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The coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) is an ongoing major threat to global
health and has posed significant challenges for the treatment of severely ill COVID-19
patients. Several studies have reported that cytokine storms are an important cause of
disease deterioration and death in COVID-19 patients. Consequently, it is important to
understand the specific pathophysiological processes underlying how cytokine storms
promote the deterioration of COVID-19. Here, we outline the pathophysiological
processes through which cytokine storms contribute to the deterioration of SARS-CoV-
2 infection and describe the interaction between SARS-CoV-2 and the immune system,
as well as the pathophysiology of immune response dysfunction that leads to acute
respiratory distress syndrome (ARDS), multi-organ dysfunction syndrome (MODS), and
coagulation impairment. Treatments based on inhibiting cytokine storm-induced
deterioration and occurrence are also described.

Keywords: cytokine storms, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), acute respiratory
distress syndrome (ARDS), multi-organ dysfunction syndrome (MODS), coronavirus disease 2019 (COVID-19)
INTRODUCTION

SARS-CoV-2 is the pathogen responsible for the COVID-19 global pandemic. As it is a novel and
strongly infectious coronavirus, most people lack immunity to it. Studies have shown that the
cytokine storm is closely associated with disease exacerbation and even death in COVID-19 patients
(1, 2). When the virus invades the body, it can cause an imbalance in the immune system that may
result in a cytokine storm. COVID-19 patients deteriorate over a short period, leading to ARDS and
coagulation disorders, and eventually also multiple organ failure. Understanding the
pathophysiological processes involved in COVID-19 progression due to cytokine storms is
extremely important, as each key link is expected to be a potential target for immune
intervention against COVID-19 and will also help in the development of therapeutic drugs to
prevent disease deterioration.
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THE CYTOKINE STORM AND COVID-19

COVID-19 patients can develop a fever and dry cough, and some
may also experience dyspnea, muscle and/or joint pain,
headache, dizziness, diarrhea, nausea, and hemoptysis (3, 4). In
severe cases of COVID-19, organs can be damaged to varying
degrees and even result in MODS. COVID-19 can be
complicated by ARDS, acute heart injury (1), acute kidney
injury, septic shock, liver injury (4), and pancreatic tissue
injury (5), among others. The effect of COVID-19 on the
cardiovascular system is more severe in patients with elevated
levels of inflammatory factors such as interleukin (IL)-6. In
particular, a burst of inflammatory factors can result in diffuse
microvascular thrombosis, leading to myocarditis, heart failure,
arrhythmia, acute coronary syndrome, rapid deterioration, and
even sudden death (6).

The lungs are the organ most commonly affected in COVID-
19 patients and display pathological features very similar to those
of SARS or Middle East respiratory syndrome (MERS)
coronavirus infection (7). Under macroscopic observation,
patients with severe COVID-19 exhibit a large number of
sticky secretions emanating from the alveoli, as well as some
fibrous cords. White foamy mucus can be seen in the airway
cavity, and sticky gelatinous mucus is observed in the bronchial
cavity. Pathological examination shows significant desquamation
of lung cells and alveolar hyaline membrane formation,
suggestive of ARDS (8). In patients who die from COVID-19-
related or flu-related respiratory failure, the histological pattern
of the lungs manifests as a diffuse alveolar injury with
perivascular T-cell infiltration. Additionally, the incidence of
microthrombus and the number of new blood vessels are both
higher in COVID-19 patients than in influenza patients (9). On
admission, the typical chest CT findings of patients with severe
COVID-19 are bilateral, multiple, lobular, and subsegmental
consolidation, and even whole-lung consolidation with “white
lung” appearance (10, 11). Laboratory tests show that the
number of lymphocytes is significantly reduced in COVID-19
patients; in particular, the levels of CD4+ T and CD8+ T cells in
patients with severe disease show a significant and progressive
decline (11, 12). Concurrently, the plasma levels of IL-1b,
Interleukin-1 receptor antagonist (IL1RA), IL-2, IL-7/8/9/10,
basic fibroblast growth factor (BFGF), granulocyte colony-
stimulating factor (GCSF), granulocyte-macrophage colony-
stimulating factor (GM-CSF), interferon gamma (IFN-g),
interferon gamma-induced protein 10 (IP-10), monocyte
chemotactic protein 1 (MCP-1), macrophage inflammatory
protein 1-alpha (MIP-1-a), macrophage inflammatory protein
1-beta (MIP-1-b), platelet-derived growth factor (PDGF), tumor
necrosis factor (TNF), and vascular endothelial growth factor
(VEGF) are significantly increased in patients with severe
COVID-19, among which IL-6 was significantly increased (1).
The main ce l l sources , targe t ce l l s , and pr imary
immunobiological effects of the above-mentioned cytokines are
shown in Table 1.

The above-mentioned clinical characteristics of COVID-19
patients suggest that the accumulation and exudation of
inflammatory substances caused by the cytokine storm destroy
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tissues and organs throughout the body, leading to multi-organ
failure and acute respiratory distress (13), which is an important
cause of death in patients with severe and critical cases of
COVID-19. The determinants of the severity of COVID-19
disease deterioration are closely related mainly to the cytokine
storm and a decrease in lymphocytosis, which are key early
warning factors for the transition to severe disease (12).
ACTIVATION AND INTENSIFICATION OF
THE CYTOKINE STORM IN COVID-19
PATIENTS

Adaptive immunity is suppressed in severe COVID-19 patients,
leading to delayed clearance of the virus and hyperactivation of
the innate immune response. However, the innate immune
response makes it difficult to fight against the virus. The lack of
negative feedback, as well as positive feedback aggravation,
promotes the overproduction of various inflammatory factors,
leading to an increase in the number of active immune cells at
the sites of inflammation and, consequently, a cytokine
storm (6).

Angiotensin-converting enzyme 2 (ACE2) is a key receptor
for coronavirus invasion. Studies have shown that the binding of
SARS-CoV-2 to host cell membrane receptors and subsequent
fusion with the cell membrane are mainly mediated by the spike
(S) protein of the virus, which is closely associated with its
pathogenicity (14, 15). Furthermore, transmembrane serine
protease 2 (TMPRSS2) is required for the virus to enter host
cells, while ACE2 is considered to be the limiting factor for the
initial SARS-CoV-2 infection (16). ACE2 and TMPRSS2 are
reported to be co-expressed mainly in type II alveolar epithelial
cells, nasal epithelial cells, cornea, esophagus, ileum, colon,
gallbladder, and common duct (16, 17). However, because
most COVID-19 patients display lung manifestations, while
relatively fewer present with abdominal pain, abdominal
distention, diarrhea, and other digestive system symptoms, this
suggests that the main target organ of SARS-CoV-2 is likely to be
the lung (18).

SARS-CoV-2 infects alveolar epithelial cells by recognizing
the ACE2 receptor. Following cell invasion, the virus replicates
in large quantities, which activates immune cells and the release
of a large number of inflammatory cytokines, leading to a
cytokine storm (Figure 1). The internalization and exfoliation
of ACE2 reduced the expression of ACE2 on the cell membrane
but did not affect the level of ACE, resulting in an imbalance of
ACE2 and ACE in the lung (17, 19). ACE2 has a lung-protective
effect (20). Reduced levels of ACE2 weaken its lung-protective
effect, which may result in alveolar epithelial cell necrosis and
aggravation of lung inflammation (19). Increased ACE
expression upregulates the level of angiotensin II (Ang II)
and further hyperactivates the pulmonary angiotensin II type-
1 receptor (AT1R), thereby increasing pulmonary capillary
permeabil i ty and leading to pulmonary edema and
aggravation of lung damage. Ang II is able to bind to the
AT1R to stimulate the Janus Kinase (JAK)/Signal transducers
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TABLE 1 | Cytokines in COVID-19.

Cytokine Main cellular source Target cell Main immunobiological effect

IL-1a Monocytes
Macrophages
Neutrophils

CD4+ T cells
B cells
Monocytes
Macrophages
NK cells
Neutrophils

– Activates CD4+ T cells, NK cells, neutrophils, macrophages,
monocytes, and B cells
– Pyrogenic

IL-1b Monocytes
Macrophages
Neutrophils

CD4+ T cells
B cells
Monocytes
Macrophages
NK cells
Neutrophils

– Activates CD4+ T cells, NK cells, neutrophils, macrophages,
monocytes, and B cells
– Pyrogenic

IL-2 CD4+ T cells
B cells
NK cells
Monocytes
Macrophages

T cells
B cells
Macrophages

– Stimulates T cells and B cells to grow and produce cytotoxic
factors
– Promotes antibody secretion
– Activates macrophages

IL-7 Marrow stroma cells Precursor B cells
Thymic cells
Macrophages

– Stimulates the division of precursor B cells
– Promotes the maturation of double-negative thymocytes

IL-9 Th cells Th cells
Mastocytes

– Maintains long-term Th cell growth
– Promotes mast cell growth and activity

IL-8 Monocytes
Macrophages
Neutrophils
Lymphocytes

Neutrophils
T lymphocytes
Basophil granulocytes

– Enhances the chemotactic effects of neutrophils, T lymphocytes,
basophils

IL-10 Th2 cells
Monocytes
Macrophages
Activation of B cells

Th1 cells
Activated T cells
B cells
NK cells
Monocytes
Macrophages

– Inhibits cellular immunity to promote humoral immunity

BFGF Macrophages
Endothelial cells
Smooth muscle cells

Endothelial cells
Smooth muscle cells

– Promotes the proliferation of endothelial cells and smooth
muscle cells

GCSF Monocytes
Macrophages

Neutrophils
Monocytes
Macrophages

– Stimulates granulocyte, monocyte, and macrophage maturation
and release into the peripheral blood

GM-CSF B cells
Macrophages
T cells

Neutrophils
Monocytes
Macrophages

– Stimulates granulocyte, monocyte, and macrophage maturation
and release into the peripheral blood
– Enhances non-specific immunity

PDGF Platelet cells
Monocytes
Macrophages

Macrophages
Fibroblasts
Neutrophils
Vascular smooth muscle cells

– Enhances non-specific immune cells and chemotaxis
– Shrinks blood vessels
– Stimulates the proliferation of vascular smooth muscle cells and
fibroblasts
– Promotes prostaglandin production

VEGF Endothelial cells Endothelial cells
Monocytes

– Promotes the growth of vascular endothelial cells
– Increases capillary permeability
– Enhances monocyte chemotaxis

IFN-g Monocytes
Macrophages
Lymphocytes

Macrophages
Neutrophils
Monocytes
Vascular endothelial cells

– Enhances cytotoxic effects
-Injures the vascular endothelial cells
– Chemotaxis and activates neutrophils, monocytes, and
macrophages

IP-10 Monocytes
Macrophages
T cells

Monocytes cells
Lymphocytes
NK cells

– Chemotactic monocytes, lymphocytes, and NK cells

MCP-1 Macrophages
Fibroblasts
Lymphocytes
Endothelial cells

Mononuclear cells
Lymphocytes
Basophils

– Promotes chemotaxis and activates monocytes, lymphocytes,
and basophils

MIP-1-a Macrophages
Activated T lymphocytes
Neutrophils

CD4+ T cells
CD8+ T cells
Monocytes

– Promotes chemotaxis and activates CD4+ T cells, CD8+ T cells,
monocytes, eosinophils, mast cells, basophils, and neutrophils

(Continued)
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and activators of transcription (STAT) pathway and facilitates
the production of downstream IL-6, which in turn triggers the
JAK/STAT pathway through positive feedback to release more
cytokines such as IL-6 and IFN (21). Ang II can also combine
Frontiers in Immunology | www.frontiersin.org 4
with nuclear factor kappa-B (NF-kB) and promote the
transcription and production of inflammatory cytokines such
as IFN-g, IL-6, GM-CSF, TNF-b, and TNF-a (22). The plasma
level of Ang II was reported to be significantly increased in
TABLE 1 | Continued

Cytokine Main cellular source Target cell Main immunobiological effect

Monocytes
Fibroblasts
Mastocytes

Eosinophils
Mastocytes
Basophils

– Induces eosinophils to release ECP
– Stimulates mast cells and eosinophils to release histamine

MIP-1-b Monocytes
Macrophages
Neutrophils

CD4+ T cells
CD8+ T cells
Monocytes
Neutrophils

– Chemotactic CD4+T cells, CD8+T cells, monocytes, neutrophils

TNF Monocytes
Macrophages

Endothelial cells
Lymphocytes
NK cells
Neutrophils

– Enhances cytotoxic effects
– Injures the endothelial cells
– Increases phagocytosis of neutrophils
L-1a, interleukin 1 alpha; IL-1b, Interleukin 1 beta; IL-2, interleukin 2; IL-7, interleukin 7; IL-8, Interleukin 8; IL-9, interleukin 9; IL-10, interleukin 10; BFGF, basic fibroblast growth factor; GM-
CSF, granulocyte-macrophage colony-stimulating factor; GCSF, granulocyte colony-stimulating factor; PDGF, platelet-derived growth factor; VEGF, vascular endothelial growth factor;
IFN-g, interferon gamma; IP-10, interferon-inducible protein 10; MCP-1, monocyte chemotactic protein 1; MIP-1-a, macrophage inflammatory protein 1-alpha; MIP-1-b, macrophage
inflammatory protein 1-beta; TNF, tumor necrosis factor.
FIGURE 1 | The activation of inflammation during SARS-CoV-2 infection. The virus enters the host cell by interacting with the ACE2 receptor and the cellular serine
protease TMPRSS2 through its spike protein. ACE2 internalization weakens the anti-inflammatory ACE2/Ang-(17)/MAS receptor axis maintained by ACE2. At low
SARS-CoV-2 viral load, cells do not initiate the interferon response; however, upregulation of Ang II stimulates its receptor AT1R and promotes the transcription of
several inflammatory cytokine-related genes through proinflammatory pathways such as the NF-kB and MAPK signaling pathways. Proinflammatory cytokines
activate and recruit a variety of immune cells to migrate to the site of infection, and the activated immune cells will secrete more inflammatory cytokines. In this stage,
the inflammation leads to an increase in capillary permeability and consequent liquid exudation. PRR, pattern recognition receptor; PAMPs, Pathogen-associated
molecular patterns; DAMPs, damage-associated molecular patterns.
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SARS-CoV-2-infected patients and shows a linear correlation
with viral load and lung injury (3). Additionally, Ang-(1–7)
which is produced by ACE2 degradation of Ang II decreases,
and the anti-inflammatory effect of the PIP3/Akt and ERK
signaling pathway regulated by the MAS receptor specifically
binding with Ang-(1–7) should be weakened (23). This
promotes the cytokine storm, and accelerates the
deterioration of patients to ARDS and multiple organ
dysfunction, eventually leading to the death of patients (3).

Damage-associated molecular patterns (DAMPs) produced
by virus-infected epithelial cells and pathogen-associated
molecular patterns (PAMPs) of the virus itself can combine
with pattern recognition receptors (PRRs) expressed in
pulmonary epithelial cells (24), macrophages, and dendritic
cells, and then activate NF-kB and several mitogen-activated
protein kinases (MAPKs) such as ERK1/2, p38, JNK, ERK5,
triggering a series of cascades and release of chemokines.
Normally, NF-kB inhibited protein (IkBS) is transported in
the cytoplasm. SARS-CoV-2 promotes nuclear translocation of
NF-kB by inducing phosphorylation, ubiquitination, and
degradation of IkB through proteasomes. In the nucleus, NF-
kB induces the transcription of several genes, which encode
TNF-a, IL-6, and other cytokines and enhance the occurrence
of cytokine storm (25). MCP-1, MIP-1-a, MIP-1-b, IP-10
chemotactic lymphocytes, macrophages, neutrophils, natural
killer (NK) cells, basophils, and other immune cells gather at
the site of injury; the interleukins IL-1a, IL-1b, IL-2, IL-8, and
IL-10, among others, activate and strengthen lymphocytes,
macrophages, neutrophils, NK cells, basophils, and other
immune cells; IFN-g and TNF enhance cytotoxicity; the
release of the colony-stimulating factors GCSF and GM-CSF
stimulates granulocyte, monocyte, and macrophage maturation
and release into the blood; growth factors such as PDGF, VEGF,
and basic FGF stimulate the proliferation of endothelial cells,
smooth muscle cells, and fibroblasts (26). The activated
immune cells generate new cytokines, recruit and activate
more inflammatory cells, and release more cytokines, and this
cascade amplification will finally lead to a cytokine storm. IL-6
is a key inducer of the cytokine storm, a key factor in disease
deterioration (27, 28). Cell and animal experiments, as well as
results from human patients, have all shown that interferon
(IFN) expression is reduced following SARS-CoV-2 infection
(29). The levels of type I and III interferons are exceedingly low,
and interferon expression is only activated at a high multiplicity
of infection. IFN and other downstream molecules (including
proinflammatory cytokines) controlled by IFN have a variety of
functions such as direct inhibition of viral replication and
recruitment and activation of various immune cells and are
the first line of defense against viral infection (30, 31). In
contrast, this virus can induce elevated expression levels of
IL-6 and IL-1RA, as well as other proinflammatory factors. This
indicates that the host innate antiviral immunity is
dysregulated and is likely to lead to a cytokine storm
outbreak (32, 33).

Activated CD4+ T cells proliferate and differentiate into T-
helper 1 (Th1) cells and produce GM-CSF, IL-6, and other factors.
Frontiers in Immunology | www.frontiersin.org 5
GM-CSF further activates CD14+ and CD16+ inflammatory
monocytes and activates and recruits macrophages, which
produce more IL-6 and other inflammatory factors, thereby
promoting cytokine storm development.

The first autopsy performed on a COVID-19 patient showed
that a large number of monocytes (possibly T cells) had
accumulated in the lung, and that the activity of T cells in the
peripheral blood was low (8). Furthermore, the lymphocyte
count and peripheral blood T-cell level have been reported to
be low in COVID-19 patients (11, 34). These findings indicate
that T cells are attracted from the blood to the infected site to
control the viral infection.

The numbers of CD4+ and CD8+ T cells in peripheral blood
significantly reduce in severe COVID-19 (35, 36). T cells may
be infected by SARS-CoV-2, which is similar to the occurrence
in Middle East respiratory syndrome (MERS) cases (Figure 2).
The MERS coronavirus can directly infect human primary T
lymphocytes and induce T-cell apoptosis through extrinsic
and intrinsic apoptotic pathways, but it cannot replicate in T
lymphocytes (37). The numbers of Th17 CD4+ T cells, which
play a proinflammatory role, were increased and CD8+ T cells
were highly cytotoxic (1). This suggests that a decrease in the
levels of CD4+ and CD8+ T cells leads to dysregulated innate
and adaptive immune responses. The impaired immune
response delays virus clearance, which stimulates non-
specific immune cells, and leads to the release of more
proinflammatory factors (6). The high concentrations of
TNF, IL-6, and IL-10 during the cytokine storm exert a
nega t ive regu la tory e ff ec t on T-ce l l surv iva l and
proliferation. The number of T cells is negatively correlated
with the concentrations of IL-6, IL-10, and TNF. Furthermore,
the expression of PD-1 and Tim-3 in T cells is upregulated
from initial infection to disease onset, further indicating T-cell
failure (35, 36) and leading to a vicious cycle. B cell immune
responses and follicular helper T-cell responses occur
simultaneously in COVID-19 patients (38). In addition to
producing antibodies, activated B cells also secrete IL-1, IL-
6, IL-8, TNF, lymphotoxin-alpha (LT-a), G-CSF, GM-CSF, M-
CSF, IL-7, and other cytokines, which can aggravate the
cytokine storm (39). The number of B cells in patients with
severe disease is significantly reduced (40), meaning that not
enough antibodies will be produced. Consequently, viral
replication will not be inhibited, and virus infection will
spread throughout the body, which will lead to a further
imbalance in the immune response and the release of more
proinflammatory cytokines by non-specific immune cells.
Furthermore, IFNs induce cells to express a variety of
proteins. The genes that express these proteins, such as
ACE2, are called interferon-stimulating genes (ISGs). SARS-
CoV-2 can exploit species-specific interferon-driven
upregulation of ACE2. The increased expression of ACE2
increases the number of receptors available to the virus for
host invasion, which inhibits the lung-protective role of ACE2
(20). Increased IFN levels during the cytokine storm have been
proposed to lead to the deterioration of COVID-19 patients,
further aggravating the cytokine storm.
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THE CYTOKINE STORM LEADS TO THE
DETERIORATION OF COVID-19 PATIENTS

The cytokine storm is an important factor in the deterioration of
some COVID-19 patients, and leads to abnormalities such as
ARDS, MODS, and coagulation defects (4, 41, 42) (Figure 3).

COVID-19-related ARDS is closely related to the cytokine
storm. Respiratory failure due to ARDS is the leading cause of
death from COVID-19 (43). A large number of immune cells
resulting from the cytokine storm aggregate and are activated in
the lungs. These cells then release oxygen free radicals, proteases,
and inflammatory factors through a “respiratory burst,” which
damages target cells. In particular, the combined effect of TNF-a
and IFN-g that sensitize the cells to undergo PANoptosis,
inflammatory cell death involving components of pyroptosis,
apoptosis, and necroptosis plays a key role in lung tissue injury
(44). As a result, lung capillary endothelial cells and lung
epithelial cells are damaged, lung microvascular permeability
Frontiers in Immunology | www.frontiersin.org 6
and microthrombus formation are increased, and a large amount
of protein and fibrin-rich fluids are exuded into the lung stroma
and alveoli, forming non-cardiac pulmonary edemas and
opacities (7, 9). Lung compliance decreases, alveolar inactivity
increases, and persistent hypoxia is present, which leads to
decreased Na-K-ATPase activity in alveolar epithelial cells,
cellular metabolism disorders, lymphatic decompensation, and
further exacerbates fluid retention and hypoxia. Concurrently,
oxygen-sensitive proline hydroxylases are activated, and NF-kB
is released, further exacerbating inflammatory responses.
Inflammatory mediators can also damage the pulmonary
capillary endothelium and alveolar epithelium, leading to the
contraction of vascular endothelial cells, cell connection rupture,
and significantly increased vascular permeability (45). Capillary
leak results from inflammation driven by key inflammatory
cytokines such as TNF, IL-1, IL-6, IL-8, and especially VEGF,
which in the past was also called “vascular permeability factor.”
Capillary leak is a major component of deteriorating lung
FIGURE 2 | A dysfunctional immune response induces cytokine storms. SARS-CoV-2 may invade T cells that are attracted to the site of infection and replicates
inside them. At the later stage of COVID-19, T cells become depleted and the expression of PD-1 and Tim-3 increases, while the high IL-10, TNF, and IL-6
concentration affect T cell survival or proliferation. The number of B cells also decreases in patients with severe disease. The dysfunction of adaptive immunity results
in the magnification of innate immunity and establishes an inflammatory feedback loop. High concentrations of IFN-a2 and IFN-g may upregulate the expression of
ACE2 during the cytokine storm. Additionally, as ACE2 is an ISG, its internalization will further induce ACE2 expression and eventually provide more receptors for
virus invasion and aggravate the infection, thus intensify the inflammation. In this stage, capillary permeability is further increased and the capillary and alveolar
epithelia become damaged, causing the leakage of a large amount of protein-rich liquid into the lung interstitium and limiting gas exchange. ISG, interferon-
stimulating gene.
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function in COVID-19, resulting in ARDS (46). Several
proinflammatory cytokines (IL-6, L-1, and CSF), chemokines
(CCL2, CCL-5, IP-10, and CCL3), and reactive oxygen species
have been identified as causing ARDS (47).

Besides severe lung damage, cytokine storms can also cause
cardiovascular symptoms, hematologic symptoms, acute kidney
injury, and multiple organ failure, and can even be life-
threatening. As mentioned above, SARS-CoV-2 mainly infects
cells via ACE2. The virus may first infect type II alveolar
epithelial cells through ACE2, leading to air–blood barrier
damage. The virus can then enter the blood and infect the
lungs again through ACE2 that is expressed on the endothelial
cells of pulmonary capillaries. On the one hand, this leads to an
increased viral load in the lungs; on the other hand, the virus
binds to ACE2 on the endothelial cells, which enables the
endothelial cells to be pathogen-labeled, and become
recognized as targets for attack by the host immune system.
Additionally, as the virus circulates to all parts of the body, it can
infect other organs as well that express ACE2, such as the heart,
kidney, and liver, further triggering an impaired immune
response, such as an imbalance of Th1 and Th2 cells. This
results in a cascade amplification, whereby a great number of
inflammatory factors are produced, eventually leading to MODS.

Abnormal coagulation may be the main reason for organ
failure and death in patients with severe COVID-19 (42), and a
Frontiers in Immunology | www.frontiersin.org 7
sign of organ damage in sepsis, which is mainly caused by the
cytokine storm (48). Microthrombi have been reported in the
heart, liver, lungs, lower limbs, hands, brain, and kidneys of
COVID-19 patients (49, 50). Microthrombi occur because tissue
factor (TF) is expressed both in monocytes and in vascular
endothelial cells through the activity of cytokines (mainly IL-
6), which is thought to promote the conversion of prothrombin
to thrombin, which then converts circulating fibrinogen to fibrin
and the formation of fibrin-based blood clots. Neutrophils are
absorbed by activated endothelial cells and release neutrophil
extracellular traps (NETs), which activate the contact activation
pathway of coagulation, as well as platelets, thereby amplifying
blood clot formation (48). During the cytokine storm, major
natural anticoagulant effectors, such as antithrombin or TF
pathway inhibitors, are always inhibited, further promoting
coagulation and leading to an irreversible situation. Cytokines
IL-1, IL-6, TNF, signal transducer and transcriptional activator 3
(STAT3), NF-kB, and lipopolysaccharides were the highest
regulators of thrombotic markers in COVID-19 patients with
severe-to-critical disease (51). In the absence of vascular injury,
the initiation of coagulation is completely dependent on
activated endothelial cells, which express TF, for the
recruitment of proinflammatory monocytes (52). The cytokine
storm leads to abnormal coagulation in the body, and
microthrombi formation in the organs further leads to MODS.
FIGURE 3 | The pathophysiological outcome of the cytokine storm in SARS-CoV-2 infection. The excess filtration of immune cells and accumulation of
cytokines at infected sites results in acute respiratory distress syndrome (ARDS); non-cardiogenic pulmonary edema and hyaline membrane formation; severe
lung tissue damage; and destruction of the blood–blood barrier. SARS-CoV-2 can infect vascular endothelial cells that also express ACE2 and enter the blood
circulation to infect other ACE2-expressing tissues. The occurrence of an inflammatory storm in other organs may lead to MODS. PAMPs, DAMPs and cytokines
trigger monocyte activation and induce the membrane expression of TF on monocytes and endothelial cells. Endothelial damage can also expose TF. Under the
action of cytokines (mainly IL-6), endothelial cells recruit TF-expressing inflammatory monocytes, while TF can also promote the conversion of prothrombin to
thrombin, forming a fibrin-based blood clot. Recruited by activated endothelial cells, neutrophils release NETs, which activate the contact activation pathway of
coagulation and platelets, thereby amplifying blood clotting. MODS, multi-organ dysfunction syndrome; TF, tissue factor; TLR, Toll-like receptor; NETs,
neutrophil extracellular traps.
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TREATMENT AND PREVENTION OF THE
CYTOKINE STORM

Several treatments are available to prevent and suppress cytokine
storm development in COVID-19 patients, such as
glucocorticoids, immunomodulators, cytokines antagonists,
cytokine receptor antagonists, and others (Table 2).

Glucocorticoids, which have a good anti-inflammatory effect,
may play a vital role in the treatment of COVID-19. Glucocorticoids
with a genomic mechanism inhibit the synthesis of
proinflammatory cytokines such as IL-1, IL-2, IL-6, IL-8, TNF,
IFN-g, COX-2, VEGF, and prostaglandins. Prednisolone, for
example, inhibits the production of TNF, IFN-g, IL-1b, IL-6, IL-
17, IL-10, and TGF-b. Dexamethasone significantly reduces the
level of IL-6. Corticosteroids are known to suppress inflammation
by non-genomic mechanisms such as inbinding to the membrane-
associated glucocorticoid receptors of T cells resulting in
Frontiers in Immunology | www.frontiersin.org 8
perturbation of receptor signaling and immune response and
interacting with the exchange of calcium-sodium across the cell
membrane, resulting in a quick downturn in inflammation (53).
Although studies have revealed that glucocorticoids do not improve
the survival of patients with severe COVID-19 (54), dexamethasone
was the first drug shown to reduce mortality in COVID-19 patients
(55). Recent studies have shown that elderly patients with severe
COVID-19 who received systemic corticosteroid therapy have lower
in-hospital mortality than patients who did not receive
corticosteroid therapy. The study also demonstrated that it is a
safe treatment with few serious adverse events (56). This indicates
that glucocorticoids may be used in combination with other
intensive treatments that may have significant effects.

Focusing on responses to the cytokine storm in the treatment of
COVID-19, trials are currently underway for several cytokine
antagonists and cytokine receptor antagonists, including IFN, IL-6,
IL-6 receptor, IL-1 receptor, IL-1, GM-CSF, and GM-CSF receptor
TABLE 2 | Therapeutic methods linked to the prevention and inhibition of the cytokine storm in COVID-19.

Therapeutic Therapeutic drug Effect

Glucocorticoids
– Dexamethasone IL-6↓
– Prednisolone TNF, IFN-g, IL-1b, IL-6, IL-17, IL-10, TGF-b↓
Immunomodulators
– Thalidomide TNF, IL-1, IL-6, IL-8↓
– Hydroxychloroquine or chloroquine TNF, IL-6↓
– Ulinastatin IL-10↑, TNF, IL-6, IFN-g↓
– Statins MYD88/NF-kB proinflammatory pathway↓

ACE2↑
Cytokine/cytokine receptor antagonists
IL-1 receptor antagonists Anakinra IL-1↓
IL-1b antagonists Canakinumab IL-1b↓
IL-6 receptor antagonists Tocilizumab

Sarilumab
IL6↓
IL6↓

IL-6 antagonists Siltuximab
Clazakizumab

IL6↓
IL6↓

GM-CSF antagonists Lenzilumab granulocytes and mononuclear macrophages ↓
GM-CSF receptor antagonists Axatilimab granulocytes and mononuclear macrophages ↓
IFN-g antagonists Emapalumab IFN-g↓
TNF antagonists Infliximab

Adalimumab
Golimumab

TNF↓
TNF↓
TNF↓

Vaccine
Inactivated vaccine – Prevents cytokine storms
Adenovirus vector vaccine – Prevents cytokine storms
mRNA vaccine – Prevents cytokine storms
DNA vaccine – Prevents cytokine storms
Recombinant protein vaccine – Prevents cytokine storms
Attenuated influenza virus vector vaccine – Prevents cytokine storms
Others
Sphingosine-1-phosphate receptor agonists Siponimod Cytokines↓
TNF blockers
TLR4 antagonist Eritoran Cytokines↓
Stem cell therapy – Cytokines↓
Blood purification – Cytokines↓
Exogenous surfactants – Cytokines↓
Nafamostat mesylate – Prevents cytokine storms
Convalescent plasma therapy – Cytokines↓
CytoSorb – Cytokines, DAMPs, PAMPs↓
Intravenous immunoglobulin (IVIG) – Immune regulation
Traditional Chinese medicine Lianhua–Qingwen formula Immune regulation
IL-1, interleukin 1; IL-1b, interleukin 1 beta; IL-6, interleukin 6; IL-8, interleukin 8; IL-10, interleukin 10; TNF, tumor necrosis factor; IFN-g, interferon gamma; GM-CSF, granulocyte-
macrophage colony-stimulating; M-CSF, macrophage colony-stimulating factor; DAMPs, damage-associated molecular patterns; PAMPs, pathogen-associated molecular patterns.
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antagonists (57). A new adjuvant therapy, CytoSorb, reduces the
circulating levels of cytokines, DAMPs, and PAMPs, and improves
immunopathology by absorbing a wide range of these factors (58).

Immunomodulators such as thalidomide that were reported
to be effective in treating one COVID-19 patient (59) can inhibit
TNF, IL-1, IL-6, and other cytokines (60). However, this was an
isolated case, and its efficacy requires further verification (61).
Another immunosuppressant—hydroxychloroquine or
chloroquine—has shown apparent efficacy in treatment of
COVID-19-associated pneumonia in clinical studies (62), but
its efficacy remains controversial. A combination of
azithromycin and hydroxychloroquine has been reported to
yield better results, especially in the early stages of the disease
(63). Studies have shown that statin use is associated with a
significant reduction in mortality among hospitalized COVID-19
patients (64). Statins can be effective in treating COVID-19
patients as they inhibit the MYD88/NF-kB proinflammatory
pathway and promote the upregulation of ACE2 (65).

Based on the pathophysiology of SARS-CoV-2 and the life
cycle of the virus, several antiviral drugs will serve as effective
anti-COVID-19 targets. Drugs such as remdesivir, favipiravir,
and lopinavir/ritonavir have been shown to be effective (66).
However, at present, most of these therapeutic drugs are still
under clinical trials, and their efficacy against SARS-CoV-2 has
not been determined holistically.

Additional treatments that inhibit inflammatory responses, such
as TNF blockers, ulinastatin, sphingosine-1-phosphate receptor
agonists, Toll-like receptor 4 (TLR4) antagonists, stem cell
therapy (especially mesenchymal stem cells) (67), exogenous
surfactants (68), intravenous immunoglobulin (IVIG), Nafamostat
mesylate (69), convalescent plasma therapy (70), and blood
purification therapy, also remain to be further explored and have
the potential to effectively treat patients with COVID-19.
Traditional Chinese medicine has also elicited positive effects in
the treatment of COVID-19. For instance, the Lianhua–Qingwen
formula can alleviate symptoms of COVID-19 by activating key
molecules such as antiviral and anti-inflammatory synergids (71).

Vaccines are the most reliable and cost-effective approach to
avoid and manage infectious diseases. They are designed to build an
appropriate and effective immune response without creating any
imbalance. There are a number of vaccines in the research phase,
including inactivated, live attenuated, viral vector-based, subunit,
DNA, and RNA vaccines. In phase I clinical trials of the
recombinant adenovirus type-5 vectored COVID-19 vaccine, all
108 volunteers showed significant cellular immune responses (72).
mRNA vaccines have rapidly advanced into clinical trials, but most
candidate DNA vaccines are currently in the preclinical stage.
Moreover, the mRNA-1273 vaccine induced an immune response
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against SARS-COV-2 in all participants and was relatively safe (73).
Now, the mRNA-1273 vaccine is currently in the phase 3 clinical
trial. Another mRNA vaccine, the BNT162 (BioNTech, Mainz,
Germany), is in advanced clinical trials and has four variants,
namely, a1, b1, b2, and c2 (74). Currently, mutations in the virus
pose a challenge in vaccine development and production. In a phase
II study in South Africa, AstraZeneca/Oxford adenovirus vector
vaccine (Chadox1) was only 10.4% effective against mild-to-
moderate infection caused by B.1.351 (75). The development and
application of vaccines are still met with many challenges, and
future challenges are also anticipated.
CONCLUSION

The pathogenesis of COVID-19 involves multiple cytokine
pathways. Among them, the cytokine storm caused by SARS-
CoV-2 is the key reason for deterioration within a short time-
span in COVID-19 patients and subsequent development into
acute respiratory distress syndrome (ARDS), leading to
respiratory failure and eventual death from multiple organ
failure. Increasing evidence suggests that cytokines such as IL-6,
IL-1b receptor, IFN-g, and TNF-a play a key role in the
pathogenesis of COVID-19. Therefore, it is of great significance to
accurately identify COVID-19 inflammatory pathways and
therapeutic targets. Although many current therapies are based on
inhibiting the occurrence and development of cytokine storms, the
efficacy of the current therapies is still unsatisfactory, and more
research is needed to unlock more key inflammatory pathways
triggered by SARS-CoV-2.
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