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The immunosuppressive mechanisms of the surrounding microenvironment and distinct
immunogenomic features in glioblastoma (GBM) have not been elucidated to date. To fill
this gap, useful data were extracted from The Cancer Genome Atlas (TCGA), the Chinese
Glioma Genome Atlas (CGGA), GSE16011, GSE43378, GSE23806, and GSE12907.
With the ssGSEA method and the ESTIMATE and CIBERSORT algorithms, four
microenvironmental signatures were used to identify glioma microenvironment genes,
and the samples were reasonably classified into three immune phenotypes. The molecular
and clinical features of these phenotypes were characterized via key gene set expression,
tumor mutation burden, fraction of immune cell infiltration, and functional enrichment.
Exhausted CD8+ T cell (GET) signature construction with the predictive response to
commonly used antitumor drugs and peritumoral edema assisted in further characterizing
the immune phenotype features. A total of 2,466 glioma samples with gene expression
profiles were enrolled. Tumor purity, ESTIMATE, and immune and stromal scores served
as the 4 microenvironment signatures used to classify gliomas into immune-high,
immune-middle and immune-low groups, which had distinct immune heterogeneity and
clinicopathological characteristics. The immune-H phenotype had higher expression of
four immune signatures; however, most checkpoint molecules exhibited poor survival.
Enriched pathways among the subtypes were related to immunity. The GET score was
similar among the three phenotypes, while immune-L was more sensitive to bortezomib,
cisplatin, docetaxel, lapatinib, and rapamycin prescriptions and displayed mild peritumor
edema. The three novel immune phenotypes with distinct immunogenetic features could
have utility for understanding glioma microenvironment regulation and determining
prognosis. These results contribute to classifying glioma subtypes, remodeling the
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immunosuppressive microenvironment and informing novel cancer immunotherapy in the era
of precision immuno-oncology.
Keywords: immunogenomic analysis, microenvironment, immune phenotype, glioma, biometrics
INTRODUCTION

Gliomas are the most common and malignant primary tumors in
the central nervous system (CNS) and have a highly invasive nature
(1, 2). The discovery of the lymphatic system in the CNS has
aroused inspiration to provide a novel theoretical foundation and
new prospects for immunotherapy in brain tumors, and previous
literature has demonstrated the mutual interactions between
gliomas and the immune system (3, 4). Multiple related biological
processes influencing CNS immune surveillance, such as the PI3K/
Akt pathway, FAK, the IGF pathway, the STAT3 pathway,
chemokines, HIF-1a, IL-6, TGF-b, PD-1/PD-L1, and CTLA-4,
could individually impact immunosurveillance (5–8). Since
entering the era of precision oncology, the molecular profiles of
gliomas have been well studied. Mutations in the isocitrate
dehydrogenase 1 (IDH1) gene, 1p/19q codeletion, methylguanine
methyltransferase (MGMT) promoter methylation, tumor protein
53 (TP53), and telomerase reverse transcriptase (TERT) promoters
are becoming treatment targets or prognostic biomarkers (9–11).
Monoclonal antibodies (mAbs) against PD-1/PD-L1 show
satisfying overall survival (OS) in melanoma and non-small cell
lung cancer (NSCLC), but there is limited survival benefit in glioma
(12). The unique immune-privileged microenvironment due to the
inherent expression of immunosuppressive cytokines, such as PD-1,
TGF-b, and IL-10, and the lack of antigen-presenting cells (APCs)
in the CNS present obstacles for the efficacy of immunotherapy in
glioblastoma (GBM) (13). The development of more novel and
effective therapies will require a deep understanding of the tumor
immunosuppressive microenvironment.

Direct interactions between tumor and immune cells can result
in suppression of natural killer (NK) cell activity mediated by HLA
molecules (including HLA-E and HLA-G) (14), immune cell
apoptosis via tumor necrosis factor receptor superfamily member
6 (TNFRSF6, known as FAS) and the FAS-ligand interaction (15), or
triggering of inhibitory T cell checkpoints by PD-L1 (16). The
hypofunctional state of T cells known as T-cell exhaustion was
identified by the accumulation of coinhibitory checkpoints (17). Of
note, the paucity of T cells in the glioma microenvironment is
striking in contrast to the levels in other “hot tumors”, and some
studies have suggested that glioma-associated myeloid cells are
immunosuppressive with an M2-like phenotype and require
peripheral dendritic cells (DCs) to elicit an immune response (18).
Indeed, the exact mechanism of immune suppression is still obscure.
In this study, we employed 2,466 samples to properly classify glioma
into immune phenotypes according to distinct immunogenomic
features based on microenvironment-related genes. Then, we
validated and identified microenvironmental processes, explored
immune alterations, and characterized immunosuppressive
mechanisms. The immune landscape may inspire glioma
subtype classification, remodeling of the immunosuppressive
microenvironment and development of new therapies.
iersin.org 2
METHODS

Data Acquisition and Filtration
Data from glioma patients from sixmRNA databases were extracted
from TCGA database (RNA-sequencing (RNA-seq) for GBM, n =
169, microarray, n = 539) (http://cancergenome.nih.gov/), the
CGGA database (RNA-seq, n = 1018, microarray, n = 301)
(http://www.cgga.org.cn), the GSE16011 database (microarray,
n = 276), the GSE43378 database (microarray, n = 50), the
GSE23806 database (microarray, n = 92) and the GSE12907
database (microarray, n = 21). Complete clinical information was
obtained from TCGA (http://cancergenome.nih.gov/, n = 708) and
GCCA (http://www.cgga.org.cn, n = 1319). Somatic mutations and
single nucleotide polymorphisms (SNPs) of gliomas were obtained
from the TCGA database (http://cancergenome.nih.gov/, n=901,
gene number n = 13,389). RNA-seq data downloaded in FPKM
values from TCGA were normalized and transformed into
transcripts per kilobase million values. RNA expression of gliomas
was assessed with the Affymetrix microarray platform in the Gene
Expression Omnibus (GEO) database (GSE16011, GSE43378,
GSE23806, and GSE12907). Data were filtered to exclude samples
without mRNA expression or clear histology, and the genomic data
were normalized and analyzed within lanes, between lanes, and per
quantile using the “limma” and “DESeq2” R packages. In this study,
TCGA and CGGA were mainly treated as the training sets, and
GEO databases were regarded as the validation sets.

Immune Phenotype Classification
In the glioma microenvironment, immune and stromal cells are
two key types of nontumor components and have been indicated to
be significant for the diagnosis and prognosis of tumors. Yoshihara
et al (19) designed the ESTIMATE algorithm to compute immune
and stromal cell scores to predict the infiltration of these nontumor
cells. The authors used ESTIMATE to evaluate immune scores,
ESTIMATE scores, stromal scores and tumor purity scores in
each tumor sample with the aim of determining the immune
infiltration level.

Single-sample gene set enrichment analysis (ssGSEA), which
assisted in quantifying the enrichment level of an immune cell/
signature, pathway or biological process in a tumor sample, was used
to assess the gene score of every gene set for every sample (20). The
enrichment-related score represented the level at which the genes in
the gene set were synchronously up- or downregulated in the
sample. The infiltration of immune cells in the microenvironment
was determined by 29 immune cell types: NK cells, effector memory
CD4+ T cells, activated B cells, monocytes, memory B cells, activated
CD4+ T cells, type 2 T helper cells, dendritic cells, neutrophils,
macrophages, effector memory CD8+ T cells, myeloid-derived
suppressor cells (MDSCs), immature B cells, mast cells, and
regulatory T cells, and glioma samples were hierarchically
clustered into “immune-high (immune-H)”, “immune-middle
June 2021 | Volume 12 | Article 557994
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(immune-M)” and “immune-low (immune-L)” groups. Separation
of gene expression patterns between immune phenotypes was
evaluated by the principal component analysis (PCA) algorithm
with the PCA1, PCA2, and PCA3 top three dimensions (21).
Visualization was performed with the “GSVA”, “GSEABase”,
“ComplexHeatmap”, “estimate”, and “ggplot” public packages.

Quantification of Molecular and
Genomic Features
Tumor mutation burden (TMB) was defined as the total count of
somatic mutations per megabase in each tumor sample. We used
the MATH algorithm (22), which assessed the width of the allele
frequency distribution, to evaluate the intratumor heterogeneity
level of tumor samples. Further intratumor heterogeneity scores
were quantified using the function “math. Score” in the “maftools”
package with downloaded “maf” files based on the hg19 sequencing
platform. Comparisons of the somatic mutations and SNP sites
among immune phenotypes in distinct populations (low-grade
glioma (LGG) and GBM samples) were displayed to investigate
the discrepancies by the “maftools” and “GenVisR” packages.

Survival Analysis
Available clinicopathological factors (e.g., sex, age, treatment
options, histological subtype, and classic mutations) were
collected from the TCGA and CGGA datasets to estimate the
association between these factors as well as the immune
phenotypes and prognosis with univariable and multivariable
Cox analysis (uniCox, multiCox) and proportional hazard
models. We compared survival differences among immune-
specific phenotypes of glioma in distinct groups using Kaplan-
Meier curves and the log-rank test with normalized clinical data.

Estimation of the Proportions of Immune
Cell Types
CIBERSORT is an algorithm designed to characterize the cell
composition of complex tissues based on their gene expression
profiles, and it is highly consistent with real-life estimations in
many cancers. A leukocyte gene signature matrix employing 547
genes, which was defined as LM22, was used to quantify 22
immune cell types (23). These 22 types of immune cells mainly
include myeloid subtypes, NK cells, plasma cells, naive and
memory B cells and T cells. We used the CIBERSORT method
to investigate the fraction of the 22 immune cell types in each
derived phenotype and identify the characteristics of infiltrating
cells in the glioma microenvironment.

Identification of a Gene Signature for
Exhausted CD8+ T Cells
CD8+ T lymphocytes are regarded as a critical component of
antitumor immunity, while immune invasion often occurs during
the development of T cell exhaustion, characterized by the
progressive accumulation of coinhibitory checkpoints, including
PD-1, PD-L1, CTLA-4, TIM-3, and LAG-3 (17). We defined a
gene expression signature of exhausted CD8+ T cells with
integrative bioinformatics through publicly available NSCLC data
considering the data quality and availability. We obtained an RNA-
seq dataset of intratumoral CD8+ T cells showing high or no PD-1
Frontiers in Immunology | www.frontiersin.org 3
(PDCD1) expression in a published study (24), and we generated an
upregulated PD-1-positive gene list from another previous study
(25). Pearson correlation analysis was conducted using the
upregulated PD-1-positive gene list in the TCGA (microarray+
RNA-seq cohort) and CGGA (microarray+ RNA-seq cohort)
datasets with an adjusted P-value < 0.05 and |correlation
efficiency| > 0.25 as the eligibility criteria. In total, a 5-gene
signature was identified in the glioma database, and an exhausted
CD8+ T cell (GET) score was quantified in a tumor by conducting
ssGSEA to obtain the ssGSEA score. In combination with clinical
and molecular profiles, the prognostic and predictive values of the
GET score were determined through different immune phenotypes.

Correlation and Functional Analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were performed on genes
differentially expressed between the immune-high and immune-
low groups. Gene set enrichment analysis (GSEA) was carried out
to identify the group of genes enriched either in the immune-high
or immune-low group with cutoffs of a P-value < 0.1 and a false
discovery rate (FDR) < 0.05 (26). Gene set variation analysis
(GSVA) is a nonparametric and unsupervised method estimating
the variations of samples in analyzed datasets in pathways and
biological process (27). The gene sets of “c2.cp.kegg.v6.2.-symbols”
used were captured from the MSigDB website for GSVA, with an
adjusted P-value < 0.05 considered statistically significant.
Correlation plots were constructed that primarily focused on the
interactions between IDH1 and other key immune-related genes
identified from the GSEAwith a P filter = 0.001. A Sankey diagram
was constructed to show the correlations between checkpoints and
the GSEA-identified genes. Visualization of the unction analyses
was realized via the “circlize” (28), “circus” (29), “clusterProfiler”,
and “ggalluvial” (30) packages.

Prediction of the Chemo/Targeted
Therapy Response
Intended chemotherapeutic and targeted responses of glioma
samples were evaluated by the largest publicly available
pharmacogenomics database (Pharmaceutical Sensitivity
Genomics in Cancer (GDSC) https://www.cancerrxgene.org/)
(31). GDSC contains drug sensitivity information from nearly
75000 experiments and responses to 138 anticancer drugs across
almost 700 cell lines. The database provides a unique source
relevant to mainstream drug sensitivity and genomic datasets
to inspire new discoveries on cancer therapeutic biomarkers.
GDSC is also utilized due to its visualization capability. The
evaluation procedure was conducted via the R software package
“pRRophetic”, half-maximal inhibitor concentration (IC50), and
the evaluation accuracy was determined by ridge regression and
10-fold cross-validation using the GDSC dataset (32, 33). Different
chemotherapeutic and targeted responses among the three
phenotypes were analyzed by one-way analysis of variance
(ANOVA) or the Kruskal-Wallis test (K-W test) based on the
results of the normal distribution criteria test. The response to
commonly used chemotherapy or targeted therapies was compared
according to immune phenotype, although some drugs were not
formally approved for utility in brain tumors.
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Peri-Tumoral Edema Characteristics
To detect the variations in some radiomics features of classified
immune phenotypes, MR images (MRIs) of patients from the
TCGA dataset were obtained from the Cancer Imaging Archive.
TCGA-GBM and TCGA-LGG cohorts in the Cancer Imaging
Archive (http://www.cancerimagingarchive.net) were specifically
selected and matched with existing results. Eligible tumor contrast
enhancement images were determined after a discussion with three
skilled neurosurgeons (Zhao B, Xing H, Wang Y) on the author list.
Radiomics features of tumors included tumor size, enhancement,
noncontrast-enhancing tumor (nCET), necrosis, edema, cysts,
multifocality, contact with ventricles or neocortex and location based
on a previous study (34). Features such as multifocality, enhancement,
location and edema were revealed to have molecular signature
correlations with glioma, such as IDH mutation or MGMT
promoter methylation; edema and necrosis were regarded as poor
survival imaging markers (34, 35). Edema associated with both
molecular phenotypes and prognosis was the focus of investigation
to facilitate identification of noninvasive acquired markers and features
of the classified glioma phenotypes. Amild (or no) region of edema (-)
was regarded as edema extending ≤ 1 cm from the margin of the
tumor; otherwise, it was treated as moderate to severe (+) (36). The
evaluations were all based on eligible T2-weighted images.

Statistical and Bioinformatics Analyses
Statistical analyses were conducted using R software (version
3.5.3), and other statistical methods are mentioned throughout
the article. Bioinformatics analysis was conducted mainly
following the methods of Thorsson et al (37). A two-sided P <
0.05 was considered to be significant unless otherwise specified.
The public packages used are mentioned throughout this paper.
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

ssGSEA and Independent Immune
Phenotype Classification
After excluding the normal tissues (5 normal samples in the
TCGA RNA-seq database), tumor samples with distinct
extension of inflammatory cell infiltration were classified into
“immune-L”, “immune-M” and “immune-H” phenotypes with
ssGSEA incorporating 29 types of immune cell lineages, such as
helper T cells, cytotoxic T cells, myeloid cells, monocytes, NK
cells, dendritic cells, and T cells. The numbers of samples falling
into the immune-L, immune-M, and immune-H phenotypes
were 283, 234 and 21 in the TCGA microarray data; 129, 8 and
32 in the TCGA-GBM RNA-seq data; 105, 90 and 106 in the
CGGA microarray cohort; 413, 425 and 180 in the CGGA RNA-
seq cohort; 112, 162 and 2 in GSE16011; 28, 16 and 6 in
GSE43378; 87, 2 and 3 in GSE23806; and 9, 10 and 2 in
GSE12907, respectively (Figure 1).

Each Phenotype Has Distinct
Immunogenetic Features
Four immune scores were employed. From the ESTIMATE
algorithm, the immune-H phenotype was revealed to have a
higher ESTIMATE score, immune score and stromal score and a
lower tumor purity score than the immune-M and immune-L
phenotypes. Statistical comparisons showed that there were
significant differences between the immune-H and immune-L
phenotypes (Wilcoxon P-value < 0.001) related to these immune
signatures (Figure 2).

Checkpoint biomarkers are involved in tumor subtype
classification, prognosis prediction and immunotherapy therapy
A B

D E F

C

FIGURE 1 | Immune phenotype classification and four glioma immune microenvironment signatures identification. (A–F) Heatmaps showing three immune
phenotypes, tumor purity, ESTIMATE, immune and stromal scores in the glioma microenvironment of samples from the TCGA microarray, TCGA GBM RNA-seq,
CGGA microarray, CGGA RNA-seq, GSE16011, and GSE43378 cohorts.
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FIGURE 2 | Differences among immune phenotypes in terms of four glioma immune microenvironment signatures. (A–D) Violin plots comparing the ESTIMATE,
immune and stromal scores and tumor purity among immune phenotypes in the TCGA microarray, TCGA GBM RNA-seq, CGGA microarray, and CGGA RNA-seq
cohorts respectively. P values for Wilcoxon test were shown on the top of each violin plot. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. ns, not significant.
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response evaluation. We observed that most checkpoints were
differentially expressed. Such biomarkers were more highly
expressed in the immune-H phenotype than in the immune-M
and immune-L groups. CD200 was highly expressed in the
immune-L phenotype (K-W test P value < 0.001) (Figure 3A).
HLA genes took important roles in innate immunity and tumor
immune microenvironment regulation, these family genes had
significantly different expression among phenotypes, with the
immune-H group exhibiting significantly higher expression than
the other two groups (Figure 3B). Furthermore, the immune-L
showed higher expression of TP53, EGFR, NF1, PDGFRA, and
RB1than immune-H phenotype, which suggested the converged
axes of P53, tumor suppressive Rb and MAPK/PI3K were
potentially activated in immune-L phenotype. IDH-mutant
glioma with ATRX and TERT mutations was always associated
with favorable survival (Figure 3C). Good separation between the
immune-H and immune-L phenotypes was confirmed by PCA
Frontiers in Immunology | www.frontiersin.org 6
(Figures 3D–F). Based on the above results, the immune-H
phenotype may be more sensitive to classic checkpoint
immunotherapy than the others, while the immune-L phenotype
was associated with longer survival and better prognosis.

The Immune-H Phenotype Is Associated
With a Poor Prognosis
Clinical and molecular features of the immune-specific phenotypes
of glioma are displayed in complex heatmaps (Figures 4A–D,
Supplementary Online Files 1–4). Treatment options and
histological characteristics seemed to have more prognostic
influence, and patients who had received corresponding
chemotherapy (including adjuvant temozolomide (TMZ)
therapy) or radiotherapy or who had a lower tumor grade and
malignancy were observed to have favorable survival. The results
are summarized in standardized Table 1. In the TCGA (n = 701)
(log-rank P-value = 0.031) and CGGA cohorts (n = 1281) (log-rank
A

B

D E F

C

FIGURE 3 | Differences in checkpoints, HLA family and other key biomarkers between the immune phenotypes. (A) Expression of checkpoint family biomarkers of
each phenotype in the CGGA RNA-seq cohort. (B) Expression of HLA family genes of each phenotype in the TCGA microarray cohort. (C) Expression of part T cells
co-inhibitors checkpoints and key biomarkers relating to glioma biological behavior and pathways in the TCGA microarray cohort. The upper and lower ends of the
boxes represented interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers. The asterisks represented the
statistical P value (*P < 0.05; **P < 0.01; ***P < 0.001; ***P < 0.0001, ns, not significant). (D–F) There was separation between the immune-H and immune-L
phenotypes in the TCGA microarray (D), TCGA GBM RNA-seq (E) and CGGA RNA-seq cohorts (F) according to PCA. PC1, PC2, PC3 represented three
dimensions showing differential expression of markers related to immune cell lineage.
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P-value = 2.056e-12), the immune-H phenotype exhibited
unfavorable survival compared with the immune-L phenotype
(Figures 4E, F). Similar findings were consistent and confirmed
in the TCGA RNA-seq (P-value < 0.001), CGGA microarray
(P-value = 1.135e-5) and CGGA RNA-seq cohorts (P-value =
8.882e-16), but the results were not significant in the TCGA
microarray cohort due to limitations derived from the sample
number (P-value = 0.186) (Figures 4G–J). For subgroup analyses
conducted in the CGGA cohort, in the LGG and primary glioma
patients, there were significant survival differences between the
immune-H, -M and -L phenotypes (log-rank P-value = 7.346e-4;
P-value = 9.448e-14, respectively). The prognostic value was not
obvious in the GBM (P-value = 0.928) or recurrent subpopulations
(P-value = 0.658) (Figures 4K–N). These results were contrary
to those of previous studies on other cancer types, including
breast cancer (38), gastric cancer (39) and head and neck
squamous cell cancer (40), which indicated the specificity of the
association between tumor immunity and clinical outcomes in
Frontiers in Immunology | www.frontiersin.org 7
glioma, the microenvironment of which is regarded as rather
immunosuppressive and refractory. Additionally, intrinsic
limitations associated with sample size and variation of ethnicity
among the used databases or cohorts should be acknowledged.

Infiltrating Immune Cell Fractions
and Correlations
Through the CIBERSORT algorithm, M2, M1, and M0
macrophages, monocytes, DCs, and subsets of B and T cells
(CD4+ and CD8+) were distinguished in the glioma
microenvironment (Figures 5A, B). The results derived from
ESTIMATE and CIBERSORT classified the glioma samples into
three immune phenotypes, which had similar characteristics to
those of the previously identified phenotypes. Correlations
between each type of immune cell illustrated that the most
negative correlations were found among M0 macrophages,
monocytes, M2 macrophages, DCs (activated and resting) and
helper T cells. These results suggested that myeloid cells highly
A B D

E F

G IH J

K L M N

C

FIGURE 4 | Survival data showing that the immune-H phenotype is associated with a poor prognosis. (A–D) Complex heatmaps including ssGSEA results and
clinical information from involved TCGA microarray, TCGA GBM RNA-seq, CGGA microarray, and CGGA RNA-seq cohorts. (E, F) Survival plots showed immune-H
phenotype had poorer survival in all three immune phenotypes in total TCGA (P = 0.031) and CGGA (P = 2.056e-12) datasets. (G–J) Survival plots showing
prognosis discrepancies among three immune phenotypes in TCGA microarray, TCGA RNA-Seq, CGGA microarray, CGGA RNA-Seq cohorts. (K–N) Survival plots
for the LGG, GBM, primary glioma and recurrent glioma subpopulations in the total CGGA dataset. The log-rank test P value among three phenotypes and every
two phenotypes are marked and shown.
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TABLE 1 | Results of univariable and multivariable analyses on overall survival of glioma patients from multiple cohorts.

Univariable Cox Multivariable Cox

HR (95% CI) P-value HR (95% CI) P-value

TCGA microarray cohort
Gender (male vs. female) 1.09 (0.87-1.35) 0.457 1.22 (0.98-1.53) 0.080
Radiation (yes vs. no) 0.13 (0.09-0.18) < 0.001* 0.15 (0.10-0.21) < 0.001*
Chemotherapy (yes vs. no) 0.43 (0.33-0.54) < 0.001* 0.56 (0.43-0.72) < 0.001*
Ethnicity (not Hispanic or Latino vs. Hispanic or Latino) 0.90 (0.46-1.75) 0.750 0.87 (9,44-1.72) 0.685
Race
White NA NA NA NA
Asian 0.97 (0.48-1.96) 0.935 1.05 (0.52-2.16) 0.885
Black or African American 0.82 (0.54-1.24) 0.350 0.96 (0.63-1.46) 0.845
Phenotype
Immune-L NA NA NA NA
Immune-M 0.82 (0.43-1.56) 0.550 0.68 (0.35-1.30) 0.246
Immune-H 0.94 (0.49-1.79) 0.849 0.81 (0.42-1.55) 0.525
TCGA GBM RNA-seq cohort
Age (y)
< 50 NA NA NA NA
50-59 1.26 (0.69-2.31) 0.445 1.37 (0.70-2.68) 0.358
60-69 0.98 (0.56-1.72) 0.944 0.93 (0.48-1.80) 0.831
70-79 1.97 (1.03-3.79) 0.042* 2.20 (1.01-4.79) 0.048*
Gender (male vs. female) 0.89 (0.57-1.38) 0.599 1.19 (0.72-1.98) 0.497
Radiation (yes vs. no) 0.31 (0.15-0.65) 0.002* 0.31 (0.10-0.94) 0.039*
Chemotherapy (yes vs. no) 0.34 (0.18-0.66) 0.002* 0.76 (0.25-2.28) 0.620
Adjuvant TMZ chemotherapy (yes vs. no) 0.64 (0.41-0.99) 0.050* 0.91 (0.53-1.58) 0.746
Histology type
Proneural NA NA NA NA
Neural 0.94 (0.49-1.84) 0.866 0.96 (0.45-2.03) 0.907
Classical 0.88 (0.44-1.52) 0.534 1.10 (0.54-2.24) 0.794
Mesenchymal 0.99 (0.56-1.75) 0.964 0.92 (0.45-1.87) 0.814
Phenotype
Immune-L NA NA NA NA
Immune-M 0.77 (0.28-2.13) 0.619 0.88 (0.30-2.59) 0.817
Immune-H 1.68 (0.96-2.92) 0.067 2.00 (1.04-3.86) 0.038*
CGGA microarray cohort
Age (y)
< 50 NA NA NA NA
50-59 2.80 (1.96-4.01) < 0.001* 1.70 (1.13-2.55) 0.011*
60-69 2.61 (1.67-4.08) < 0.001* 1.60 (0.99-2.59) 0.055
70-79 16.69 (2.24-) 0.006* 6.42 (0.77-53.42) 0.085
Gender (male vs. female) 1.27 (0.94-1.72) 0.125 1.08 (0.78-1.49) 0.640
PRS type
Primary NA NA NA NA
Recurrent 1.89 (1.11-3.22) 0.020* 2.19 (1.17-4.10) 0.014*
Secondary 4.44 (2.25-8.77) < 0.001* 2.83 (1.31-6.14) 0.008*
Histology (GBM vs. LGG) 4.44 (3.24-6.09) < 0.001* 4.69 (2.81-7.85) < 0.001*
Grade
WHO II NA NA NA NA
WHO III 3.08 (1.94-4.90) < 0.001* 2.77 (1.62-4.71) < 0.001*
WHO IV 6.83 (4.60-10.12) < 0.001* NA NA
Radiation (yes vs. no) 0.49 (0.31-0.78) 0.003* 0.48 (0.28-0.81) 0.006*
Chemotherapy (yes vs. no) 1.57 (1.16-2.14) 0.004* 0.83 (0.57-1.20) 0.314
IDH1 status (IDH1 MT vs IDH1 WT) 0.42 (0.31-0.58) < 0.001* 0.88 (0.59-1.31) 0.533
Histology type
Proneural NA NA NA NA
Neural 0.80 (0.51-1.27) 0.343 0.95 (0.58-1.56) 0.845
Classical 2.67 (1.50-4.74) < 0.001* 1.15 (0.59-2.25) 0.673
Mesenchymal 2.61 (1.81-3.77) < 0.001* 1.75 (1.05-2.91) 0.031*
Phenotype
Immune-L NA NA NA NA
Immune-M 1.77 (1.20-2.61) 0.004* 1.14 (0.71-1.82) 0.584
Immune-H 2.31 (1.59-3.36) < 0.001* 0.83 (0.48-1.44) 0.512

(Continued)
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participated in the immunosuppressive glioma microenvironment
(Figures 5C, D). Comparing the proportion of infiltrating
immune cells, the immune-H phenotype was revealed to have
higher proportions of all analyzed immune cells, except M2
macrophages, activated mast cells, monocytes, neutrophils and
resting memory CD4+ T cells (Figure 5E).

Construction of the Exhausted CD8+
T Cell Signature
Exhausted CD8+ T cell levels were recognized to be uniquely
regulated by distinct PD-1 upregulation. With transcriptional
profiles of CD8+ T lymphocytes and upregulated PD-1-positive
genes captured from previous studies (24, 25), correlation
analyses were carried out in the involved datasets, in which
five genes meeting the selection criteria were selected and termed
GET signature. The GET signature included PDCD1, CD27,
ICOS, RUNX2, and CXCR6, which are closely linked to T cell
dysfunction and coregulation (Figure 6F). The GET score of
each tumor sample was established with the ssGSEA method. To
quantitatively illustrate the status of exhausted CD8+ T cells in
each immune phenotype, we compared the distribution of the
GET score in different phenotypes. We did not observe
significant differences in the GET score between the immune-
L, -M and -H phenotypes (Figure 6A, Supplementary Online
File 5). Correlations between the defined GET score and immune
score, ESTIMATE score, stromal score and tumor purity were
assessed, and no tight correlation was found among these
signatures (Figures 6B–E). The results from the TCGA
microarray dataset seemed to vary slightly from the results in
Frontiers in Immunology | www.frontiersin.org 9
other datasets, and the lack of CD8+ T cells in the glioma
microenvironment and the failure of immune surveillance
against tumor cells were likely causes of these effects (41).
Patients with a higher GET score in the total CGGA cohort
had a more favorable prognosis than those with a lower GET
score (HR: 1.38, 1.20-1.60; P-value = 1.25e-5), and the results
were not significant in the total TCGA cohort (Figures 6G, H)
(Supplementary Online File 6). Confirmatively, nearly all of the
constructed GET signatures were mainly related to inflammatory
components, lymphocyte functions and immune cell signaling
(Figure 6I). To date, crosstalk between the GET signature and
other molecular and clinicopathological factors is being warmly
discussed in glioma, and more evidence is needed in the future.

Functional Enrichment Analysis of
Phenotype-Associated Genes
In subsequent functional analyses of the biological processes
of the identified microenvironment-related genes in the
immune phenotypes, metagenes chosen as classifier gene sets
for the immune-H over the immune-L phenotype in GSEA
were significantly enriched in immune-related GO terms
such as dendritic cell antigen processing and presentation,
immunoglobulin processes, regulation of T cell chemotaxis, and T
helper cell lineage (P-valueandBenjaminiP-value<0.05);metagenes
were significantly enriched in pathways related to immune-related
graft-versus-host disease, the hematopoietic cell lineage, and the IL-
17 signaling pathway (P-value and Benjamini P-value < 0.05)
according to pathway GSEA (Figures 7A–D). Bubble plots can be
found inAppendix Figure A1. The clustermaps display whole gene
TABLE 1 | Continued

Univariable Cox Multivariable Cox

HR (95% CI) P-value HR (95% CI) P-value

CGGA RNA-seq cohort
Age (y)
< 50 NA NA NA NA
50-59 1.65 (1.33-2.05) < 0.001* 1.11 (0.88-1.39) 0.376
60-69 2.40 (1.85-3.11) < 0.001* 1.26 (0.96-1.67) 0.099
70-79 4.19 (2.53-6.95) < 0.001* 2.35 (1.38-3.98) 0.002*
Gender (male vs. female) 1.01 (0.85-1.20) 0.922 1.12 (0.94-1.33) 0.217
PRS type
Primary NA NA NA NA
Recurrent 2.23 (1.86-2.67) < 0.001* 2.30 (1.90-2.79) < 0.001*
Secondary 4.37 (2.92-6.54) < 0.001* 3.11 (2.00-4.83) < 0.001*
Histology (GBM vs. LGG) 4.38 (3.66-5.25) < 0.001* 5.85 (4.25-8.06) < 0.001*
Grade
WHO II NA NA NA NA
WHO III 2.04 (2.24-3.87) < 0.001* 2.68 (2.00-3.59) < 0.001*
WHO IV 8.33 (6.39-10.85) < 0.001* NA NA
Radiation (yes vs. no) 0.97 (0.77-1.23) 0.817 0.83 (0.64-1.06) 0.130
Chemotherapy (yes vs. no) 1.59 (1.30-1.94) < 0.001* 0.72 (0.57-0.89) 0.003*
IDH1 status (IDH1 MT vs IDH1 WT) 0.32 (0.27-0.38) < 0.001* 0.50 (0.40-0.62) < 0.001*
Phenotype
Immune-L NA NA NA NA
Immune-M 1.44 (1.18-1.74) < 0.001* 1.04 (0.86-1.27) 0.685
Immune-H 1.94 (1.54-2.44) < 0.001* 0.94 (0.73-1.20) 0.607
June 2021 | Volume 12 | Articl
*represents the statistical test is significant (P < 0.05).
HR, hazard ratio; TMZ, temozolomide; LGG, low grade glioma; GBM, glioblastoma; IDH1 MT, IDH1 mutant type; IDH1 WT, IDH1 wild type; NA, not available.
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clusters and enriched GO terms, and the GO chord plots show
relevant GO terms for the classic PD1/PDCD1, CTLA-4, TIGIT,
VISTA/VISR, andLAG-3molecules (Figures7E–H).GSVAshowed
enrichment discrepancies in several immune-related pathways,
including antigen processing, primary immunodeficiency, the B/T
cell receptor signaling pathway, NK cell cytotoxicity, and leukocyte
transendothelial migration (Figures 7I, J). The Sankey diagram
shows the links between checkpoint molecules and their correlated
genes in glioma (Figure 7K).
Frontiers in Immunology | www.frontiersin.org 10
Genomic Alterations, Tumor Mutation
Burden, and Histological Characteristics
Compared with other immune phenotypes, immune-L was
found to have a higher proportion of IDH-mutant patients
(Figures 8A, D); the immune-H phenotype seemed to have a
higher proportion of recurrent glioma but a lower rate of primary
patients (Figures 8B, E); more GBM samples existed in immune-
H, and more LGG was associated with the immune-L phenotype
(Figures 8C, F). Detailed data are presented in Table 2.
A
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C

FIGURE 5 | The landscape of immune cell infiltration in the glioma microenvironment. (A, B) The proportions of 22 infiltrating immune cells in the glioma
microenvironment in the TCGA microarray and CGGA RNA-seq cohorts respectively. (C, D) Correlation heatmaps of the TCGA microarray and CGGA RNA-seq
cohorts respectively. (E) Immune cell infiltration level of glioma microenvironment among immune phenotypes in the TCGA microarray cohort based on the
CIBERSORT algorithm.
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Surprisingly, no obviously significant discrepancies in TMB were
found between the immune-H and immune-L phenotypes in the
TCGA microarray cohort (P = 0.047, median log2(TMB), 0.385
vs. 0.464) and TCGA RNA-seq cohort (P = 0.100, median log2
(TMB), 0.357 vs. 0.447) (Figures 8G, H, Supplementary Online
File 7).

We analyzed the distribution differences of somatic mutations
and SNPs among the immune phenotypes using data from the
TCGA project. Figures 9A, B displays recurrent SNP sites (N > 5)
in chromosome models in LGG and GBM. Sites marked by
orange and red are high-mutant SNP sites, while those marked
by navy and green are low-mutant SNP sites. Major mutant genes
and mutation types were different among immune phenotypes in
combination with glioma grade (Figures 9C, D). In addition,
GBM presented more extensive TMB than LGG, with details in
the left bar plots and scatter plots in Figure 9E.

Phenotypes Predicting Response to
Antitumor Drugs and Peritumor Edema
Chemotherapy and targeted therapy are both standard treatments
for glioma. The response to commonly used antitumor drugs was
evaluated among three immune phenotypes. The expected model
using the GDSC dataset was trained by ridge regression, and the
level of prediction accuracy was evaluated by 10-fold cross-
validation. The treatment-related IC50 for each tumor sample
Frontiers in Immunology | www.frontiersin.org 11
in TCGA was properly estimated based on a predictive model of
these drugs. There were significant differences in the response to
several drugs, and the immune-L phenotype was more sensitive to
bortezomib (K-W P < 2.2e-16), cisplatin (P = 5.3e-15), docetaxel
(P < 2.2e-16), lapatinib (P < 2.2e-16), and rapamycin (P = 3.3e-8);
however, the immune-H phenotype was more sensitive to
paclitaxel (P = 3.1e-10) and sorafenib (P = 0.0053) (Figure 10A).

As a marker of inflammation, edema is a common
pathophysiological entity surrounding gliomas. Herein, we
compared the edema differences between the immune-L and
immune-H phenotypes to assess the correlations. It was noted
that immune-H phenotype gliomas displayed more severe edema
than immune-L phenotype gliomas (Figure 10B). The present
results suggested that peritumoral edema is also a probable
marker to reflect the variations between immune phenotypes.
The analysis process used in this study is shown as a flow chart
in Figure 11.
DISCUSSION

Immunotherapy has been confirmed to be effective in other types
of cancers except glioma, as glioma features a relatively immune-
privileged microenvironment. With the aim of elucidating the
immunosuppressive mechanism, in this research, we enrolled
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FIGURE 6 | Detection of a gene expression signature of exhausted CD8+ T cells in glioma. (A) Comparisons of GET Score among classified immune phenotypes in
TCGA microarray, TCGA RNA-Seq, CGGA microarray, CGGA RNA-Seq four cohorts. (B–E) The correlation between GET Score and Tumor Purity, ESTIMATE
Score, Immune Score and Stromal Score in above four cohorts respectively. (F) Venn diagram exhibited the five selected genes termed as GET Signature (PDCD1,
CD27, ICOS, RUNX2, CXCR6). (G, H) Comparison of the prognosis of high GET Score and low GET Score group in total TCGA and CGGA datasets. The cut-off
value was defined as the median GET Score of all involved samples. (I) Functional enrichment of GO terms relating to the GET Signature.
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FIGURE 7 | Comprehensive functional analysis relating to the immune phenotypes. (A, B) GSEA of GO terms of metagenes co-expressed in the immune-H and
immune-L phenotypes in the TCGA microarray and CGGA RNA-seq cohorts. (C, D) GSEA of pathways of metagenes co-expressed in the immune-H and immune-L
phenotypes in the TCGA microarray and CGGA RNA-seq cohorts. (E–H) GO chord plots showing correlation and clusters of PDCD1, CTLA-4, TIGIT, LAG3, TP53,
VSIR, PTEN, EGFR, PDGFRA checkpoints. (I, J) Variants in pathway categories demonstrated by GSVA relating to immune-H and immune-L phenotypes in TCGA
microarray and CGGA RNA-seq cohorts. (K) The Sankey diagram showed multiple correlations between CD47, CTLA-4, EGFR, IDH1, LAG-3, PD-1, TIGIT, TIM-3,
TP53, VISTA and their top-ranked correlated genes in glioma.
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FIGURE 8 | Comparison on IDH status, glioma type, grade and tumor mutation burden among immune phenotypes. (A) Proportion of IDH-mutant and IDH-wild
type glioma in three phenotypes in CGGA microarray cohort. (B) Proportion of primary and recurrent glioma in three phenotypes in CGGA microarray cohort.
(C) Proportion of LGG and GBM in three phenotypes in CGGA microarray cohort. (D) Proportion of IDH-mutant and IDH-wild type glioma in three phenotypes in
CGGA RNA-seq cohort. (E) Proportion of primary and recurrent glioma in three phenotypes in CGGA RNA-seq cohort. (F) Proportion of LGG and GBM in three
phenotypes in CGGA RNA-seq cohort. (G) Violin plot showing comparison of TMB based on immune-phenotypes in TCGA microarray cohort. (H) Violin plot
showing comparison of TMB based on immune-phenotypes in TCGA RNA-seq cohort. LGG, low grade glioma; GBM, glioblastoma.
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2,466 glioma samples from 6 datasets and classified these samples
into 3 immune phenotypes with distinct immunogenetic features.
The immune-H phenotype has higher immune cell lineage
infiltration and higher ESTIMATE, immune and stromal scores
than the immune-L and immune-M phenotypes. Most HLA
family genes and checkpoint molecules were significantly highly
expressed in the immune-H phenotype; otherwise, some specific
genes were highly expressed. Overall, patients with the immune-
H phenotype will have a poor prognosis compared with those
with the immune-L phenotypes, but this result was limited by the
sample size. A five-gene GET signature including PDCD1, CD27,
ICOS, RUNX2, and CXCR6 was established, and no significant
differences in the GET score between immune phenotypes were
observed. Patients with a high GET score seemed to have a better
prognosis. A response difference was noticed among the
phenotypes to several antitumor drugs. Immune-H was
observed to have more severe peritumor edema than immune-L
in representative T2 images.

Survival differences among the classified immune phenotypes
of glioma were in contrast to those of some other cancer types
reported previously, such as triple-negative breast cancer (38),
gastric cancer (39), and head and neck squamous cancer (40). A
potential reason is that the inflammatory microenvironment
upregulated the tumor progressive nature and deteriorated
glioma invasion and development (41, 42). The success of
immunomodulatory therapy is widespread among diverse
cancer types, which stimulates our interest in characterizing
TME immune cell infiltration in glioma. The immune-H
phenotype may be involved in immunosuppressive activities,
including immunosuppressive checkpoints (Table 3), expression
of tumor-supportive macrophage chemotactic and polarizing
molecules and immune-suppressive pathway signaling (the IL-
10 signaling pathway). The IL-10 pathway downregulates DC
activation and IL-12 production and inhibits the cytotoxic T cell
response during chemotherapy. Macrophage activation is also
suppressed by IL-10 to inhibit the immune response (43).
Importantly, there is large heterogeneity in the TME of different
glioma genetic subtypes, and enriched tumor-associated
macrophages (TAMs) participate in the promotion of glioma
invasion, angiogenesis, tumor metastasis and immune
Frontiers in Immunology | www.frontiersin.org 13
suppression through intracellular and extracellular mediators
(44). Glioma with IDH mutation status was shown to have low
levels of infiltrating T cells and a higher ratio of TAMs derived
frommicroglia (45). Although TAMs have distinct genetic profiles
involving canonical M1 (antitumorigenic) and canonical M2
(protumorigenic) polarization, they show increased anti-PD-1
resistance-associated genes and predict poor survival (46, 47).
Additionally, immunosuppressive chemokines/cytokines in the
TME released by the tumor itself, such as through the TGF-b
pathway, also block antitumor immunity activation (48). TIM-3
(T cell immunoglobulin mucin receptor 3) has an
immunosuppressive effect in glioma, which may be due to the
unique presence of TIM-3+ Tregs in tumor tissue (49).
Furthermore, TIM-3 does not contain any immunoreceptor
tyrosine-based inhibition motifs (ITIMs), which are necessary
for avoiding major deficiencies in immunotherapy (50). VISTA
(V-type immunoglobulin domain-containing suppressor of T cell
activation) is a newly found checkpoint that restricts T cell
activation by shaping the naive CD4+ T cell compartment (51).
Therapeutics targeting VISTA curb the development of graft-
versus-host disease and promote the death of naive CD4+ T cells;
thus, VISTA can be regarded as a distinctive immunotherapy
molecule (51, 52). Indeed, growing evidence suggests that
dysfunctional CD8+ T cells incorporate heterogeneous
subpopulations such as progenitor and terminally exhausted
cells, and discrete functions in immunotherapy or the
microenvironment need to be better elucidated (53). Clinical
trials regarding Checkmate 143 (NCT02017717), Checkmate 498
(NCT02617589), and Checkmate 548 (NCT02667587) did not
suggest a profound survival benefit from immunotherapy in
glioma/GBM, with only some clinical advantages reported in
some case reports; indeed, GBM typically has a relatively low
mutational load and a paucity of T cell infiltration compared with
other cancers (12, 54).

Similar to other studies, Chen and his colleagues (55) used
ssGSEA to identify the immune microenvironment of glioma,
and they did not classify glioma samples into immune
phenotypes or detect the corresponding microenvironmental
features of the phenotypes; however, they detected eight glioma
microenvironment-associated genes, CCDC109B, EMP3, ANXA2,
TABLE 2 | Distribution of IDH status, type and grade of glioma among immune phenotypes in CGGA dataset.

Immune-L Phenotype Immune-M Phenotype Immune-H Phenotype Chi-square test (1)

CGGA RNA-seq cohort IDH Status IDH MT(%) 280 (72.0) IDH MT(%) 203 (51.4) IDH MT(%) 45 (25.3) c2 = 110.855; P < 0.001
IDH WT (%) 109 (28.0) IDH WT (%) 192 (48.6) IDH WT (%) 133 (74.7)

Glioma Type Primary (%) 314 (77.0) Primary (%) 249 (61.9) Primary (%) 85 (49.7) c2 = 45.058; P < 0.001
Recurrent (%) 94 (23.0) Recurrent (%) 153 (38.1) Recurrent (%) 86 (50.3)

Glioma Grade LGG (%) 322 (78.9) LGG (%) 240 (59.9) LGG (%) 61 (35.7) c2 = 101.384; P < 0.001
GBM (%) 86 (21.1) GBM (%) 161 (40.1) GBM (%) 110 (64.3)

CGGA microarray cohort IDH Status IDH MT(%) 62 (59.6) IDH MT(%) 47 (52.2) IDH MT(%) 25 (23.8) c2 = 29.941; P < 0.001
IDH WT (%) 42 (40.4) IDH WT (%) 43 (47.8) IDH WT (%) 80 (76.2)

Glioma Type Primary (%) 92 (91.1) Primary (%) 83 (95.4) Primary (%) 88 (88.9) c2 = 2.625; P = 0.269
Recurrent (%) 9 (8.9) Recurrent (%) 4 (4.6) Recurrent (%) 11 (11.1)

Glioma Grade LGG (%) 82 (78.1) LGG (%) 53 (58.9) LGG (%) 39 (37.9) c2 = 34.592; P < 0.001
GBM (%) 23 (21.9) GBM (%) 38 (42.2) GBM (%) 64 (62.1)
June 2021 | Vo
(1)Chi-square test was conducted to compare these differences between immune phenotypes.
IDH MT, IDH Mutant; IDH WT, IDH Wild Type; LGG, low grade glioma; GBM, glioblastoma.
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CLIC1, TIMP1, VIM, LGALS1, and RBMS1, and constructed a
prognostic model with them through integrative omics data points.
They validated the immunosuppression of LGALS1 in in vitro
experiments. Our findings based on large genomic data help
characterize the glioma microenvironment and understand tumor
immune complexity. The ESTIMATE, immune, stromal, and tumor
purity scores can be used properly in both basic and translational
medicine to help identify glioma subtypes. Work investigating the
immunosuppressive mechanisms of glioma implies that
microenvironments lacking T cells feature immunosuppressive
biological processes carried out by a series of immune cells; more
knowledge of immune cell infiltration will inform strategies to
remodel the immunosuppressive microenvironment and will aid
the identification of more therapeutic targets.
Frontiers in Immunology | www.frontiersin.org 14
Patients with the immune-H phenotype were more prone to
developing a poor prognosis compared with others; thus, we may
properly predict the prognosis of glioma patients with immune
phenotypes. Our findings also suggest that immunotherapy will be
effective in immune-H patients, who are more sensitive to
checkpoint-related immunotherapy (56). Recent evidence showed
that samples with high TMB could exhibit a durable response to
PD-1/PD-L1 immunotherapy (57), and current findings indirectly
confirmed the value of TMB in predicting immunotherapeutic
outcomes of established immune phenotypes. Translational
research indicated that a high TMB status may yield a long-term
response and durable survival benefit (58). The presented results
provide a novel perspective on immune signatures in the genetic
TMB, the microenvironment and roles in immune checkpoint
A

B

D

E

C

FIGURE 9 | Waterfall plots of genomic alternations associated with glioma immune phenotypes. (A, B) Recurrent SNP sites of LGG and GBM in chromosome
models. Red and orange marked high-mutant SNP, navy and green marked low-mutant SNP. (C) The waterfall plots summarize the genomic alternations including
somatic mutations and single nucleotide polymorphism in LGG of immune-L, immune-M and immune-H phenotypes respectively. (D) The waterfall plots summarize
the genomic alternations in GBM of immune-L, immune-M and immune-H phenotypes respectively. (E) Scatter plots show tumor mutation burden of LGG and GBM
among 33 types of Pan-cancer respectively. LGG, low grade glioma; GBM, glioblastoma.
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A B

FIGURE 10 | Role of phenotype in predicting anti-tumor drugs response and peri-tumoral edema. (A) The immune-L phenotype was more sensitive to bortezomib
(P < 2.2e-16), cisplatin (P = 5.3e-15), docetaxel (P < 2.2e-16), lapatinib (P < 2.2e-16), rapamycin (P = 3.3e-8); the immune-H phenotype was more sensitive to
paclitaxel (P = 3.1e-10) and sorafenib (P = 0.0053). (B) Representative images of the differences in the extent of peri-tumoral edema in TCGA cohort patients.
Immune-H phenotype significantly possessed more-severe edema than immune-L.
FIGURE 11 | The logic flow chart of current study.
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blockade treatment and inspired the exploration of fresh
neoepitopes. Immune phenotype classification highlights the
importance of individualized treatments and provides potential
methods to be used in further clinical trials related to glioma
immunotherapy. We believe that with the current Pan-Cancer
Analysis of Whole Genomes (PCAWG) project involving classic
glioma microenvironment biomarkers (i.e., IDH1), researchers will
identify more specialized features of cancer immune genomes (59).
Frontiers in Immunology | www.frontiersin.org 16
CONCLUSIONS

Glioma samples can potentially be classified into “immune-H”,
“immune-M” and “immune-L” phenotypes, which exhibit distinct
immunogenetic features. The immune-H phenotype is associated
with higher ESTIMATE, immune and stromal scores but poorer
survival than the immune-L phenotype. HLA and checkpoint
family genes are relatively highly expressed in patients with the
TABLE 3 | Summary of the molecular and biological functions of T cell costimulatory molecules.

Molecular
marker

Aliase(s) Ligand(s) Receptor expression
pattern

Biological function Molecular function

Coinhibitory
PD-1 PDCD1,

CD279,
SLEB2, hPD-
1

PD-L1, PD-L2 Activated T cells, NK cells,
NKT cells, B cells,
macrophages, subsets of
DCs

Negative T cells costimulation (primarily in
periphery), attenuate peripheral activity,
preserve T-cell function in the context of
chronic antigen

Inhibition of proximal TCR signaling,
attenuate CD28 signaling

CTLA-4 CD152,
ALPS5,
CELIAC3,
GRD4

B7-1 (CD80),
B7-2 (CD86)

Activated T cells, Tregs Negative T-cell costimulation (primarily at
priming); prevent tonic signaling, attenuate
high-affinity clones

Competitive inhibition of CD28
costimulation (binding to B7-1 and B7-
2)

PD-L1 CD274,
PDCD1L1,
B7-H, B7H1

PD-1, B7-1
(CD80)

Monocytes, macrophages,
mast cells, inducible in
DCs, T cells, B cells, NK
cells

Attenuate T cells activity in inflamed
peripheral tissues

PD-1 ligation; cell-intrinsic mechanism
unclear

LAG-3 CD223, Ly66 MHC-II, LSECtin Activated CD4+ and CD8+
T cells, NK cells, Tregs

Negative regulator of T cells expansion;
control T cells homeostasis; DCs activation

Competitive binding to MHC-II; proximal
LSECtin mechanism unclear

TIM-3 HAVCR2,
CD366, KIM-
3, SPTCL,
TIMD-3

Galectin-9,
PtdSer, HMGB1,
CEACAM-1

Th1 CD4+ and Tc1 CD8+,
Tregs, DCs, NK cells,
monocytes

Negative regulation of Type immunity;
preserve peripheral tolerance

Negative regulation of
proximal TCR components; differences
between ligands unknown

TIGIT VSIG9,
VSTM3,
WUCAM

PVR (CD155),
PVRL2 (CD112)

CD4+ and CD8+ T cells,
Tregs, TFH, NK cells

Inhibition of T cells activity; DC tolerization Competitive inhibition of DNAM1
(CD226) costimulation (binding of PVR),
binding of DNAM1 in cis; cell-intrinsic
ITIM-negative signaling

VISTA VSIR, B7-H5,
B7H5,
C10orf54,
PD-1H

Counterreceptor
unknown

T cells and activated
Tregs, myeloid cells,
mature APCs

Negative regulation of T cells activity;
suppression of CD4+ T cells, shaping naive
CD4+ T cells compartment

Increase threshold for TCR signaling,
induce FOXP3 synthesis; proximal
signaling unknown

Costimulatory
ICOS AILIM, CCLP,

CRP-1
ICOSL Activated T cells, B cells,

ILC2
Positive costimulation; Type I and II
immunity; Tregs maintenance; TFH
differentiation

p50 PI3K recruitment (AKT signaling);
enhance calcium signaling (PLCg)

OX40 TNFRSF4,
ACT35,
CD134,
TXGP1L

OX40L Activated T cells, Tregs,
NK cells, NKT cells,
neutrophils

Sustain and enhance CD4+ T cell immunity;
role in CD8+ T cells and Tregs

Regulation of BCL2/XL (survival);
enhance PI3K/AKT signaling

GITR TNFRSF18,
AITR, CD357,
ENERGEN,
GITR

GITRL Activated T cells, Tregs, B
cells, NK cells,
macrophages

Attenuate Tregs; costimulation of activated
T cells, NK cell activation

Signal through TRAF5

CD137 TNFRSF9, 4-
1BB,
CDw137, ILA

4-1BBL
(CD137L)

Activated T cells, Tregs,
NK cells, monocytes, DCs,
B cells

Positive T cells costimulation; DC activation Signal through TRAF1, TRAF2

CD40 TNFRSF5,
Bp50,
CDW40, p50

CD40L APCs, B cells, monocytes,
non hematopoietic cells
(e.g., fibroblasts,
endothelial cells)

APC licensing Signal through TRAF2, 3, 5, 6; TRAF-
independent mechanisms unclear

CD27 TNFRSF7,
S152, LPFS2,
Tp55

CD70 CD4+ and CD8+ T cells, B
cells, NK cells

Lymphocyte and NK cell costimulation;
generation of T-cell memory

Signal through TRAF2, TRAF5
J

A summary of the ligands, immune-related expression pattern, biological function, and molecular mechanisms is reviewed for selected costimulatory and coinhibitory receptors. Molecular
functions (i.e., downstream signaling) reflect predominant currently known mechanisms, but additional mechanisms are likely to contribute significantly.
NK, natural killer; NKT, natural killer T cell; TFH, T follicular helper; TRAF, tumor necrosis factor receptor–associated factors; DC, dendritic cell.
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immune-H phenotype. The GET signature cannot effectively reveal
the discrepancies among immune phenotypes, and aggressive
peritumor edema was displayed in immune-H compared with
immune-L phenotypes. Our immunogenetic pipeline characterizes
the glioma microenvironment and properly identifies patients
who are more sensitive to chemo/targeted therapy and are likely
to have better survival. These results possibly facilitate new
therapeutic development and advance precision oncology, limited
by the observational nature, the experimental profile should be
highlighted in the future.
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GLOSSARY

CNS central nervous system
PI3K phosphatidylinositol-3-kinases
Akt protein-serine-threonine kinase
FAK focal adhesion kinase
IGF insulin like growth factor
STAT3 signal transducer and activator of transcription
HIF-1a hypoxia inducible factor-1a
IL-6 interleukin-6
TGF-b transforming growth factor-b
PD-1 programmed death 1
PD-L1 programmed death-ligand 1
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
IDH1 isocitrate dehydrogenase 1
MGMT methylguanine methyltransferase
TP53 tumour protein 53
TERT telomerase reverse transcriptase
mAb monoclonal antibody
OS overall survival
NSCLC non-small cell lung cancer
APC antigen-presenting cell
GBM glioblastoma
LGG low grade glioma
NK cell natural killer cell
HLA human leukocyte antigen

(Continued)
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TNFRSF6 tumour necrosis factor receptor superfamily member 6
DC dendritic cell
TCGA The Cancer Genome Atlas
CGGA Chinese Glioma Genome Atlas
GEO Gene Expression Omnibus
SNP single nucleotide polymorphism
ssGSEA Single-sample Gene Set Enrichment Analysis
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
GSEA Gene Set Enrichment Analysis
GSVA Gene set variation analysis
FDR false discover rate
PCA principal component analysis
TMZ temozolomide
TMB tumor mutation burden
GET exhausted CD8+ T cells
TAMs tumor-associated macrophages
TIM-3 T cell immunoglobulin and mucin domain-containing protein 3
LAG-3 lymphocyte activation gene-3
TIGIT T cell immunoreceptor with Ig and ITIM domains
VISTA V-type immunoglobulin domain-containing suppressor of T cell activation
TAM Tumour-associated macrophages
CHI3L1 Chitinase-3-like protein 1
IL-13Ra2 interleukin-13 receptor a2 chain
VEGFR Vascular Endothelial Growth Factor Receptor
VEGFA vascular endothelial growth factor A
PCAWG Pan-Cancer Analysis of Whole Genomes
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