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Rejection after organ transplantation is a cause of graft failure. Effectively reducing
rejection and inducing tolerance is a challenge in the field of transplantation
immunology. The liver, as an immunologically privileged organ, has high rates of
spontaneous and operational tolerance after transplantation, allowing it to maintain its
normal function for long periods. Although modern immunosuppression regimens have
serious toxicity and side effects, it is very risky to discontinue immunosuppression
regimens blindly. A more effective treatment to induce immune tolerance is the most
sought-after goal in transplant medicine. Tregs have been shown to play a pivotal role in
the regulation of immune balance, and infusion of Tregs can also effectively prevent
rejection and cure autoimmune diseases without significant side effects. Given the
immune characteristics of the liver, the correct use of Tregs can more effectively induce
the occurrence of operational tolerance for liver transplants than for other organ
transplants. This review mainly summarizes the latest research advances regarding the
characteristics of the hepatic immune microenvironment, operational tolerance, Treg
generation in vitro, and the application of Tregs in liver transplantation. It is hoped that this
review will provide a deeper understanding of Tregs as the most effective treatment to
induce and maintain operational tolerance after liver transplantation.
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INTRODUCTION

Liver transplantation is effective for end-stage liver disease and acute liver failure, even when used as
the sole treatment (1). Over the past few decades, surgical techniques for liver transplantation have
matured. Modern immunosuppression regimens have greatly reduced the early mortality of transplant
patients. However, diseases caused by the side effects of those regimens also reduce long-term quality
of life and increase long-term mortality for recipients, who risk adverse effects such as renal
org May 2021 | Volume 12 | Article 5350121
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insufficiency and renal failure, cholangitis and bile duct stones
caused by biliary tract injury, and tumours caused by
immunodeficiency (2). Therefore, exploring more effective and
less toxic treatments to induce immune tolerance has become the
chief scientific concern in transplantation.

Immune tolerance refers to a specific non-responsive state
that the immune system exhibits when exposed to antigenic
substances (3). The study of immune tolerance induction has
achieved promising results in animal experiments; for example,
allografts could maintain good graft function without the use of
immunosuppression regimens. For decades, a small number of
transplant recipients have shown no signs of rejection and good graft
function with long-term discontinuation of immunosuppressants, a
phenomenon known as spontaneous operational tolerance (4). In
the 1990s, the University of Pittsburgh in the United States found
that approximately 20% of liver transplant patients could safely stop
all immunosuppressant therapy after the transplant had been in
place for many years (5). However, organ damage or failure caused
by the side effects of immunosuppressants often occurred early
postoperatively and was irreversible. Hence, how to induce early
operational tolerance of transplantation through intervention
measures is an important research topic at present.

Tregs are a subgroup of immune cells with strong regulatory
functions that play an important role in maintaining immune
homeostasis and inducing immune tolerance (6). In 1995,
Sakaguchi et al. discovered and defined it as a CD4+CD25+ T
cell subset originating from the thymus (7). But Foxp3+ T cells
were called Tregs when the key transcription factor Foxp3 was
discovered in 2003 (8). Current research has clarified that Tregs
regulate immune balance mainly by means of direct cell contact
and indirect secretion of cytokines (9). Tregs are related to the
occurrence of spontaneous immune tolerance after transplantation,
and there is a high quantity of Tregs in these patients (10). In recent
years, multiple centres have applied in vitro-induced Tregs to the
induction of early or late tolerance in patients with liver
transplantation, and some progress has been achieved (11). This
review will systematically summarize the latest research progress
and look forward to future research directions.
THE IMMUNOLOGIC CHARACTERISTICS
OF LIVER

The liver was defined as a non-immune organ in the past and is
mainly responsible for the functions of material metabolism,
nutrient storage and decomposition of toxic substances.
Transformed into continuous understanding of the characteristics
of liver tissue, we know that it is also an extremely complex immune
organ, with functions such as secreting acute phase proteins,
complement components, cytokines and chemokines, and
contains a variety of resident immune cells with self-renewal
capabilities (11, 12). The liver has been stimulated by a large
number of external antigens for a long time because it receives
blood from the entire digestive tract, but the liver maintains its
autoimmune balance through an extremely complex regulatory
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network. The recipient immune system is mainly composed of
resident immune cells from donors and circulating immune cells
from recipients after transplantation. However, the liver, unlike
other solid organs, is more likely to coexist with the donor’s
immune cell to form immune tolerance, which is inseparable
from the internal environment unique to the liver. An
explanation may be the presence of chimerism, which is
developed by lymphocytes and dendritic cells from donors
migrating to the lymph nodes and thymus of recipients, releasing
soluble MHC molecules, deleting colonies and exhausting
alloreactive T-cells (13). In addition, the portal vein and hepatic
artery converge in the hepatic sinus, which results in hypoperfusion
pressure, slow blood flow, and a hypoxic state in the sinusoidal area.
This provides a favourable place for adaptive immune cells and
innate immune cells to contact and respond to each other.

The liver has its own unique innate immune system and plays a
key role in the development of immune tolerance after liver
transplantation, including liver-derived dendritic cells, Kupffer
cells, sinusoidal endothelial cells, natural killer cells, and natural
killer T cells (14). A large number of studies have shown that the
maturity of dendritic cells in the liver is much lower than that of
peripheral lymphoid organs (15–20). Immature dendritic cells
display lower expression of MHC-II, costimulatory signalling
molecules and IL-12p70 and high expression of IL-10, IL-27 and
TGF-b (21–23). Therefore, it is conducive to the expansion of Tregs
and the maintenance of their functions but inhibits T cell activation
(17, 24–26). Chen et al. recently confirmed that immature dendritic
cells overexpressing IL-10 and Fasl display lower expression of
MHC-II, CD80 and CD86, which could effectively induce early
immune tolerance after liver transplantation in rats (27).
Experimental results from our centre showed that galectin-1
induces peripheral monocytes to differentiate into immature
dendritic cells, promotes their expression of IL-27 and TGF-b,
induces differentiation and expansion of Tregs, and effectively
induces immune tolerance after liver transplantation in rats (28).
The above conclusions favourably determine the important role of
immature liver dendritic cells in the induction of immune tolerance
after liver transplantation. Kupffer cells, as the main resident
macrophages in the liver, play a critical role in the inflammatory
response caused by ischaemia-reperfusion in liver transplantation
(29, 30). However, studies have also found that Kupffer cells can
induce Tregs to proliferate and secrete IL-10 through direct contact
with Tregs while inhibiting T cell activation by secreting PGE2 and
15d-PGJ2 (31–34). Sinusoidal endothelial cells, as the main
components of liver non-parenchymal cells, can induce T cell
apoptosis by inducing the expression of PD-L1 and inhibiting T cell
secretion of IL-2, thereby inducing immune tolerance (35, 36).
Meanwhile, studies have shown that hepatic sinusoidal endothelial
cells can induce CD4+ T cells to differentiate into
CD4+CD25lowFoxp3-specific T cell subsets with inhibitory activity
(37). NK cells have been demonstrated to play dual roles in liver
immunity (38). NK cells have been clarified to inhibit dendritic cell
activation and promote hepatic tolerance by secreting TGF-b and
IL-10, which further induce the expansion of Tregs (39). The above
research conclusions suggest that in addition to directly affecting T
cells, liver innate immunity can simultaneously induce the
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differentiation and proliferation of suppressive T cell subsets,
especially Tregs.
TREGS DEVELOPMENTS AND
FOXP3 REGULATION

Over the past 20 years, the biological characteristics and
immune regulation mechanisms of Tregs have been widely
studied. Tregs are classified as thymus-derived Tregs (tTregs)
and peripheral-derived Tregs (pTregs) according to the
different sites where Tregs differentiate (40, 41). However,
tTregs and pTregs are not only different in the place of
differentiation but also in the manner of differentiation.
tTregs are mainly induced by autoantigens in the thymus,
and CD4 single-positive cells express Foxp3 under moderate
autoantigen and IL-2 signal stimulation via TCR (42, 43).
pTregs are mainly induced by foreign antigens, and
peripheral CD4+ naïve T cells express Foxp3 under the
stimulation of bacterial or food antigens and differentiate into
pTregs (44, 45). Studies have also confirmed that TCR is
essential for the activation, maturation, and functions of
Tregs (46, 47). TCR signal activation plays a key role in the
differentiation and activation of Tregs and pTregs. Sidwell et al.
found that the transcription factor Bach2 inhibits signal
transduction downstream of TCR and affects Treg activation.
ChIP-seq and ATAC-seq revealed that Bach2 antagonizes
TCR-induced IRF4 and DNA binding activity and restricts
chromatin accessibility (48). Using single-cell RNA sequencing,
Zemmour et al. analysed the variation in TCR expression
profiles between Tregs and CD4+Foxp3-T cells (49). However,
there are no reports about alloantigen-reactive Tregs in patients
with liver transplantation. Single-cell analysis can provide a
deeper understanding of the specificity of TCRs and related
transcription factors or key factors and, in combination with
ChIP-seq and ATAC-seq, further analyse specific mechanisms.
In addition to TCR signalling, TGF-b and IL-2 signalling also
play an important role in Treg development, whether in the
thymus or in the periphery. Our previous results showed that
TGF-b signalling plays a pivotal role in iTreg (induced in cell
culture) induction, which mainly depends on downstream
SMAD2/3 activation (50). A recent study reported that 5-aza-
dC efficiently generates Foxp3+ iTreg TCR-stimulated
CD4+Foxp3− T cells in the absence of exogenous TGF-b and
IL-2, and they further discovered that the function of 5-aza-dC
on Treg generation is critically dependent on TGF-bR and
IL-2R signalling (51). Although those studies provided us
with a deep understanding of the molecular mechanisms
underlying the process of Foxp3 induction, we need to look
for more drugs or molecules to assist TGF-b and IL-2 in
inducing stable iTregs.

The maintenance of the phenotype and function of Tregs
depended on the stable expression of Foxp3 and the function of
Foxp3 protein. In 2017, we systematically summarized the
important regulatory molecular mechanisms affecting Foxp3 at
the level of transcription, translation, and post-translational
Frontiers in Immunology | www.frontiersin.org 3
modification (52). The execution of these suppressive functions
requires the proper regulation of Foxp3 genes within Treg cells.
Many transcription factors can bind to the promoter regions of
its gene, such as NAFT, RUNX1, and IRF4 (53–55). Previous
data have shown that atRA increases histone acetylation on the
Foxp3 gene promoter and CpG demethylation in the region of
the Foxp3 locus (56, 57). Our recent research found that YAP
upregulates activin receptor expression through binding to
TEAD, thereby promoting the activation of the TGF-b/
SMAD2/3 signalling pathway, stabilizing and increasing Foxp3
expression and Treg function (58). At the same time, we
confirmed for the first time that Foxp3 is regulated by K63-
type polyubiquitination. When TRAF6 is defective in Tregs,
K63-type polyubiquitination of Foxp3 is significantly inhibited,
and its nuclear distribution is significantly abnormal (59). The
post-translational modification of Foxp3 has been gradually
valued. In addition to ubiquitination, Foxp3 lysine acetylation
is also important. Dahiya et al. found that HDAC10 regulates
Foxp3 protein stability and transcriptional activity, and
HDAC10 deficiency leads to a significant decline in Treg
immunosuppressive function (60). Xiao et al. recently found
that EZH2 inhibits Foxp3 transcription by downregulating
RUNX1 and upregulating SMAD7 expression, further
clarifying that methylation modification plays an important
role in the regulation of Foxp3 transcription (61). Many
studies have deeply determined the molecular mechanism of
Foxp3 and other important factors regulating the function of
Tregs (62–64). However, the recognition of alloantigen-reactive
Tregs is still almost completely unknown. We need to establish
an effective system to analyse the regulatory characteristics of
alloantigen-reactive Tregs so that we can better and more
effectively induce and maintain them and induce stable and
durable immune tolerance.
TREGS AND OPERATIONAL TOLERANCE

Operational tolerance is different from what we usually call
immune tolerance. This means that the allograft does not
suffer a rejection reaction and maintains good graft function
and normal histology. Because of the unique histological and
immune microenvironment characteristics of the liver, it is more
prone to spontaneous operational tolerance than other solid and
non-solid organs. At first, Starzl found that some patients who
discontinued immunosuppressive drugs due to serious side
effects did not develop rejection and form natural tolerance
(65). Subsequently, Mazariegos recruited 95 liver transplant
recipients who had taken immunosuppressive drugs for a long
time after operation and had stable liver function to perform
withdrawal experiments and found that spontaneous operational
tolerance occurred in approximately 20% of recipients (66). The
results of clinical withdrawal experiments from multiple centres
in the world also confirmed the above conclusions (67–74). The
overall incidence of spontaneous operational tolerance in liver
transplant recipients remains unknown. Considering that blind
withdrawal early can lead to more serious consequences, how to
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induce early operational tolerance in liver transplant recipients is
a major scientific issue in the transplant world today.

Tregs induce immune tolerance through a variety of pathways,
including direct and indirect pathways. For example, Tregs
interact with B cells, T cells and DCs and inhibit their activation
and proliferation by expressing PD-1, CTLA-4, CD39 and LAG-3.
It can also secrete the anti-inflammatory cytokines IL-10, IL-25
and TGF-b to inhibit T cell activation, releasing perforin and
granzyme to promote target cell apoptosis and competing with T
cells for binding to IL-2 by expressing CD25 (75, 76). Th17 cells
produce IL-17A, IL-21 and IL-22, which have been shown to
promote immunopathology and autoinflammatory diseases (77).
Many studies have shown that Tregs suppress Th 17 cell
proliferation and control its response (78). Early studies found
that the occurrence of acute rejection after liver transplantation
was inversely related to the number of peripheral circulating Tregs
and the ratio of Tregs/Th17 cells (79–82). Li et al. used a CD25
antibody (250 mg/d, IP) to treat a mouse transplantation model
and found that it reduced the proportion of CD4+CD25+ Treg/
CD3+ T cells and significantly reduced the incidence of
spontaneous tolerance in transplanted mice (83). A clinical trial
of withdrawal of recipients who took immunosuppressive drugs
after liver transplantation with stable liver function for more than
2 years found that the level of Foxp3 mRNA in peripheral blood of
recipients who did not have rejection after withdrawal was
increased a rate of 3.5 times each time and continued to
increase until the drug was completely withdrawn, but the
recipients who experienced a rejection after drug withdrawal
could not see this phenomenon (74). Recent studies have used
flow cytometry to detect the ratio of Tregs/Th17 in the peripheral
blood of patients with rejection within 2 weeks to 1 month after
living donor liver transplantation and found that the occurrence of
early rejection is directly related to the low number of Tregs (80).
Therefore, we can easily predict that Treg immunotherapy may be
the most effective way to induce operational tolerance in the
early stage.
EX VIVO REGULATORY T CELLS
GENERATION

Since Tregs only account for 5-10% of peripheral blood CD4+ T
cells, to obtain a sufficient number of Tregs, we need to expand
Tregs in vitro. Currently, there are two methods expanding Tregs
in vitro for clinical applications that are certified by GMP (84).
Considering the timeliness of magnetic bead sorting, GMP
stipulated that two-step magnetic bead sorting (CliniMACS) is
used to obtain human peripheral blood CD4+ CD25+ Tre (85).
Treg expansion in vitro is mainly divided into polyclonal Treg
expansion and alloantigen-reactive Treg expansion. Polyclonal
Tregs are expanded by using CD3 and CD28 antibody-coated
magnetic beads and IL-2 recombinant protein (86, 87). However,
this expansion method inevitably led to the loss of Foxp3 and
changed the Treg phenotype, and the effector T cells also
expanded and mixed in the presence of IL-2. We and other
laboratories added rapamycin and all-trans retinoic acid to
Frontiers in Immunology | www.frontiersin.org 4
effectively maintain Foxp3 expression and inhibit effector T cell
expansion (57, 88). Due to the poor specificity of polyclonal Treg
antigens, we are now focusing more on alloantigen-reactive Treg
expansion. Alloantigen-reactive Tregs can be expanded by using
donor antigen-presenting cells, such as dendritic cells, B cells,
and peripheral blood mononuclear cells (89). Putnam et al. used
CD40L-activated allogeneic B cells for the first time to stimulate
and select alloantigen-reactive Tregs and then performed 200-
4000 times in 16 days with magnetic beads coated with CD3 and
CD28 antibodies and IL-2 recombinant protein (90). Our centre
designed a method inducing alloantigen-reactive Tregs and is
applying for Republic of South Africa Patents (International
Application NO: PCT/CN2018/075730). The invention adopts
rapamycin combined with TGF-b cells to induce human T cells
into alloantigen-reactive Tregs with immunosuppressive
function in vitro by the action of DC cells from donors.
Podestà et al. used PBMCs to establish an allogeneic mixed
lymphocyte system, applied this system to expand alloantigen-
reactive Tregs, and added ceprizumab, a CD2 monoclonal
antibody. They found that ceprizumab can greatly reduce the
proportion of CD4+ and CD8+ effector and memory T cells and
at the same time selectively promote alloantigen-reactive Treg
expansion (91). This study suggests that we can modify
polyclonal Tregs and alloantigen-reactive Tregs in vitro based
on the biological characteristics of Tregs and the regulatory
mechanism of Foxp3 stability so that they have stronger
expansion ability and stability.
THE APPLICATION OF TREGS IN LIVER
TRANSPLANTATION

As of January 2020, there are very few clinical trials reporting
that Tregs successfully induced operational tolerance in patients
with liver transplant in the early stage, almost all of which are in
phase I/II clinical trials. Ex vivo expanded polyclonal regulatory
T‐cell therapy is being utilized in the ThRIL trial at King’s
College Hospital, UK [clinicaltrials.gov NCT02166177]. The
DeLTA and ARTEMIS trials at University of California, San
Francisco, USA, are using donor‐alloantigen‐reactive regulatory
T cells (darTregs) [NCT02188719] NCT02474199. A
preliminary study from Japan showed that Tregs can safely
and effectively induce operational tolerance in the early stage
of recipients after living liver transplantation. Treg-enriched
allogeneic lymphocytes were obtained by co-culturing recipient
spleen lymphocytes and irradiated donor lymphocytes in the
presence of CD80 and CD86 antibodies, which were reinfused
(23.30 + 14.38×106/kg) on the 13th day after living-donor liver
transplantation. Dug withdrawal gradually started after 6 months
and completed withdrawal until 18 months. Ten patients were
included in this study, and no severe side effects occurred after
cell therapy. All patients had normal liver function and liver
histology. Seven patients achieved operational tolerance. Three
of seven patients resumed taking low-dose immunosuppressive
drugs due to autoimmune liver disease. However, this study has
no long-term data or follow-up (92). This study suggests that
May 2021 | Volume 12 | Article 535012
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Tregs induce operational tolerance to be safe and effective
(Table 1).
FUTURE DIRECTIONS

Along with the application of Tregs in inducing operational
tolerance after solid organ transplantation and non-solid organ
transplantation (93–95), it has been clearly confirmed that Tregs
can effectively induce and maintain operational tolerance early
without significant side effects. However, although the biological
characteristics of Tregs and the molecular regulatory mechanisms of
Foxp3 are understood in depth, little is known about the
heterogeneity of alloantigen-reactive Tregs in different organs. In
the future, it is necessary to further characterize the phenotypic and
functional differences in alloantigen-reactive Tregs between different
organs via modern omics analysis. With that knowledge, we could
effectively modify Tregs during in vitro expansion to obtain Tregs
with stronger suppressive activity and stability and generate
common Car-Tregs with antigen-specific properties. For Car-
Tregs, it is important to determine and verify the best target for
engineered Treg cells, as well as consider whether the target molecule
on these cells could be a soluble antigen instead of a surfacemolecule.

The mass production process of Treg cells is still not perfect,
mainly due to the limitations of reagents and equipment.
Combining MACS with FACS may further improve this process.
The low proliferation rate of Treg cells in vitro is in stark contrast to
their highly proliferative state in vivo. Suitable media, growth
factors and stimulants for Treg cells have not been developed. In
addition, current Treg cell manufacturing processes are expensive
and labour intensive. Maximizing automation not only reduces
costs but also improves repeatability and standardization.

Meanwhile, because there is still no effective way to evaluate
the outcome of Treg infusion in vivo, we need to compare the
Frontiers in Immunology | www.frontiersin.org 5
differences in Treg heterogeneous subgroups in vivo before and
after Treg therapy and to clarify the phenotypic and functional
differences. A better understanding of how Treg cells maintain
tissue integrity during homeostasis and in autoimmunity and
organ transplantation, whether (and how) Treg cells change their
identity in autoimmunity and whether Treg cells from patients
with autoimmune disease are intrinsically defective and thus
unsuitable for therapeutic use will also be critical to establish a
Treg immunotherapy evaluation system that can guide the
withdrawal process. In addition to Tregs alone, we need to
explore the efficacy of Tregs combined with other immune cell
therapies, such as MSCs, DCs or others. In the next few years, as
clinical experimental data from other centres are reported, we
will achieve a deeper understanding of the efficacy, safety, and
side effects of Treg therapy in liver transplantation. However, we
still need to establish a safe, effective and unified system to
facilitate the implementation of Treg.
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