instruction (Pierce, Rockford, IL) and
stored at −80°C for further study.

Ileal Morphology and
Immunohistochemistry
Approximately 1 cm of distal ileum was dissected for
histomorphology analysis. Ileal tissues were fixed (in 4%
paraformaldehyde overnight), dehydrated, and embedded in
paraffin according to the standard procedure (18). The
paraffin-embedded tissues were cut into 5 µm thick and
subsequently subjected to hematoxylin and eosin staining and
observed by a light microscope (Nikon Eclipse80i, Tokyo, Japan).
The immunohistochemistry staining was carried out as described
previously with minor modification (18). Briefly, after dewaxing
and rehydration, the tissue sections underwent microwave
antigen retrieval in sodium citrate buffer (0.01 M, pH 6.0) for
20 min. Endogenous peroxidase activity was blocked with 3%
hydrogen peroxide and then using 10% goat serum (ZSGB-BIO,
Beijing, China) as a non-specific binding block for 30 min at
room temperature. The sections were incubated overnight at 4°C
with polyclonal rabbit antibody Bax (BIOSS, Beijing, China) or
BCl-2 (BIOSS, Beijing, China). The tissues were incubated with
Biotinylated secondary antibodies (Polink-2 plus polymer HRP
anti-rabbit or anti-mouse, ZSGB-BIO, Beijing, China) and
further visualized with a diaminobenzidine-tetrachloride
(DAB) kit (TIANGEN RA110, Beijing, China). All sections
were counterstained with hematoxylin for 3 min.

TUNEL Assay
Apoptosis in ileum tissue was analyzed by the terminal dUTP-
nick end labeling kit (Roche, Germany). Briefly, the paraffin-
embedded tissue sections of ileum were incubated with
proteinase K working solution at 37°C for 25 min and washed
three times with PBS, and then incubated with permeabilization
solution for 20 min. Following three times with PBS, the samples
were incubated with TUNEL reaction mixture for 60 min at 37°C
in a humidified chamber and strained with DAPI for 10 min and
rinsed with PBS for three times. The cell nuclei were identified
using UV light microscopy (Nikon, Japan) and TUNEL-positive
cells were identified as brilliant green.

RNA Extraction and RT-qPCR
The RNA was extracted using Takara RNAiso Plus Kit (Japan)
following the manufacturer’s protocol. The purity and
Frontiers in Immunology | www.frontiersin.org 3
concentration of total RNA were determined using a Nanodrop
Spectrophotometer (ND-2000, Thermo Fisher Scientific). The
reverse transcription of total RNA was performed by Reverse
Transcriptase M-MLV Kit (RNase H-) according to the
manufacturer’s instruction. The qRT-PCR assay was conducted
with the ABI 7500 fluorescence detection system using SYBR green
(Takara, SYBR Premix Ex Taq TM II Kit) detection. Each sample
was measured in duplicate. Relative quantitation of all gene
expression was calculated using the 2-△△Ct method, and the b-
actin served as the internal reference gene (19). Primers used in the
current study were designed using the Primer Express 3.0 software
(Applied Biosystems, Foster City, CA), and the specificity of primers
was assessed bymelting curve analysis. Primers are listed inTable 2.

Detection of iNOS Activity and NO
Production
The activity of inducible nitric oxide synthase (iNOS) and
production of Nitric oxide (NO) in the jejunal mucosa were
measured strictly according to the manufacturer’s protocols
(Jiancheng Bioengineering Institute, Nanjing, China).

DNA Extraction and Library Construction
of Cecum Content
The cecal contents of twelve chickens from four groups (Control,
Cp, Cp+Lac16, Cp+BSC10) were collected on day 21. The fecal
TABLE 2 | Primers used in the experiment.

Gene Primer sequence (5′–3′) Accession number

Bax GTGATGGCATGGGACATAGCTC XM_015274882.1
TGGCGTAGACCTTGCGGATAA

P53 CCCATCCTCACCATCCTTACA XM_420232
CTTCAGCATCTCATAGCGGC

Occludin TCATCCTGCTCTGCCTCATCT NM_205128.1
CATCCGCCACGTTCTTCAC

Claudin1 CATACTCCTGGGTCTGGTTGGT NM_001013611.2
GACAGCCATCCGCATCTTCT

MUC-2 TTCATGATGCCTGCTCTTGTG XM_421035
CCTGAGCCTTGGTACATTCTTGT

ZO-1 CTTCAGGTGTTTCTCTTCCTCCTC XM_413773
CTGTGGTTTCATGGCTGGATC

Caspase-9 TCAGACATCGTATCCTCCA XM_424580.6
AAGTCACAGCAGGGACA

Caspase-3 ACTCTGGAAATTCTGCCTGATGAC NM_204725.1
CATCTGCATCCGTGCCTGA

BCL-2 GATGACCGAGTACCTGAACC NM_205339.2
CAGGAGAAATCGAACAAAGGC

IL-1b CGACATCAACCAGAAGTGCTT NM_204524.1
GTCCAGGCGGTAGAAGATGA

IL-6 CAGGACGAGATGTGCAAGAA NM_204628.1
TAGCACAGAGACTCGACGTT

IL-10 ACCAGTCATCAGCAGAGCAT NM_001004414
CCTCCTCATCAGCAGGTACTC

TGF-b TCTCGGAGCAGCGGATAGA JQ423909.1
AATCCAAGGTTCCTGTCTCTGT

iNOS CACGTGTTAAGGATGCCCCT NM_204961
GCCCAATAGCCACCTTCAGT

IFN-g ACACTGACAAGTCAAAGCCGC NM_205149
AGTCGTTCATCGGGAGCTTG

b-actin CAACACAGTGCTGTCTGGTGGTA NM 205518
ATCGTACTCCTGCTTGCTGATCC
February 2021 | Volume
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DNA was extracted using TIANamp DNA Stool Mini Kit
(TianGen, Beijing), and the quality was checked by agarose gel
electrophoresis. All of the extracted DNA samples were stored at
−80°C for further processing.

DNA library was constructed by TruSeq Nano DNA LT
Library Preparation Kit (FC-121-4001). DNA was fragmented
using dsDNA Fragmentase (NEB, M0348S) by incubating at 37°C
for 30 min. Library construction begins with fragmented cDNA.
Blunt-end DNA fragments are generated using a combination of
fill-in reactions and exonuclease activity, and size selection is
performed with provided sample purification beads. An A-base
is then added to the blunt ends of each strand, preparing them for
ligation to the indexed adapters. Each adapter contains a T-base
overhang for ligating the adapter to the A-tailed fragmented DNA.
These adapters contain the full complement of sequencing primer
hybridization sites for single, paired-end, and indexed reads.
Single- or dual-index adapters are ligated to the fragments and
the ligated products are amplified with PCR by the following
conditions. The initial denaturation was at 95°C for 3 min, 8 cycles
of denaturation at 98°C for 15 sec, annealing at 60°C for 15 s, and
extension at 72°C for 30 s, and then final extension at 72°C
for 5 min.

Metagenomics Analysis of Taxonomic
Profiling and Functional Profiling
Raw sequencing reads were processed to obtain valid reads for
further analysis. Assessment of sequence quality was used in
fastqc. The host genome sequence was removed using the Best
Match Tagger (BMTagger), referred to the genome of
gga_ref_Gallus_gallus-5.0. Using fastq_to_fasta, the fq format
data was converted to fasta format, which further used the
filter_fasta.py command in QIIME to remove the host genome
sequence. The remaining sequence was regarded as the intestinal
flora DNA sequence for further analysis. The species
composition was analyzed using MetaPhlAn2 (20), the
cladogram was conducted with GraPhlAn, and the heatmap
was drawn with metaphlan_hclust_heatmap.py The functional
profiling of microbiota was analyzed using HUMAnN2, referred
to the uniref90_ec_filtered_diamond database and the
uniref50_ec_filtered_diamond database (21).

Principal component analysis of gene family was performed
using prompt R package. Heatmap of metabolic pathway
abundance was drawn using the fold-change value (log2
transformed) using the pheatmap R package. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway was
analyzed using the KEGG online service tools’ KEGG mapper.

Statistical Analysis
All data were analyzed by a one-way analysis of variance
(ANOVA) followed by Tukey multiple comparisons procedure
using SPSS 22.0 software (SPSS Inc., Chicago, IL, USA). Statistical
significance was declared at P < 0.05 and trend at P < 0.1. The data
were expressed as mean ± SD, and graphs were generated by
GraphPad Prism 7.0 software. Statistical analyses and data
visualization for fecal microbiota were conducted using the
R program (version 3.6.1).
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

Lac16 and BSC10 Alleviated Intestinal
Mucosal Injury Induced by C. perfringens
Infection
Hematoxylin–eosin staining showed that the damaged intestinal
structure and shorter villus were observed in C. perfringens-infected
birds, which were recovered by probiotics treatment (Figure 1A).
Besides, the C. perfringens infection significantly increased the
expression of intestinal barrier-related genes, such as claudin1
(CLDN1), occludin-1 (ZO-1), and mucin-2 (MUC2) in the ileum
(P < 0.05). However, the expression of OCLN in the Cp + Lac16
group was significantly lower compared with the Cp group
(Figure 1B).

Lac16 and BSC10 Attenuated Apoptosis
Induced by C. perfringens Infection
The mRNA expression levels of pro-apoptosis genes in the ileum
mucosa, including Bax, p53, Caspase-9 were up-regulated in C.
perfringens-infected birds (P < 0.05). However, Lac16 and BSC10
treatment downregulated the expression levels of the pro-apoptosis
genes except for Caspase-9 in the Lac16 group (P < 0.05). Moreover,
a significant increase in Bcl-2 mRNA level was observed in the
Lac16 group compared to the C. perfringens-infected birds (P <
0.05) (Figure 2A). The result of Bax immunohistochemistry
demonstrated that compared with the control group, C.
perfringens infection increased the number of Bax positive cells,
while Lac16 restored them to a normal level. BSC10 also showed a
slight decrease in the number of Bax positive cells compared with
the Cp group (Figure 2B). C. perfringens infection significantly
decreased the number of Bcl-2-positive cells, while probiotic
treatment alleviated the decrease (Figure 2C). TUNEL assay
results demonstrated that C. perfringens infection enhanced the
number of positive cells in the ileum, while there was a decline
following Lac16 or BSC10 treatment (Figure 2D).

Lac16 and BSC10 Down-Regulated
C. perfringens-Induced Inflammatory
Response
C. perfringens infection increased the expression of anti-inflammatory
cytokine IL-10 and pro-inflammatory cytokines, IFN-g, IL-6, IL-1b,
and iNOS (P < 0.05) (Figure 3A), while Lac16 or BSC10 treatment
significantly decreased the expression levels of IL-6 (P < 0.05), iNOS
(P < 0.05), IFN-g (P < 0.05), and IL-10 (P < 0.1 and P < 0.05,
respectively). Compared with the Cp group, Lac16 supplementation
down-regulated TGF-b expression (P < 0.05). Nitric oxide (NO) and
inducible nitric oxide synthase (iNOS) actively participated in the
host defense in response to C. perfringens infection. As depicted in
Figures 3B, C, the highest iNOS activity and NO production in
the jejunal mucosa was observed in the Cp group but decreased
following Lac16 or BSC10 treatment.

Lac16 and BSC10 Re-Shifted the Intestinal
Microbiota Composition in Cp-Infected
Broilers
As shown in Supplemental Figure S1, phylogenetic analysis
revealed the most abundant composition of fecal microbiota at
February 2021 | Volume 11 | Article 628374
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the family, genus, and species levels among all groups. At the
family level, Rikenellaceae, Bacteroidaceae, and Oscillospiraceae
were dominant. The composition of gut microbiota at the
phylum level is shown in Figure 4A. The predominant phyla
were Firmicutes, Bacteroidetes, and Proteobacteria, which were
more than 99%. C. perfringens infection decreased the relative
abundance of Firmicutes and Proteobacteria, and increased
Bacteroidetes, while probiotic treatment increased the relative
abundance of Firmicutes and decreased Bacteroidetes. At the
genus level, the gut microbiota was dominated by genus
Allistipes, accounting for 50.41%, followed by Bacteroides and
Oscillibacter, accounting for 16.97 and 13.08%, respectively.
Lac16 or BSC10 treatment enhanced the relative abundance of
Oscillibacter but decreased Allistipes and Bacteroides (Figure
4B). Principal Components Analysis (PCA) showed the
different clusters of microbial communities among the four
groups, with PC1 accounting for 20.6% of the total variation
and PC2 accounting for 15.7% (Figure 4C). Four bacterial
species that were enriched in all groups included, Alistipes,
Frontiers in Immunology | www.frontiersin.org 5
Bacteroides, Osciliibacter, and Escherichia (Figure 4D). C.
perfringens infection enriched Gallibacterium anatis and those
that decreased included Erysipellotrichaceac, Subdoligranulum,
Anaerotruncus, Ruminococcus, Pseudoflavonifractor, and
Oscillibacter, which were found to be increased in the probiotic
treatment groups. The abundance of Bacteroides fragilis was
significantly decreased in the Cp + BSC10 group, compared
with the Cp and Cp + Lac16 group.

Functional Capacity of the Gut
Microbiome Related to
Metabolic Pathways
The functional capacity of the gut microbiome was evaluated
using metagenomic sequencing data. We classified the predicted
genes by aligning and assigning them to pathways using the
HUMAnN2 database. PCA analysis of the gene family
abundance revealed dramatic changes between the Cp group
and other groups (Supplemental Figure S2). C. perfringens
infection changed the microbiota composition and metabolic
A

B

FIGURE 1 | Probiotics Lactobacillus plantarum 16 (Lac16) and Paenibacillus polymyxa 10 (BSC10) alleviated intestinal mucosal injury induced by Clostridium
perfringens (Cp) infection. (A) From the left to the right column, hematoxylin–eosin (HE) staining showing the integral morphology of the ileum, the villus, and the
grand in the Control, Cp, Cp + Lac16, and Cp + BSC10 groups. Magnification, ×100, ×200, and ×200, respectively. IV, intestinal villus; IE, intestinal epithelium; IG,
intestinal glands; M, muscularis. n = 6/group. (B) The mRNA expression of barrier-related genes assessed by RT-PCR. CLDN, Claudin; OCLN1, Occludin 1; ZO-1,
Zonula occludins-1; MUC2, Mucin 2. Data were expressed as mean ± SD (n = 12). *indicates statistically significant difference (P < 0.05).
February 2021 | Volume 11 | Article 628374
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A C

B

D

FIGURE 2 | Probiotics treatment attenuated apoptosis induced by Clostridium perfringens (Cp) infection. The apoptosis-related gene expression in the ileum
mucosa (A) (n = 12/group). Representative images of the immunohistochemical staining of Bax (B) and Bcl-2 (C) in the ileum mucosa (n = 6/group).
The positive cells are stained brown. From the left to the right column, the integral morphology of the ileum, the villus, and the grand are seen (magnification ×100,
× 400, and × 400, respectively). (D) TUNEL immunofluorescence data showing the distribution of apoptosis cells (brilliant green) in the ileum mucosa. Magnification,
× 200. n = 6/group. * indicates statistically significant difference ( P < 0.05).
A B

C

FIGURE 3 | Lactobacillus plantarum 16 (Lac16) and Paenibacillus polymyxa 10 (BSC10) down-regulated the C. perfringens-induced inflammatory response.
(A) cytokines gene expression profiles in the ileum mucosa determined by RT-qPCR. The iNOS activity (B) and NO production (C) in jejunal mucosa were measured
using commercial kits. Results are presented as mean ± SD (n = 12/group, *represents significant differences (P < 0.05).
Frontiers in Immunology | www.frontiersin.org February 2021 | Volume 11 | Article 6283746
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pathways, including enhancing B-vitamin biosynthesis (for
example, folate biosynthesis as shown in Supplemental Figure
S3), peptidoglycan biosynthesis (Supplemental Figure S4),
amino acid biosynthesis and ribonucleotide biosynthesis, etc,
and decreased pyruvate fermentation to acetate and lactate II
pathway, which was reversed by probiotic supplementation
(Figure 5).
DISCUSSION

Numerous studies have demonstrated that probiotics exert
antimicrobial activity against C. perfringens through different
mechanisms. In our previous study, increased intestinal lesion
scores and decreased growth performance of broilers were
observed after C. perfringens challenge, which was ameliorated
in broilers pretreated with Lac16 and BSC10 (unpublished data).
Therefore, the current study aimed to investigate the protective
effects of Lac16 and BSC10 against C. perfringens in broilers
through the regulation of the intestinal mucosal structure,
apoptosis, inflammation, and intestinal microbiota.
Frontiers in Immunology | www.frontiersin.org 7
Gut integrity is a prerequisite for maintaining the host
homeostasis. The intestinal mucosal barrier comprises
connecting epithelial cells that are overlaid by host-secreted
mucous layer and serve as the first line of defense against
pathogens and potentially harmful commensal bacteria (22,
23). Impaired intestinal mucosal barrier caused by intestinal
pathogens compromises the immune tolerance of the intestines
and causes a systemic inflammatory response, which aggravates
systemic immune response and host body damage (24).
Consistent with a previous study (25), the present study
demonstrated that probiotics Lac16 and BSC10 treatment
could improve the intestinal morphology of C. perfringens
infected broilers. MUC2 is the main component of mucins
which binds several pathogens and inhibits external bacterial
access to the epithelial cells (26). Previous studies have shown
that the expression of MUC2 is suppressed in infected broilers
(27, 28). However, Fasina et al. (29) reported that Salmonella
Typhimurium infection increased the number of goblet cells and
mucin level in the jejunum of broilers, indicating that the
infected birds can capture and eliminate the pathogens from
the epithelial surface by enhancing mucin expression (30).
A D

B

C

FIGURE 4 | Bacterial taxonomic composition of cecum contents. (A) The relative abundance of bacterial phyla (mean of each group); (B) The top 15 genus
abundance (mean of each group); (C) Principal component analysis of the dissimilarity among the microbial samples using prompt R package; (D) Heatmap of
species abundance by MetaPhlAn2. n = 3/group.
February 2021 | Volume 11 | Article 628374
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FIGURE 5 | The functional profile of cecum contents. Differences in metabolic pathways expression of the microbiota among different treatment groups evaluated
using the HUMAnN2 metabolic analysis network. The representative metabolic pathway is selected by a one-way ANOVA test, and the fold changes of pathway
abundance were calculated using the formula Cp/Control, Cp + Lac16/Cp, and Cp + BSC10/Cp. The significant difference is defined as the fold change > 2 or fold
change < 0.5. A heatmap is drawn using the fold-change value (log2 transformed) of the metabolic pathway abundance using the pheatmap R package. * indicates
statistically significant difference (P < 0.05).
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We also found that the MUC2 expression was significantly
increased in C. perfringens infected broilers but decreased after
probiotic supplementation. Our results may unravel novel
strategy for improving mucus barrier to inhibit C. perfringens
infection. Occludin and claudin are two of the most important
components of tight junctions, and they exhibit beneficial effects
on epithelial barrier function (31). Similar with the result of
MUC2 expression, the present study showed that C. perfringens
infection significantly up-regulated the relative expression levels
of ZO-1 and CLDN1, which was contrary to results from
previous studies (32, 33). One plausible explanation was that
up-regulating the expression levels of barrier-related genes in
infected chicken was beneficial for decreasing C. perfringens to
pass through the epithelial layers and intestinal damage.
However, the probiotic supplementation could decrease the
number of C. perfringens and improve intestinal health status,
which resulted in the decreased expression of occludin
and claudin.

Apoptosis is regulated by the dynamic balance between the
expression of pro-apoptosis proteins, such as Bax, and the anti-
apoptosis protein, such as Bcl-2. Once the imbalance occurs,
cytochrome c is released from the mitochondria and subsequently
activates Apaf1/Caspase 9 and downstream executioner Caspase 3,
thereby initiating cell apoptosis (34). p53 is a multiple function
protein that induces apoptosis by promoting the expression of pro-
apoptosis genes, such as Bax, and inhibits anti-apoptosis genes, such
as survivin, thereby activating the caspase-dependent pathway and
ultimately triggering apoptosis (35). Wu et al. (36) reported that
Lactobacillus rhamnosus GG stimulates apoptosis by increasing p53
expression and decreasing Bcl-2 and Bcl-xl protein in the ilea of
HRV-infected pigs. In the present study, the results of mRNA
expression and immunohistochemistry of apoptosis-related genes
showed that the probiotics could ameliorate C. perfringens-induced
apoptosis in the ileum by up-regulating anti-apoptosis genes and
down-regulating pro-apoptosis genes in broilers, and these findings
were consistent with previous findings (37). Moreover, p53 mRNA
expression in the probiotics groups was down-regulated compared
with the Cp group, suggesting that the probiotics inhibited cell
apoptosis in the ileum through the p53 signaling pathway during C.
perfringens infection.

Accumulating evidence demonstrates that iNOS-derived NO
and pro-inflammatory cytokines exert multiple modulatory effects
on the host immune response against various infections (38, 39).
Besides, pro-inflammatory cytokines modulate host immunity
against multiple pathogens through differentiation and
proliferation of immune cells, apoptosis, and NO production
(40). However, excessive inflammatory responses cause tissue
injury. The increase in NO production and iNOS activity and
increased expression of pro-inflammatory cytokines, such as IL-
1b, IL-6, iNOS, and IFN-g demonstrate that C. perfringens
infection induces a strong inflammatory response and causes
severe tissue damage (41). However, in the present study,
probiotics reduced the inflammatory response, thus inhibiting
excessive inflammatory damage in infected broilers. Similar
results have also been observed in birds infected with Salmonella
enteritidis (42) and Escherichia coli (43). Interleukin-10 is an anti-
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inflammatory cytokine that inhibits T cell proliferation and the
production and function of many proinflammatory cytokines (44).
In the present study, the level of IL-10 decreased following
treatment with the probiotics in C. perfringens infected broilers,
and this was attributed to a decreased inflammatory response.

The microbiota plays a major role in host growth and health
and significantly contributes to the regulation of the host immune
system, nutrient synthesis, energy metabolism, and prevention of
enteric pathogen infection (45). The gut microbial composition
and function are reported to be modulated by dietary probiotic
supplementation (46). The increase in Firmicutes contributes to
energy efficiency, while the Firmicutes/Bacteroides ratio is
associated with growth performance and host health (47, 48). A
high proportion of Proteobacteria in the gut is an indicator of
metabolic disorders, immune disorders, and an unstable gut
microbial community structure in the host (49). In the present
study, increased Firmicutes/Bacteroidetes ratio and a decline in
Proteobacteria were associated with improved intestinal health in
broilers supplemented with probiotics.

Bacteroides fragilis is generally regarded as a gut commensal and
leads to an increased risk of infection and disease when it leaks into
the bloodstream or surrounding tissue (50). Even though
Bacteroides fragilis has an anti-inflammatory property, toxigenic
B. fragilis induces intestinal inflammation and can cause bowel
disease and colon cancer (51). Gallibacterium is an indigenous
bacterial pathogen in chicken and one of the major pathogens
causing reproductive tract disorders in laying hens (52). Butyrate is
an important energy source for gut enterocytes, and can reduce the
inflammatory response and gastrointestinal pathogens, regulate the
gut bacterial ecology, and stimulate villi growth (53, 54). Two
probiotics increased some beneficial bacteria and butyrate-
producing bacteria, such as Ruminococcus, Oscillibacter,
Pseudoflavonifractor, and Erysipellotrichaceac and decreased
Gallibacterium in C. perfringens-infected birds. In addition,
BSC10 decreased Bacteroides fragilis. Together with the results of
the PCA, we speculated that the two probiotics could restore the
intestinal microbiota disturbance induced by C. perfringens
infection with minor differences.

Alterations in the intestinal microflora composition are closely
related to the metabolic alterations in the gut microbiota. In the
present study, C. perfringens infection changed the microbiota
composition and metabolic pathways, including enhancing B-
vitamin biosynthesis, peptidoglycan biosynthesis, amino acid
biosynthesis, and ribonucleotide biosynthesis, etc., and decreased
pyruvate fermentation to acetate and lactate II pathway,whichwere
reversed by probiotic supplementation. Acetate and lactate are
known to inhibit the growth of gut pathogens, suggesting that
probiotics exert antibacterial properties by increasing the
production of acetate and lactate in response to C. perfringens. B-
vitamins are important in numerous metabolism processes,
including fat and carbohydrate metabolism and DNA synthesis.
Hosts cannot produce enough B-vitamins and have to be
supplemented either from the diet or the gut microbiota (55). An
increased risk of colitis correlates with a deficiency of genetic
pathways involved in polyamine transport and B vitamin
biosynthesis (56, 57). Dubin et al. (58) found that three modules
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involved in the biosynthesis of B vitamins (riboflavin (B2),
pantothenate (B5), and thiamine (B1)) were more abundant in
colitis free patients. Besides, Ford et al. (59) reported that high-dose
vitamin-B supplementation reduced oxidative stress and
inflammation. Inconsistent with some previous studies, the present
study showed that the vitamin-B biosynthetic pathway was enriched
in theCpgroupbut decreased in the probiotics group.We speculated
that C. perfringens induced a compensatory synthesis of vitamin-B
against oxidative damage and inflammation, while Lactobacillus and
Bacillus synthesized vitamin-B in the gut tomaintainnormal levels in
the organism, hence no need to supply exogenous Vitamin-B after
probiotic treatment. Peptidoglycan (PGN) is a component of the cell
wall in both Gram-positive and Gram-negative bacteria, and
it triggers inflammatory responses through multiple pattern-
recognition receptors (60). The most well-defined sensors of the
peptidoglycan are NOD-like receptors (NLRs), which promote
pathogen clearance by inducing the secretion of pro-inflammatory
cytokines and chemokines and other host defense pathways,
including autophagy (61). Peptidoglycan predominantly induces
the Th1 immune response. Besides, bacteria-derived peptidoglycan
can activate Paneth cells to produce defensins that protect the host
from pathogenic bacteria (62). Therefore, in the present study,
downregulation of the peptidoglycan biosynthetic pathway in the
probiotic groups indicated that probiotics might protect against C.
perfringens-infectionsby inhibitingexcessive inflammatory response,
and these findings were also consistent with the results of cytokines
expression levels in the ileum mucosa.
CONCLUSION

In our study, the two probiotics have similar molecular
mechanism against C. perfringens infection, including
improving the composition and metabolic pathways of the
intestinal microbiota, intestinal structure, inflammation, and
anti-apoptosis. There are some differences in anti-apoptosis
and the composition and metabolic pathways of the intestinal
microbiota of these two probiotics.
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