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The COVID-19 pandemic caused by the coronavirus SARS-COV-2 has cost many

lives worldwide. In dealing with affected patients, the physician is faced with a very

unusual pattern of organ damage that is not easily explained on the basis of prior

knowledge of viral-induced pathogenesis. It is established that the main receptor for

viral entry into tissues is the protein angiotensin-converting enzyme-2 [“ACE-2”, (1)]. In a

recent publication (2), a theory of autoimmunity against ACE-2, and/or against the ACE-

2/SARS-COV-2 spike protein complex or degradation products thereof, was proposed

as a possible explanation for the unusual pattern of organ damage seen in COVID-19.

In the light of more recent information, this manuscript expands on the earlier proposed

theory and offers additional, testable hypotheses that could explain both the pattern and

timeline of organ dysfunction most often observed in COVID-19.
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BACKGROUND OF COVID-19

The first epidemic involving Severe Acute Respiratory Syndrome (“SARS”) was identified in 2003
as a novel clinical entity (3). This SARS-COV infection was primarily clustered in Asia (4) with
some international spread, and ∼770 deaths and over 8,000 people affected worldwide (5). SARS-
COV belongs to the family Coronaviridae, which comprises enveloped RNA viruses in the order
Nidovirales (6), and is the largest known non-segmented genome among RNA viruses (7) with∼15
spike proteins on the surface of each virion (8). These spike proteins represent the attachment point
for entry of the virus into the cell. The reason for the disappearance of this dangerous infection is
unclear, but effective preventative measures and an antigenic shift may be possible explanations (9).

The current COVID-19 pandemic was triggered by the spread of a novel coronavirus SARS-
COV-2 (10), with the earliest reports coming out of Wuhan, China, in late 2019. Although it
has an 80% similarity to SARS-COV, there are specific differences within the receptor-binding
domain of the spike protein which impact on infectivity (1, 11). This variation has a combination
of high infectivity and spread through undocumented infection, promoting rapid dissemination
across the world (12). The severe organ damage, which occurs in a subset of people affected by
the virus, is similar to that caused by SARS-COV, but occurs on a much larger scale because
of the higher number of people infected. People at risk of severe disease represent ∼2.3% of
those who contract the virus, and are primarily the elderly and those with comorbidities (13).
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CURRENT UNDERSTANDING OF THE
DISEASE

ACE-2 is a Type 1 membrane-bound glycoprotein with 42%
homology to angiotensin-converting enzyme (“ACE”) (14). The
primary purpose of ACE-2 is to convert angiotensin II to
angiotensin (1–7) which has an impact on arterial pressures and
inflammation (15). This role is counter regulatory to ACE and
serves to balance the renin-angiotensin system (“RAS”). It is
relevant in COVID-19 because ACE-2 is also the entry receptor
for SARS-COV-2.

The current thinking is that SARS-COV-2 targets the ACE-
2 entry receptor (16), causing direct viral cellular damage, with
the release of excessive immune mediators and coagulation
abnormalities (17). Identification of viral particles in the lung
tissue supports this mechanism for damage (18). Release of
immune factors (19) appears to be part of the trigger for
an associated cytokine storm. Elevated levels of interleukins,
tumor necrosis factor and interferons have been observed (20).
Immune-mediated disseminated intravascular coagulation with
lung micro-thrombosis is an observed pattern across patients
(21, 22). There is also the perspective that damage to the ACE-2
receptor could impact on the ability of RAS to function effectively
(23). The presence of ACE-2 receptors in the kidney may offer an
explanation of the extent of renal dysfunction in more severely
affected patients (24).

These hypotheses are, however, unable to explain the severity
of the disease and involvement of multiple organs with vasculitic-
type responses in SARS-COV-2.

WHAT IS SOLUBLE ACE-2?

Soluble ACE-2, also called serum or plasma ACE-2, refers to
the ACE-2 enzyme ectodomain that has been cleaved from the
cell surface, a process called shedding (25). The purpose of
shedding is unclear (26), but it seems to occur more frequently in
hypertension and heart disease (27). Clinically relevant stimuli,
such as supplemental oxygen at levels routinely used in neonatal
medicine (FiO2 0.95), have also been shown to result in ACE-
2 shedding from human lung cells in culture (28). This process
reduces the amount of ACE-2 localized to the cells, but increases
that free to enter other tissue compartments. To date, the
functions and fate(s) of this soluble ACE-2 in different organs has
not been rigorously studied.

Soluble ACE-2 has been shown to bind efficiently to the
spike protein of SARS-COV (29) and, although not confirmed
by direct measurements as of the time of this writing, such
binding is assumed to occur with SARS-COV-2 as well. Indeed,
recent modeling studies based on the sequence of soluble ACE-
2 and the SARS-CoV2 spike protein (30) strongly predicted
that SARS-CoV-2 can not only bind to soluble ACE-2, but also
suggest that the strength of binding might be negatively impacted
by nicotine, a finding which is being considered for potential
therapeutic value.

The assumption that soluble ACE-2 binds SARS-CoV-2
is central to the hypothesis of autoimmunity to ACE-2. To

FIGURE 1 | Surface Plasmon Resonance (SPR) determination of soluble

ACE-2 binding affinity to SARS-CoV-2 spike protein. (A) Recombinant human

ACE-2 (rhACE-2, Acrobiosystems), was analyzed by SPR assay for binding to

a recombinant SARS-CoV-2 spike protein receptor binding domain (RBD,

Acrobiosystems) immobilized in the flow chamber. As shown, increasing

concentrations of the soluble rhACE-2 (in nM) showed proportional increases

in binding to immobilized spike protein RBD. (B) These data allowed

estimation of kD ∼74 nM.

begin making direct measurements to test this assumption,
a preparation of recombinant human ACE-2 (rhACE-2,
Acrobiosystems, amino acids 18-740) that is of similar length to
that of soluble ACE-2 [18-708, (30)] was analyzed by SPR (surface
plasmon resonance) assay for binding to a recombinant SARS-
CoV-2 spike protein receptor binding domain (RBD, amino acids
321-591, Acrobiosystems). As shown in Figure 1A, increasing
concentrations of rhACE-2 showed proportional increases
in binding to the immobilized SARS-2 protein spike RBD.
This enabled estimation of a binding affinity (kD) of ∼74 nM
(Figure 1B), which is in the range predicted by modeling studies
and is greater than the binding affinity of SARS-CoV spike
protein to ACE-2 (31). Figure 2 shows concentration-dependent
inhibition of immobilized rhACE-2 binding to immobilized
recombinant spike RBD, in this case determined by a bead-based
Alpha-Assay (32), by soluble rhACE-2 added to the bead-based
assay system at the concentrations indicated. Thus, the data
in Figures 1, 2 strongly support the theory that a complex of
SARS-CoV-2 and soluble ACE-2 is formed and circulating in the
blood of infected patients.

Exploring differences in ACE-2 binding with the virus
has not been straightforward, with some research suggesting
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FIGURE 2 | In a bead-based assay system [AlphaLISA proximity assay, (32)],

which uses both rhACE-2 and spike RBD immobilized to beads, soluble

rhACE-2 added to the assay buffer showed concentration-dependent

inhibition of bead-bound spike RBD binding to bead-bound rhACE-2, with an

IC50 ∼2.4 nM.

similar binding affinities to SARS-COV (33) and other research
inferring stronger complexes (34). The primary difference is
the mutation in the spike protein which causes a 10-fold
increase in the binding of SARS-COV-2 over that of SARS-CoV
(31). Further, the same authors used cryo-EM studies to show
that binding of ACE-2 to SARS-CoV-2 spike protein induces
conformational changes in both proteins, which we postulate
may form new epitopes that provide targets for autoantibody
formation (35). This plays an important role in the hypothesis
of autoimmunity.

There appears to be genetic polymorphism of the ACE-
2 with increased risk of specific comorbidities—hypertension,

cardiovascular disease, and diabetes (36, 37). The impact of

allelic variants was reviewed in a computerized model and it
was demonstrated that it is likely that some variations of ACE-
2 will bind more tightly to the SARS-COV-2 spike protein (38).
The current hypothesis of autoimmunity postulates that higher
levels of soluble ACE-2, or augmented conformational binding
to the spike protein, increases the probability that the combined
entity will be processed by an antigen-presenting cell as part of
the virus. This may lead to antibody production against ACE-2,
which triggers Type 2 and 3 hypersensitivity responses, and Type
4 cellular immune targeting after the viral particles with attached
soluble ACE-2 are processed by antigen-presenting cells.

Although most infectious diseases target both ends of the
age spectrum because of either poorly-developed or impaired
immune responses, COVID-19 disproportionately impacts the
elderly. Soluble ACE-2 can explain the paradox of high
mortality in the elderly without a similar raised infant mortality
rate. Elevated levels of soluble ACE-2 have been noted in
comorbidities associated with higher mortality in COVID-19
(39). There are undetectable levels in the serum of healthy
individuals (40) and a correlation exists between the occurrence
of soluble ACE-2 and an individual’s age (41). Recent research
has indicated that soluble ACE-2 is the most significant risk
factor for cardiometabolic mortality and could be relevant in
COVID-19 (42).

SUMMARY OF PRINCIPLE OF
AUTOIMMUNITY

It has been proposed that autoimmunity to ACE-2 (43) and
ACE (2) is triggered by the viral infection in SARS-COV-2. It
was postulated that in people with high levels of soluble ACE-
2, the viral spike protein binding tightly together with ACE-2
could be endocytosed by macrophages which would function
as antigen-presenting cells. The whole viral protein could be
proteolytically cleaved, including ACE-2, tightly attached to the
viral spike protein, possibly producing new epitopes for antibody
generation. ACE-2 has a 42% homology with ACE, which could
mean that autoantibodies that were formed against ACE-2 might
cross- react with ACE as well. In this circumstance, the antibodies
would target both ACE and ACE-2 cellular attached enzymes,
leading to severe inflammation throughout the body, especially
on lung endothelial cells. Consistent with this hypothesis, very
recent data documented higher levels of soluble ACE-2 in the
serum of critically ill CoVid-19 patients (44).

TYPES OF HYPERSENSITIVITY IMMUNE
RESPONSES

There are four types of immune responses in the body, with the
first three being antibody dependent (45) and the fourth being
cellular (46).

Type 1 Hypersensitivity
This is the typical anaphylaxis response to an external antigen
after the body has been previously sensitized (47). This response
is typically mediated by IgE after pre-sensitization to an antigen.
The most important examples are that of pollen and nut allergies.
In the context of autoimmunity to ACE-2, this is not considered
to be particularly relevant as no significant difference with IgE
was noted in COVID-19 (48).

Type 2 Hypersensitivity
This represents the production of IgM or IgG antibodies
to cellular or extracellular matrix proteins. An example of
the extracellular antibody response is seen in Goodpasture’s
syndrome where Type 4 collagen is the antigen (49) which
subsequently activates complement and the phagocytic system
with associated kidney damage. Another example is immune
thrombocytopenia which demonstrates a cellular immune
response to platelets (50) with subsequent platelet destruction
by this antibody response. In this case, the antigen is on the
surface of platelets and the antibody will target the platelets with
complement activation and increased phagocytosis. This is likely
to be an early type of immune response in SARS-COV-2, with
IgM produced against ACE and ACE-2, primarily targeting the
endothelial blood vessels in the lung and small intestines. This
was also demonstrated with specific B cell activation in the serum
of patients with COVID-19 along a similar pattern to Systemic
Lupus Erythematosus (51).
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Type 3 Hypersensitivity
The most common example is serum sickness where antigen
and antibody complexes are formed in the blood and become
deposited in tissues with associated inflammation (52). There is
typically a systemic vasculitic response with endothelial swelling,
inflammatory infiltrates, and fibrinoid necrosis of the arterial
wall (53). This may be an early response in SARS-COV-2, with
immune complexes deposited in the liver and lungs. In some of
the limited autopsies in COVID-19, core lung biopsies revealed
fibrinoid necrosis within pulmonary vessels (54), pathognomonic
of Type III hypersensitivity.

Type 4 Hypersensitivity
In this form of immune response, the antigen triggers the
activation of CD8 lymphocytes which target cells that are infected
with virus. This is an essential aspect of immune regulation
as it allows the immune system to target virally-infected cells
selectively (46). An early immune response to the viral complex
with ACE-2 would also stimulate CD8 lymphocytes to target
ACE-2 and, potentially, ACE. This is also likely to create immune
depletion of lymphocytes as the immune system becomes
overwhelmed. To date, the characteristic Type 4 hypersensitivity
responses observed in COVID-19 include perivascular T-cell
infiltrates (55, 56) with evidence of distal organ involvement in
the adrenals (57) and giant cell pathology (58, 59).

The principle of autoimmunity can therefore explain the
cytokine storm. It is likely to be a combination of three types of
immune hypersensitivity—Types 2, 3, and 4. This condition has
not previously been described in any other disease.

FERRITIN IN COVID-19

Elevated levels of ferritin are a significant observation in
COVID-19, with an increased risk of mortality (60). This
hyperferritinemia is much worse than the typical liver function
abnormalities that are also noted early in the course of
the disease (61). Elevation of serum ferritin is a pattern in
severe viral infections as well as septic shock (62). Whilst
this association is observed, it is unclear if elevated ferritin
is the cause of inflammation (63). Ferritin has been shown
to have immune modulating functions (64, 65) and is also
elevated in several autoimmune conditions (66). Significantly
elevated serum ferritin levels also occur in hemochromatosis,
a genetic disease, without a severe inflammatory response
(67). This suggests that elevated ferritin, on its own, may
not be a direct mediator of cellular damage. The presence of
autoantibodies to hepatocytes and gastric chief cells, unique to
serum from COVID-19 patients, is strongly suggestive of a Type
II autoimmune response (68).

PROPOSED TIMELINE OF SYMPTOMS

The following timeline and associated symptoms are based on the
hypothesis of autoimmunity as the primary cause of disease:

Approximately 70% of people with COVID-19 are
asymptomatic (69). This raises the question about whether

the symptoms are linked primarily to the viral infection or to
an autoimmune response. Based on this autoimmune theory,
all symptoms, from the mild to more severe, can be positioned
along the autoimmune spectrum.

• Fever and mild coryzal symptoms occur in 43.8%/50% on
admission (70) and represents the immune viremic phase
which is typically of relatively short duration (20, 71). It could
be assumed that only viremia would cause these symptoms as
an upper airway infection tends to be asymptomatic or have
mild coryzal symptoms. The viremic phase occurs when viral
particles are in the bloodstream and represents the starting
point of symptoms. Those people with elevated levels of
soluble ACE-2 or with genetic variations in the binding of the
spike protein could be most prone to form IgM antibodies
to ACE-2.

• Mild shortness of breath with cough could be triggered by
IgM at day 3–4, targeting the endothelial-attached ACE and
ACE-2 leading to Type 2 and 3 hypersensitivity. IgM could
then cause endothelial damage in the lungs with associated
shortness of breath secondary to pulmonary vascular leakage
as evidenced by bibasal consolidation on the chest x-ray. There
could also be microthrombi in the lung vessels.

• Abnormal liver function tests (“LFTs”) on admission to
hospital occur in over half of patients (72) and may relate
to Type 3 hypersensitivity, with immune complexes being
deposited in the liver and subsequent hepatic inflammation.
The IgM antibodies may bind to ACE-2 surface receptors on
enterocytes in the small intestine and a proportion of these
complexes are shed into the portal circulation. These immune
complexes may then become lodged in the liver if the hepatic
reticuloendothelial system becomes overwhelmed, and cause
a mild hepatitis as evidenced by the abnormal LFTs early in
the disease. There is no specific immune targeting in this case;
the ACE-2 receptors are located in the small intestine and
the complexes of ACE-2 plus IgM have to traverse the portal
system. The observation of elevated serum ferritin is likely to
be related to increased release from hepatocytes as part of the
inflammatory response (66, 73).

• Lymphopenia could result from immune exhaustion in Type
4 hypersensitivity at day 7–14 (74). Once the viremia has
occurred and soluble ACE-2 has become part of the immune
response, CD8 lymphocytes are sensitized to target the lung,
heart, and kidney due to overlap between ACE and ACE-
2. The large number of antigens being targeted causes rapid
lymphocyte exhaustion and lymphopenia (75).

• CXR infiltrates occur in 41% of positive COVID-19
admissions (76) and could indicate early lung damage at day
7–10. It involves Type 2, 3, and 4 hypersensitivity responses
and may explain why this organ is primarily affected in
mortality. Initially this is an IgM antibody response, but the
pentameric structure of IgM may limit the number of ACE
and ACE-2 receptors that can be targeted. Worsening of lung
inflammation at day 11 could be linked to formation of IgG
antibodies against ACE and ACE-2. Lung endothelial damage
increases pulmonary vascular leakage with loss of albumin in
the tissues and associated hypoalbuminemia (77).
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• Renal failure occurs on admission in 14.4% of patients (78)
as IgM could initially target ACE and ACE-2 receptors in the
kidney leading to Type 2 hypersensitivity with involvement of
renal tubular cells (79). There is no ACE in the glomerulus, but
ACE-2 is located on the podocytes of the basement membrane
in the glomerulus. Nephritis is not commonly a part of SARS-
COV-2 (24).

• Acute Respiratory Distress Syndrome (“ARDS”) represents
a severe deterioration in lung function possibly caused by
formation of IgG antibodies at day 11 (80), worsening
the Type 2 and 3 hypersensitivity response and leading
to the cytokine storm. Clonal expansion of plasma cells
with high levels of IgG to ACE-2 could increase lung and
kidney inflammation. Persistent severe lung inflammation
initiates fibroblast expansion, and hyaluronic acid is part
of the immune response (81) which may contribute to
lung fibrosis.

• Kawasaki-like disease in children (82) is likely to be Type 3
serum sickness-related vasculitis with fibrinoid necrosis in the
arterial vessel walls.

• Taste abnormalities are possibly related to the targeting
of ACE-2 receptors on taste buds (83) by IgA antibodies
to ACE-2.

• Myocarditis is known to occur as an autoimmune response
to viral infection (84). In COVID-19, myocarditis (85) may
be triggered by Type 2 hypersensitivity to ACE and ACE-2
receptors on the myocardium.

• Stroke could be secondary to myocarditis combined with
increased levels of clotting factors released from the liver
secondary to immune-mediated hepatitis. Although a number
of patients may have had a stroke during the COVID-19
infection, it is not clear if this represents a higher risk (86).

CONCLUSION

The autoimmune hypothesis appears to explain a significant
proportion of the symptoms in SARS-COV-2-induced organ
damage, along the lines of similar autoimmune diseases. In
the vast majority of people affected, the disease is mild or
asymptomatic. Identification of significant risk factors including
elevated serum ACE-2 is critical as it would allow vaccination
to target the most vulnerable population. This theory of

autoimmunity in SARS-COV-2 has been reinforced by the

recent RECOVERY Trial (87) showing the benefit of the steroid
dexamethasone for immunosuppression. Additionally, high-
dose methylprednisolone has also been proposed as a rescue,
second-line treatment for patients who did not respond well to
tocilizumab (88). In both treatment methods, there appears to
be a benefit which would support the hypothesis of immune
dysregulation due to autoimmunity to ACE and ACE-2.

In the time since the original submission of this manuscript,
autoimmunity to COVID-19 has now been confirmed, as
autoantibodies to ACE-2 have been demonstrated in the serum
of individuals with severe disease (89). Autoantibodies to
Type I interferons have also been characterized in severe
COVID-19 (90) and may represent a bystander effect, in
keeping with our primary hypothesis of autoimmunity to
ACE-2. Whilst these studies are supportive of the theory of
autoimmunity, further research will have to be conducted to
demonstrate conclusively that autoantibodies are the cause of the
organ damage observed in COVID-19. We invite the research
community to help explore these hypotheses for the betterment
of clinical strategies for treating individuals suffering from
this disease.
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