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With the ability to induce T cell activation and elicit humoral responses, B cells are generally
considered as effectors of the immune system. However, the emergence of regulatory B
cells (Bregs) has given new insight into the role of B cells in immune responses. Bregs
exhibit immunosuppressive functions via diverse mechanisms, including the secretion of
anti-inflammatory cytokines and direct cell contact. The balance between Bregs and
effector B cells is important for the immune tolerance. In this review, we focus on recent
advances in the characteristics of Bregs and their functional roles in autoimmunity.
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INTRODUCTION

Regulatory B cells (Bregs) are immunosuppressive cells that downregulate immune responses and
support immunological tolerance (1). The roles of Bregs in AIDs have been widely reported, such as
type 1 diabetes (T1D), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus
erythematosus (SLE), and inflammatory bowel disease (IBD) (2–5). Moreover, Bregs could be
biomarkers of treatment responses, including methotrexate and rituximab treatments (6, 7).

Unlike natural Tregs, specific transcriptional factors of Bregs have not been discovered because
of the diversity of suppressive mechanisms and signals for induction. The identification of Bregs is
dependent on their immunomodulatory effects, such as inhibition of T cell activation and cytokine
secretion (1, 8). Evidence that B cells could regulate immune responses was firstly demonstrated in
1974, and progress has been made in the past few decades, including the phenotypes, functional
molecules, in vitro induction, as well as expanding number of diseases implicated (9). There are
three models that explain the generation of Bregs: (1) multi-lineage Bregs, suggesting that subsets of
Bregs can generate from B cells at different stages, such as IL-10+ B cells; (2) single-lineage Bregs,
meaning that subsets of Bregs derive from a specific progenitor (B1 or B2 cells), such as
CD5+CD1d+ B cells; and (3) induced Bregs, indicating that Bregs can differentiate from any B
cell upon stimulation with specific stimuli, such as BAFF or IL-1b/IL-6-induced IL-10+ B cells (3,
10–13). The suppresssive activities of Bregs are mainly related to the secretion of anti-inflammatory
cytokines (by IL-10, IL-35, etc.) and/or the expression of inhibitory molecules (PD-1/PD-L1 and
FasL). In this review, we focus on recent advances in the characteristics of Bregs and their functions
in AIDs.
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CHARACTERISTICS OF BREGS

The suppressive activities of Bregs and the molecules that carry
out their suppressive functions have been partially described,
including the inhibition of T cell activation, induction of Tregs,
the expression of IL-10, IL-35, TGF-b, and PD-1/PD-L1. Some
specific markers used for the identification of Bregs have been
elucidated, but there are some phenotypic overlaps among Breg
subsets (Table 1).

IL-10-producing B cells are regulatory B cell subsets with the
capacity to downregulate immune responses via IL-10. IL-10
production is the most studied suppressive mechanism that most
investigated, there are some phenotypes within IL-10+ B cells.
Several studies have confirmed that human CD19+CD24hi

CD38hi B cells, a phenotype that has been related to
transitional B cells, comprise the highest fraction of IL-10+ B
cells in human peripheral blood upon stimulation with CD40L,
CpG, Brefeldin A, phorbol 12-myristate 13-acetate and
ionomycin (2, 40). Similar to human transitional B cells,
mouse CD19+CD21hiCD24hiCD23hi transitional 2 marginal
zone precursor (T2-MZP) B cells are also capable of producing
IL-10. The inhibitory function of T2-MZP B cells depends on IL-
10 production because anti-IL-10 or anti-IL-10R treatments
eliminate the inhibitory effect of B cells on IFN-g secretion by
CD4+ T cells (17). Human CD24+CD27+ B cells, a phenotype
reminiscent of memory B cells, also have been characterized
as the major source of IL-10+ B cells upon stimulation with
CpG and CD40L (3). Also, CD24low/negCD38hi plasmablast-
like regulatory B cells are the members of IL-10+ B cells in
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human (41). Mouse CD138+CD44hi plasmablasts and plasma
cells cell-derived IL-10 inhibited the generation of CD4+IFN-g+

and CD4+IL-17+ T cells (19). In mice, CD1dhiCD5+ B cells
are the main subsets of IL-10+ B cells. Adoptive transfer of
CD1dhiCD5+ B cells to mice could prevent experimental
autoimmune myasthenia gravis associated with downregulation
of mature dendritic cell markers and expansion of Tregs (42).
CD21hiCD23− marginal zone (MZ) B cells were producers of IL-
10 upon stimulation with inflammatory stimuli including TLR9
and TLR4, and adoptive cell transfer experiments in which the
absence of IL-10-producing B cells conferred the host a greater
capability to induce Th1 responses and clear the infection (15,
43, 44). Besides, mouse B-1 cells, Tim-1+ B cells in both human
and mice have been revealed to exert their functions in an IL-10-
dependent manner (16, 20, 31).

In addition to IL-10-producing B cells, Breg subsets function
through other mechanisms also have been widely reported. PD-
L1+ B cells limited the expansion of human Tfh cells and the
proliferation of mouse CD8+ T cells, these cells functioned
through the interaction between PD-1 and PD-L1 (25, 45).
FasL is expressed on both human and mouse B cells, these B
cells are termed as killer B cells and have been confirmed to
induce immune tolerance via FasL (36, 46, 47). As a receptor of
FasL, CD95 (also called Fas) is expressed on CD24highCD38high

and CD5+ B cells, these B cells are termed as CD95+ exhausted
Bregs and are positively associated with severe colitis in human
(35). Interleukin-35 was a novel anti-inflammatory cytokine of
the IL-12 family cytokines and was found to be produced by
human B cells and mouse CD138+ plasma cells (48, 49). IL-35
TABLE 1 | Phenotype of Breg subsets in mouse and human.

Species Subtype Phenotype Functional molecules References

Mouse B10 CD19+CD5+CD1dhi IL-10 (11, 14)
MZ B IgMhiIgDloCD21hiCD23−CD1dhi IL-10 (15)
B-1a CD90−CD5+ IL-10 (16)
T2-MZP B220+CD21hiCD23+IgMhi

CD1dhi
IL-10 (17)

Plasma CD19+CD138+IgM+ IL-10, IL-35 (18)
Plasmablasts CD138+CD44hi IL-10 (19)
Tim-1+ B CD19+Tim-1+ IL-10 (20)
i35-Breg CD5+CD1dhiFcgIIbhi IL-35 (21)
GITRL+ B – GITRL (22)
Killer B CD19+CD5+FasL+ FasL, TGF-b (23, 24)
PD-L1hi B CD19+PD-L1hi PD-L1 (25)
GIFT-15 B B220+CD21+CD22+CD23+

CD24+CD1d+CD138+IgD+IgM+
IL-10 (26)

– B220+CD39+CD73+ Adenosine, CD39+CD73+ EVs (27, 28)
Human transitional B CD19+CD24hiCD38hi IL-10 (4)

Memory B CD19+CD24hiCD27+ IL-10 (29)
Br1 CD25hiCD71hiCD73lo IL-10 (30)
TIM1+ B CD19+TIM1+ IL-10 (31)
Plasmablasts CD19loCD27hiCD38hi IL-10 (32, 33)
IgA+ B CD19+IgA+ IL-10, PD-L1 (34)
Exhausted B CD19+CD95+ CD95 (35)
Killer B CD19+CD38+IgM+FasL+ FasL (36)
PD-L1+ B CD19+PD-L1+ PD-L1 (25)
– CD19+CD39+ Adenosine (37)
iBreg – TGF-b, IDO (38)
Others CD19+FoxP3+,CD19+TGFb+ TGF-b (39)
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was shown to induce the expression of itself by B cells, as well as
IL-10 (48, 50). Adenosine-producing B cells are also the subsets
of Bregs, including human CD19+CD39+ B cells and murine
B220+CD39+CD73+ cells, and CD39 and CD73 hydrolyze ATP
to produce adenosine (27, 51). Also, TGF-b-producing B cells are
non-negligible subgroups in Bregs, inhibiting T cell proliferation
and inducing the generation of Tregs (38).

As described above, we can find that Bregs contain diverse
subsets, and IL-10+ B cells are the major subsets. Most Bregs
exert their functions via producing anti-inflammatory cytokines
and expressing inhibitory molecules, and the importance of these
cytokines and inhibitory molecules has been evidenced with
experiments in vivo and in vitro.
FUNCTIONS OF BREGS IN AUTOIMMUNE
DISEASES

B cells are critical members of humoral immunity with the ability
to produce autoantibodies and to present antigens, traditionally
thought to play a pathogenic role in AIDs. However, numerous
studies have characterized the immunoregulatory functions of
Bregs in AIDs (52). Here, Bregs have been reported to exert
inhibitory effects through IL-10, IL-35, TGF-b, and PD-1/PD-L1
in both patients with AIDs and murine models. In the following
sections, we will discuss the role of Bregs in inflammatory bowel
disease (IBD), systemic lupus erythematosus (SLE), rheumatoid
arthritis (RA), primary sjögren’s syndrome (pSS), type 1 diabetes
(T1D), thyroid autoimmune disorders, multiple sclerosis (MS),
and other AIDs.

Bregs in Inflammatory Bowel Disease
Inflammatory bowel disease is a chronic inflammatory disease,
including ulcerative colitis (UC) and Crohn’s disease (CD). The
etiology of IBD is related to microbiota, genetics, environmental
factors, and imblanced Th17/Treg responses (53, 54). Transfer of
microbiotas from IBD patients into germfree mice increased
numbers of intestinal Th17 cells and Th2 cells and decreased
numbers of RORgt+ Tregs, indicating a pathogenic role of Th
cells caused by microbiotas (55). In patients with CD, the ability
of B cells to produce IL-10 was impaired, and the frequency of
CD19+CD1d+IL-10+ B cells was decreased in PBMCs. In this
study, the presence of CD was related to the decreased
production of IL-10 by peripheral blood B cells (5). Patients
with UC also exhibited decreased frequencies of CD24hiCD38hi

and CD5+ Bregs in the peripheral blood and intestinal tissues.
Besides, mayo clinic scores, C-reactive protein (CRP), and
erythrocyte sedimentation rate (ESR) in UC patients were
negatively correlated with the frequency of Bregs in PBMCs
(35). In patients with UC, serum vasoactive intestinal peptide
(VIP) levels were positively correlated with IL-10 mRNA
expression in CD19+CD73−CD25+CD71+ Bregs, indicating that
VIP might regulate the function of Bregs and the further
exploration has confirmed it in murine models (56).
Suppressive role of B cells in chronic colitis were demonstrated
by Mizoguchi et al., they found that B cells and Igs could
Frontiers in Immunology | www.frontiersin.org 3
suppress colitis induced by the transfer of mesenteric lymph
node (MLN) cells from TCR-a−/− × Igm−/− mice, presumably by
affecting the clearance of apoptotic cells (57). A later study
conducted by Mizoguchi et al. revealed that CD1d-expressing
B cells suppressed the progression of intestinal inflammation,
which was associated with the enhanced IL-10 expression in
MLN CD1d+ B cells (58). Dextran sulfate sodium (DSS) induced
chronic colitis is a murine model of human CD. In this model,
Wang et al. reported that B cells could suppress DSS-induced
colitis in an IL-10 independent manner because an adoptive
transfer of Il-10−/− B cells also attenuated colitis. In this study, B
cells contributed to the maintenance of gut-associated lymphoid
tissues (GALT) Tregs that in turn promoted B-cell differentiation
into IgA-producing plasma cells, then prevented excessive
immune responses that can lead to colitis (59). IL-33, IL-35,
bacterial immunogenicity, and endometrial regenerative cells
have been revealed to maintain/expand Bregs and ameliorate
colitis, indicating a protective role of Bregs in IBD (60–64).

Bregs in Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is an autoimmune
inflammatory disease that occurs more frequently in females
and is characterized by the breakdown of immune tolerance,
high levels of autoantibody production, and multiple organ
damage (65). Patients with SLE exhibit deficiencies in the
function of Bregs. CD19+CD24hiCD38hi B cells isolated from
healthy individuals exerted regulatory capacity, but these cells
derived from SLE patients lost the ability to inhibit the
expression of IFN-g and TNF-a by CD4+ T cells (4).
Heinemann and colleagues identified that the percentage of
CD19+CD24hiCD38hi B cells in SLE patients was similar to
that of healthy individuals (66). In contrast, another report
described an increase of CD19+CD24hiCD38hi B cells in
patients with SLE (67). Such discrepancies may be attributed to
the complexity of the disease, different stages of diseases, and
physiological environments within individuals. Plasmacytoid
dendritic cells (pDCs) promoted the differentiation of
immature B cells into Bregs via IFN-a and CD40-CD40L in
healthy individuals. This form of immune tolerance was deficient
in SLE patients because pDCs derived from SLE patients
promoted plasmablast differentiation by producing relatively
higher levels of IFN-a. Notably, newly repopulated immature
B cells in SLE patients responding to rituximab showed
normalized expression of STAT1 and STAT3 and could
differentiate into CD24+CD38hi Bregs (68). The iNKT cell
number and function were rescued in SLE patients responding
to rituximab upon normalization of CD1d expression in
repopulated immature B cells, indicating an important role of
immature B cells in mataining the homeostasis of iNKT cells
(69). MRL-Faslpr/lpr mice and NZB/NZW (NZB/W) F1 mice are
murine models used to investigate SLE. BAFF is a cytokine
generally thought to be crucial to B cell maturation and survival,
it could induce IL-35 production by CD5+CD1dhiFcgRIIbhi Bregs
in MRL-Faslpr/lpr mice. These IL-35-producing Bregs suppressed
inflammatory cytokines (including TNF-a and IFN-g)
production by conventional CD4+ T cells and promoted the
expansion of Tregs (21). Intriguingly, treatment of mice with
April 2021 | Volume 12 | Article 592914

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhu et al. Bregs in Autoimmune Diseases
IL-35 enriched IL-10+ Bregs in mild and moderate SLE mice as
well as peripheral blood cells in severe SLE mice, which was
accompanied by the expansion of Tregs (70). Taken together, the
microenvironment within SLE patients could likely interfere
with the generation of Bregs and impair their functions.
Moreover, recovering the function of Bregs may be a method
to ameliorate SLE.

Bregs in Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic inflammatory
autoimmune disease characterized by synovial hyperplasia and
bone destruction of the joints, affecting about 0.5–1.0% of adults
in developed countries (71). Collagen-induced arthritis (CIA) is
induced by immunization bovine or chicken collagen in a
susceptible strain of DBA/1 mice or C57/BL6 mice, and CIA
mice have become useful animal models of RA (72, 73).
The involvement of B cells in RA has been well recognized,
such as the precence of anti-citrullinated protein antibodies
(ACPAs), rheumatoid factor (RF), higher total serum IgA, and
elevated level of unmutated IgG+ B cells compared to healthy
controls (74, 75). As important immune regulators, Bregs have
been revealed in RA patients with impaired functions (76). In
addition, IL-10+ B cells were inversely related to DAS28 and the
levels of RF (77). As members of Bregs, CD24hiCD38hi and
CD24hiCD27+ B cells from RA patients lost the ability to convert
CD4+CD25− T cells into regulatory T cells (77). Furthermore,
circulating CD19+CD24hiCD38hi Bregs are biomarkers of
response to methotrexate in early rheumatoid arthritis patients
(6). Besides, the frequency of CD19+CD24hiCD27+ regulatory
B10 cells was increased in patients treated with a TNF inhibitor
(78). PD-L1+ Bregs with CD8+ T cell suppressive capacity
activity were decreased in untreated RA patients compared to
healthy dornors. With successful treatment (methotrexate,
TNF inhibitors, or JAK inhibitors), PD-L1+ B cells were
increased in patients (45). Similarly, several Bregs inhibit the
development of the CIA have been reported. Evans et al. found
that T2-MZP B cells suppressed arthritis through the inhibition
of type II collagen (C II) specific T cell activation and Th1
response. This process was dependent on IL-10 because T2-MZP
B cells purified from IL-10 knockout mice failed to alleviate
arthritis (17). Also, CD1d+ T2-MZP Bregs induced suppressive
invariant natural killer (iNKT) cells via CD1d-lipid presentation,
then secreted IFN-g by iNKT cells resulted in the downregulation
of Th1 and Th17 immune responses and amelioration of
antigen-induced arthritis (79). Yang and colleagues reported
that BAFF-induced IL-10-producing CD5+CD1dhi B10 cells
inhibited the proliferation of naïve T cells, accompanied
by decreased expression of RORgt (a key transcriptional
factor for Th17 cells) and the differentiation of Th17 cells,
consequently resulted in the amelioration of CIA (13, 80).
Besides, FoxP3-expressing B cells ameliorated autoimmune
arthritis via regulating the balance of Treg/Th17 cells (81).
Thus, Bregs inhibit the development of RA through the
reduction of Th responses and enhanced Tregs responses, and
expansion of Bregs in vitro can be a promising treatment
of arthritis.
Frontiers in Immunology | www.frontiersin.org 4
Bregs in Thyroid Autoimmune Disorders
Graves’ disease and Hashimoto’s thyroiditis (HT) are two
common thyroid autoimmune disorders (AITD), characterized
by the presence of circulating anti-thyroid antibodies (including
pathognomonic activating autoantibodies, autoantibodies to the
thyroid self-antigens thyroglobulin and thyroid peroxidase), and
lymphocytic infiltration into the thyroid. T cells, B cells, and DCs
are actively involved in the pathogenesis of diseases (82). A study
of both types of patients (Graves’ disease and HT) showed a
tendency for decreased numbers of CD19+CD24+CD27+IL-10+

and CD19+IL-10+ B cells, which could be responsible for
immune imbalance and AITDs (83). Co-occurrence of AIDs
within a patient is a common phenomenon in rheumatic
diseases, AITD are also the most frequent diseases associated
with polyautoimmunity (84, 85). HT is often associated with
other non-endocrine autoimmune diseases (NEAD), such as
celiac diseases and chronic atrophic gastritis. Markedly higher
percentages of CD24hiCD38hi unstimulated Bregs and Th17 cells
were observed in patients with HT+NEAD, but unstimulated
Bregs with a memory phenotype (CD24hiCD38− and
CD24hiCD27+) were dramatically reduced. After CpG
stimulation, IL-10+CD24hiCD38hi Bregs were similar in
patients with HT+NEAD and healthy controls (86, 87).
However, it is unknown whether such changes within subsets
are accompanied by functional changes. Thyroid-associated
ophthalmopathy (TAO) is an autoimmune disease that
threatens vision. When stimulated with CD40L and CpG,
PBMCs from patients with TAO showed a decreased frequency
of IL-10+ B cells compared to healthy controls (88). Another
study conducted by the same laboratory reported that active
TAO patients had higher baseline levels of IL-10+ B cells in their
peripheral blood than inactive patients and healthy controls,
though their functions were impaired (89). Above all, there are
limited studies that focus on the function of Bregs in patients
with AITD, functional studies will provide more information
about the treatment of AITD.

Bregs in Type 1 Diabetes
Impaired functions of IL-10+ B cells in type 1 diabetes (T1D)
patients have been confirmed (2). The percentages of
CD24hiCD38hi B cells in PBMCs of patients with T1D were
significantly lower compared to healthy controls, and these cells
produced less IL-10 upon stimulation with Brefeldin A together
with phorbol 12-myristate 13-acetate and ionomycin.
CD24hiCD38hi B cells in patients with T1D lacked regulatory
capacity, which was related to the enhanced CD4+IFN-g+ T cell
and CD4+TNF-a+ T cell responses (2). In mice, intravenous
injection of activated B cells into young NOD mice delayed
disease onset and protected mice from diabetes. The therapeutic
effect was related to reduced IFN-g secretion and increased IL-4
and IL-10 production by splenocytes and T cells. However, this
treatment only delayed the disease onset in old NOD mice. IL-10
was indispensable to this process because the effect disappeared
when the mice were transferred with Il-10−/− B cells (90). FasL-
expressing B cells were involved in the protection of diabetes by
producing TGF-b, down-regulating Th1 responses and
April 2021 | Volume 12 | Article 592914
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inhibiting antigen-presenting cells (APCs) to stimulate
responder T cell proliferation (23). Taken together, regulatory
B cells inhibit the development of T1D by reducing the
pathogenic T cell-mediated tissue inflammation, then recover
the function of islet b cells.

Bregs in Multiple Sclerosis
Multiple sclerosis (MS) is characterized by chronic inflammation
of the central nervous system (CNS) and axonal damage (91).
Knippenberg et al. revealed that IL-10 production by Bregs from
relapsing-remitting MS (RRMS) patients during relapse and
RRMS patients in remission was impaired. In this study,
RRMS patients in remission also had a reduced naïve
(CD3−CD19+CD27−)/memory (CD3−CD19+CD27+) IL-10+

Bregs ratio in PBMCs (92). Partial reversal of MS was achieved
with Fingolimod and Siponimod targeting sphingosine 1-
phosphate (S1PR), these treatments were accompanied with
increased levels of Bregs, including CD24hiCD38hi Bregs,
CD43+CD27+ Bregs, and TGF-b+ Bregs (93, 94). Experimental
autoimmune encephalomyelitis (EAE) is one of the original
models that Wolf et al. observed the suppressive effect of B
cells in autoimmune models (95). Fillatreau et al. showed that
toll-like receptor 9 generate proB cells (CpG-proBs) could home
to reactive lymph nodes, and limited immunopathogenesis
through IL-10 in EAE mice (96). Another study reported that
transfusion of IL-10+ Bregs reversed the established clinical EAE,
accompanied with CNS resident CD11b+CD45intLy6C−

microglia, and infiltrating CD11b+CD45high monocytes/
macrophages content reverts to normal and polarize to a M2-
like phenotype (97). IL-35-producing B cells were shown to be in
the protection of EAE. Mice in which only B cells did not express
IL-35 (p35 or Ebi3) lost their ability to recover from EAE (49).
TGF-b1 expression in B cell was also important for the
amelioration of EAE. Mice deficient for TGF-b1 expression in
B cells showed an earlier onset of neurologic impairment
compared to their littermate controls, associated with
augmented CNS Th 1/17 responses (98). Integrin a4 was
required for the immunosuppressive function of B cells in the
EAE, because deletion of Itga4 in B cells leads to EAE
exacerbation and Itga4-sufficient B cells can control EAE
severity in CD19CreItga4fl /fl mice (99). Interestingly,
natalizumab (targeting integrin a4) has been used to treat MS
via inhibiting aggregation and inflammatory activity of activated
immune cells, which seems to be contrary to the effect of integrin
a4 on B cells in EAE (99, 100). Probably, natalizumab functions
mainly through preventing the aggregation of effector cells in
CNS rather than Bregs.

Bregs in Other AIDs
Studies of Bregs in patients with other AIDs are relatively limited
in comparison with SLE and RA. The frequency of
CD24hiCD38hi B cells was increased in patients with pSS, but
these B cells were deficient in inhibiting IFN-g andTNF-a
production by CD4+ T cells (101). Tfh cells are involved in the
GC formation and B cell terminal differentiation. Lin and
colleagues demonstrated that Tfh cells were positively related
to pSS disease severity and were negatively related to the number
Frontiers in Immunology | www.frontiersin.org 5
of IL10+CD24+CD38hi B cells in pSS patients (102). Another
report demonstrated the effect of Bregs on Tfh responses, in
which the differentiation of CD4+ Tconv into Tfh cells was
inhibited. In a Tfh-B cell co-culture system, the addition of CD40/
TLR9 stimulated B cells dampened the secretion of immunoglobulins
and promoted the expansion of FoxP3+CXCR5+PD-1+ follicular
regulatory T cells (Tfr) (103). In patients with systemic sclerosis,
Tim-1+ B cells lost the ability to inhibit autologous CD4+ T cell
responses, including the proliferation of CD4+ T cells and the
production of IFN-g, TNF-a, and IL-17 (104). Patients with anti-
neutrophil cytoplasmic antibodies-associated vasculitis (AAV) often
have a diminished number of IL-10-producing B cells, which were
correlated with the increased levels of Th1 and Th17 cells (105, 106)
(Figure 1).

Negative relationships among disease activity, pro-
inflammatory responses, and Bregs suggest that Bregs play a
protective role in AIDs. Murine Bregs inhibit APCs to stimulate
T cell proliferation and cytokine production (IFN-g, TNF-a, and
IL-17). Similar to murine models, human Bregs always suppress
the proliferation of effector T cells and their pro-inflammatory
activity. Also, human Bregs have been confirmed to indirectly
dampen humoral responses via Tfh cells. Thus, enhancing the
activity of Bregs might directly or indirectly reduce cellular/
humoral responses and strengthen the function of Tregs,
ameliorating inflammatory responses within AIDs.
POTENTIAL TARGETS FOR THERAPY

The majority of current treatments for AIDs are immunosuppressive
drugs, such as glucocorticoids, which can result in complications in
some patients during long-term use. For example, long-term
prednisolone use increases the risk of osteoporosis, hypertension,
and diabetes (107). Recently, cell-based therapies have been
successfully used for the treatment of AIDs. These treatments
include Treg-based, hematopoietic stem cell-based, and
mesenchymal stem cell-based therapies (108–110).

From the above description, Bregs often play a protective role
in AIDs. Therefore, it is worth considering Bregs as therapeutic
targets for AIDs. Interestingly, microbiota-derived 5
Hydroxyindole-3-acetic acid (5-HIAA) suppressed murine
arthritis by expanding AhR+IL-10+CD19+CD21hiCD24hi Bregs,
suggesting the importance of microbes in the maintenance of
Bregs (111). Gut microbiota-driven IL-1b and IL-6 induced the
differentiation of mouse IL-10–producing B cells with the
support of CD40 signaling (12). Murine B cells stimulated with
E. coli led to an increased production of IL-10, these B cells were
capable of efficiently inhibiting the maturation and function of
dendritic cells (DCs), preventing the proliferation and
polarization of Th1 and Th17 cells (63). Upon exposure to
inflammatory cytokines, such as BAFF, IL-1b, IL-6, IL-21, IL-
33, IL-35 alone or combine with other stimuli, Bregs numerically
expand or functionally enhance (12, 21, 50, 60, 112). For
example, culturing B cells with BAFF can induce the
differentiation of IL-10-producing B cells in mice (13). IL-35
mediated the expansion of murine Bregs that produced both
April 2021 | Volume 12 | Article 592914
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IL-35 and IL-10 (50). However, the administration of cytokines
may also evoke unexpected inflammatory responses in vivo. For
example, IL-21 and CD40L could synergistically promote B cells
from human tonsils into plasma cells (113), BAFF could promote
B cell activation in pSS patients (114). Therefore, it might be
better to transfer ex vivo expanded Bregs for treatment rather
than administering cytokines. Mesenchymal stem cells (MSCs)
are promising biological agents, and mouse CD23+CD43+ Bregs
generated from B cells co-cultured with MSC for 48 h inhibited T
cell proliferation via IL-10 (115). For some AIDs with
physiologic barriers, migration is limited for circulating Bregs
into inflammatory sites. Exosomes are extracellular vesicles with
a size range of ~40 to 160 nm (average ~100 nm) in diameter and
they can cross the physiologic barriers (116). Recently, IL-35-
carrying exosomes from ex-vivo-generated IL-35+ Bregs have
been reported to cross the blood-retinal barrier and suppressed
experimental autoimmune uveitis via suppressing Th17
responses as well as inducing expansion of Tregs, with
minimal toxicity and alloreactivity (117). Thus, the exosomes-
mediated regulatory function of Bregs may be a promising
treatment of AIDs with physiologic barriers, but it still needs
further investigation. Therefore, a detailed methodology for the
Frontiers in Immunology | www.frontiersin.org 6
expansion of Bregs should be explored, which will provide better
material (such as extracellular vesicles from engineered Bregs)
for AIDs treatments. In this manner, the morbidity associated
with AIDs will reduce and the life quality of patients will
get improved.
CONCLUSION

B cells are essential components of the adaptive immune system
and display important roles in the pathogenesis of AIDs. With
the stimulation of inflammatory cytokines and chemokines, B
cells migrate into tissues and exert functions. In contrast, the
identification of Bregs provides new insight into the role of B
cells in AIDs. Based on the phenotypes described above, we can
find that the phenotype of Bregs are varied including the
phenotypes related to transitional B cells as well as highly
differentiated plasma (blasts) cells. Without specific
transcriptional factors or unique markers, the characterization
of Bregs is usually based on their ability to secrete anti-
inflammatory cytokines and express inhibitory molecules,
FIGURE 1 | Regulatory function of Bregs in AIDs. Following exposure to the autoantigen, (presented to T cells via MHC molecules) CD40 signaling, Toll-like receptor
(TLR) agonists (LPS or CpG), BAFF, IL-21, and/or IL-35, B cells mature into Bregs that can actively express and secrete immuno-modulatory molecules, including IL-
10, IL-35, PD-1, and its ligand-PD-L1. Through these molecules, Bregs negatively regulate the antigen presentation and expression of costimulatory molecules. In Th
response, Bregs restrict Tfh, Th1, and Th17 responses. In addition, Bregs promote the generation of Tregs and induce suppressive natural killer T cells. Thus, Bregs
play a protective role in the development of AIDs.
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suppressing the activity of effector cells and inducing the
generation of Tregs. Considering the excessive immune
responses in AIDs, Bregs act as protectors from AIDs with
their immunomodulatory functions. Antigen signals (self or
foreign antigens) appear to drive the development of Bregs,
with many AIDs associated molecules, activators and
supporters of Bregs. Thus, the adoptive transfer of ex vivo
expanded Bregs might be a therapeutic strategy for AIDs,
especially tissue-specific AIDs (such as T1D) due to the limited
inflammation in the local tissues. However, there remain
significant unknowns about Bregs, including specific surface
markers and transcriptional factors that could be used to
identify these cells, and how to maintain functional stability in
vivo. Further investigations should focus on these unknowns, for
a better understanding of Bregs and their practical application to
AIDs treatments.
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