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Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne
virus that causes hemorrhagic fever. Previous studies showed that SFTSV-infected
patients exhibited elevated levels of pro-inflammatory cytokines like interleukin-1b (IL-
1b), indicating that SFTSV infection may activate inflammasomes. However, the detailed
mechanism remains poorly understood. Herein, we found that SFTSV could stimulate the
IL-1b secretion in the infected human peripheral blood mononuclear cells (PBMCs),
human macrophages, and C57/BL6 mice. We demonstrate that the maturation and
secretion of IL-1b during SFTSV infection is mediated by the nucleotide and
oligomerization domain, leucine-rich repeat-containing protein family, pyrin-containing
domain 3 (NLRP3) inflammasome. This process is dependent on protease caspase-1, a
component of the NLRP3 inflammasome complex. For the first time, our study discovered
the role of NLRP3 in response to SFTSV infection. This finding may lead to the
development of novel drugs to impede the pathogenesis of SFTSV infection.

Keywords: severe fever with thrombocytopenia syndrome virus, pro-inflammatory cytokines, interleukin-1b, NLRP3
inflammasome, tick-borne virus
INTRODUCTION

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever caused by
SFTSV, a tick-borne virus. SFTSV is a segmented RNA virus that was first discovered in China in
2009 and has been reported in Japan, South Korea, and Vietnam (1–4). The major vector of SFTSV
is Haemaphysalis longicornis tick that is native of East Asia and has been spread into Oceania and
North America (5–7). SFTSV infection usually resulted in fever, thrombocytopenia, leukocytopenia,
multiple organ failure with 20–30% case fatality rate (8). SFTS patients exhibited increased levels of
pro-inflammatory cytokines, including interleukin 6 (IL-6), interleukin 10 (IL-10), and monocyte
chemotactic protein 1 (MCP-1) (9). In the SFTS fatal cases, the patients exhibited even high levels of
interleukin 1b (IL-1b), interleukin 8 (IL-8), and macrophage inflammatory proteins 1a and 1b than
those of mild patients (10, 11). However, Song et al. reported that the SFTS fatal cases had elevated
IL-6, TNF-a level and declined IFN-b, IL-1b level (12). The differences among these studies might
be due to the patient cohorts used in the studies or the different time for the sera collection. But
overall, SFTS patients had severe cytokine imbalance, especially in the fatal cases, which indicated
that the inflammatory response may play an important role in the SFTS progress. However, the
mechanism behind the secretion of these cytokines upon SFTSV infection has not been revealed.
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Pro-inflammatory cytokines, including the IL-1 superfamily,
are key mediators of the innate immune system, playing an
important role in response to invading pathogens, including
viruses, bacteria, and fungi (13). IL-1b, as an “administrator”,
that arranges the following immune responses at both the local
and systemic levels, stimulates macrophages to secret other
inflammatory cytokines (14). During viral infection, the
formation of IL-1b has two steps, priming and maturation.
Upon the pathogen-associated molecular patterns (PAMPs) or
damage-associated molecular patterns (DAMPs) are recognized
by the pattern recognition receptors (PRRs), nuclear factor-kB
(NF-kB) signaling cascade will be activated and promoted the
transcription of pro-IL-1b. Then, Pro-IL-1b is cleaved by
protease caspase-1 to mature into active IL-1b, which is a
component of the inflammasome complex. Inflammasomes are
cytoplasmic sensor/activators which show proteolysis functions
in caspase-1 dependent manner, and especially target pro-IL-1b
and pro-IL-18 to activate the cytokines (15). Among several
inflammasomes, NLRP3 inflammasome is the best-characterized
one and is linked to the maturation and release of IL-1b in viral
infection (16–18). NLRP3 inflammasome comprises the sensor
molecule NLRP3, the adaptor protein apoptosis-associated
speck-like protein containing CARD (ASC), and the effector
protease pro-caspase-1 (19). Upon activation, NLRP3 protein
interacts with ASC and recruits pro-caspase-1 to form NLRP3-
ASC-pro-caspase-1 complex, also named as NLRP3
inflammasome, which induces the pro-capase-1 autoproteolytic
cleavage into the active form caspase-1. Activated caspase-1 leads
to the cleavage and secretion of mature IL-1b and IL-18.
Activation of the NLRP3 inflammasome and IL-1b release
mediate host protection against various pathogen invasions.
However, hyperactivation of the inflammasomes contributes to
the pathogenesis of inflammatory diseases, such as lung injury in
Severe Acute Respiratory Syndromes (SARS), viral encephalitis,
and viral acute or chronic hepatitis (20–23).

Some small molecules have been shown to activate NLRP3
inflammasomes, like LPS, Nigericin, and ATP. LPS is capable of
triggering a cascade of inflammatory processes through toll-like
receptor 4 signaling pathway, which could further lead to more
intricate biological responses including the secretion of a number
of pro-inflammatory mediators like IL-1b (24). Nigericin and
ATP can activate NLRP3 inflammasome by promoting
potassium efflux, and they can enhance LPS induced
inflammation. Also, some inhibitors, like CY-09 and VX-765,
could prevent NRRP3 inflammasome activation. CY-09 directly
binds to the ATP-binding motif of NLRP3 NACHT domain and
inhibits NLRP3 ATPase activity, resulting in the suppression of
NLRP3 inflammasome assembly and activation (25).

Previous studies demonstrated that SFTSV could infect many
human cell lines including HUVECs, 2937, RD, Huh7, MEG-01,
Jurkat, and THP-1 (26–28). Macrophages are the major immune
cells that release pro-inflammatory cytokines including IL-1b. Jin
et al. established an infectious model of SFTS in C57/BL6 mice
which can result in hallmark symptoms of thrombocytopenia
and leukocytopenia, and SFTSV replication was found in the
mice spleen macrophages (27). Here, we found that SFTSV
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infection can stimulate the secretion of IL-1b in infected
human peripheral blood mononuclear cells (PBMCs), human
macrophages, and C57/BL6 mice sera. We demonstrate that the
maturation and secretion of IL-1b during SFTSV infection is
mediated by NLRP3 inflammasome activation. This process is
dependent on protease caspase-1, a component of the NLRP3
inflammasome complex.
MATERIALS AND METHODS

Reagents
Roswell Park Memorial Institute 1640 medium (RPMI 1640) and
Dulbecco’s modified Eagle’s medium (DMEM) were obtained
from Gibco (Grand Island, NY). Lipopolysaccharide (LPS),
NLRP3 assembly inhibitor CY-09, and phorbol 12-myristate
13-acetate (PMA) were purchased from Sigma-Aldrich (St.
Louis, MO). Nigericin and caspase-1 inhibitor VX-765 were
purchased from InvivoGen (San Diego, CA). Monoclonal
rabbit anti-human IL-1b (D3U3E) (1:1,000), monoclonal
rabbit anti-human cleaved IL-1b (D3A3Z) (1:1,000),
monoclonal rabbit anti-human NLRP3 (D2P5E) (1:1,000), and
monoclonal rabbit anti-human caspase-1 (D7F10) (1:1,000) were
purchased from Cell Signaling Technology (Beverly, MA).
Monoclonal mouse anti-human ASC (sc-271054) (1:500) and
polyclonal goat anti-human cleaved caspase-1 (sc-22163) were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA).
Monoclonal mouse anti-b-actin (1:10,000) and HRP conjugated
secondary antibodies including goat anti-human IgG, goat anti-
rabbit IgG, and goat anti-mouse IgG were obtained from
Proteintech Group, Inc (Rosemont, IL). FITC conjugated goat
anti-human IgG secondary antibody (1:200) was obtained from
Fitzgerald (Birmingham, WM, UK).

Cells
PBMCs were isolated from peripheral blood by density gradient
centrifugation. In brief, blood was diluted with an equal volume
of RPMI 1640, and 8 ml diluted blood was gently layered over a
4 ml lymphocyte separation medium. The cells were centrifuged
at 400×g for 20 min. Then, the cell layer was transferred to a new
centrifuge tube and diluted with RPMI 1640. The remaining red
blood cells were removed using a red blood cell lysis buffer
(Sigma-Aldrich, St. Louis). The purified PBMCs were centrifuged
at 300×g for 10 min and cultured in RPMI 1640 with 10% heat-
inactivated fetal bovine serum (FBS; Gibco) (Grand Island, NY)
at 37°C in 5% CO2 environment. After 4 h of incubation, the
supernatants were aspirated and changed with a new cell
culture medium.

THP-1 cells (a human monocytic cell line) were cultured in
RPMI 1640 with 10% heat-inactivated FBS at 37°C in 5% CO2.
THP-1 cells were stimulated to differentiate into macrophages by
the addition of PMA (100 ng/ml). After 24 h, PMA was removed
and the cells were cultured for another 24 h. THP-1 differentiated
macrophages were infected with SFTSV at the indicated
multiplicity of infection (MOI) for 2 h at 37°C or treated with
LPS (1 mg/ml) for 4 h (or then 2 mMNigericin for 30 min). After
February 2021 | Volume 12 | Article 595140
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infection, the cells were gently washed three times with an
appropriate cell culture medium and cultured with RPMI 1640
containing 2% heat-inactivated FBS. To inhibit the NLRP3
inflammasome assembly or caspase-1 activation, cells were
treated with the indicated concentration of the NLRP3
assembly inhibitor CY-09 or caspase-1 inhibitor VX-765 for
1 h prior to the infection. After infection, cells were washed, and
the inhibitor was added back to the cells with the medium.

HEK293T cells (a human embryonic kidney cell line) and
Vero cells (an African green monkey kidney cell line) were
maintained in DMEM supplemented with 10% heat-
inactivated FBS at 37°C in 5% CO2.

Virus
SFTSV (strain JS2011-013-1) was cultured on Vero cells with the
DMEM medium containing 2% heat-inactivated FBS. The virus
titer was determined by plaque assay. Briefly, Vero cells were
cultured in a 12-well plate at a density of 2 × 105 cells/well and
infected with 200 ml 10-fold serially diluted virus solution for 2 h.
Then the cells were washed and replenished with plaque medium
supplemented with 1% carboxyl methylcellulose. The infected
Vero cells were incubated for 7 days. After incubation, plaque
medium was removed, and cells were fixed and stained with 4%
formaldehyde and 0.5% crystal violet.

Mice Infection
All mice used in our experiments are on a C57/BL6 genetic
background, and all experiments were carried out with age and
gender matched mice (4–5 weeks old, female). C57/BL6 mice
were purchased from the Sanxia University (Yichang, China).
Mice were infected with 2 × 106 Pfu of SFTSV or the same
volume PBS intraperitoneally (i.p.). The infected mice were
sacrificed on 3 or 5 days post infection for collection of sera
and spleens for analysis. For the analysis of murine samples, six
mice were used in each group.

The animal study was approved by the ethics committee of
medical school, Wuhan University (2019YF2013) and was
conducted in accordance with the guidelines for the protection
of animal subjects.

Lentivirus Production and Infection
The targeting sequences of shRNAs for human NLRP3, ASC, and
pro-caspase-1 are as follows: sh-NLRP3: 5′-GCGTTAGAAA
CACTTCAAGAA-3′; sh-ASC: 5′-GATGCGGAAGCTCTT
CAGTTTCA-3′; and sh-pro-caspase-1: 5′-CACACGTCTTGCT
CTCATTAT-3′. The shRNAs were inserted into the vector
PLKO.1 to build the recombinant plasmids, which were then
transfected into HEK293T cells together with the packaging
plasmids psPAX2 and pMD2.G with Polyethyleneimine (PEI,
Alfa Aesar) as described (17). The blank PLKO.1 vector was used
as a negative control. Culture supernatants were harvested at 48
and 96 h after transfection and filtered through a 0.45 mm filter.
The lentivirus was concentrated with a lentivirus concentration
solution (25% PEG8000 with 750 mMNaCl) and resuspended in
RPMI 1640. THP-1 differentiated macrophages were infected
with the lentiviral particles in the presence of 5 mg/ml polybrene
Frontiers in Immunology | www.frontiersin.org 3
(Sigma) for 4 h. RPMI 1640 with 10% FBS (volume 1:1) was
added and incubated for 24 h. Then the supernatants were
aspirated and resuspended in a complete cell culture medium
for an additional 48 h. The cells were lysed to detect each shRNA
targeted protein by Western blot or infected with SFTSV.

To get the NLRP3-knockout THP-1 cells, CRISPR-Cas9
system was used and sgRNA (5′-GGGATGCAGCCCT
TCTGGGG-3′) was inserted into the plasmid plentiCRISPR
V2. The recombinant plasmid and the packaging plasmids
(psPAX2 and pMD2.G) were co-transfected into HEK293T
cells and the lentiviral particles were collected, and
concentrated as described above. The suspended THP-1 cells
were infected with the lentiviral particles in the presence of 5 mg/
ml polybrene and screened with 2 mg/ml puromycin (Sigma) for
three rounds.

Quantitative PCR
Total RNA was extracted from the cells or the mice spleens with
TRIzol reagent (Invitrogen) following the manufacturer’s
instructions, and reversed to cDNA by High Capacity cDNA
Reverse Transcription Kit (Thermo). Quantitative PCR was
performed using the Roche LC480 and ChamQ SYBR qPCR
Master Mix (Vazyme, Nanjing, China) in a 20 ml volume reaction
mixture of 10 ml SYBR Green PCR master mix, 1 ml DNA diluted
template, 0.5 mM forward and reverse primers, and RNase-free
water. The sequences of quantitative PCR primers were provided
in Table 1.

Enzyme-Linked Immunosorbent Assay
The concentrations of mature human IL-1b, IL-6, TNF-a, and
mice IL-1b in supernatants or sera were measured according to
manufactures’ instructions with the human IL-1b/IL-1F2
valukine™ ELISA Kit, human IL-6 valukine™ ELISA Kit,
human TNF-a valukine™ ELISA Kit, and mouse IL-1b/IL-1F2
quantikine® ELISA Kit. The four ELISA kits were purchased
from R&D systems (Minneapolis, MN).
TABLE 1 | Primers used for quantitative PCR analysis.

Genes Forward primer (5′–3′) Reverse primer (5′–3′)

human NLRP3 GATCTTCGCTGCGATCAACA GGGATTCGAAACACGT
GCATTA

human
caspase-1

GCCTGTTCCTGTGATGTGGAG TGCCCACAGACATTCAT
ACAGTTTC

human ASC AACCCAAGCAAGATGCGGAAG TTAGGGCCTGGAGGAG
CAAG

human IL-1b CCAGGGACAGGATATGGAGCA TTCAACACGCAGGACA
GGTACAG

human b-actin GACCACCTTCAACTCCATCAT CCTGCTTGCTAATCCA
CATCT

mice NLRP3 TCACAACTCGCCCAAGGAGGAA AAGAGACCACGGCAG
AAGCTAG

mice IL-1b ACTGTTTCTAATGCCTTCCC ATGGTTTCTTGTGACC
CTGA

mice b-actin GGTGTGATGGTGGGAATGG GCCCTCGTCACCCAC
ATAGGA

SFTSV GGGTCCCTGAAGGAGTTGTAAA TGCCTTCACCAAGACT
ATCAATGT
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Western Blot
The supernatant (1 ml) of cultured cells was collected in
cryogenic vials and stored frozen at −80°C for 4 h. A rotational
vacuum concentrator was used to lyophilize the samples. The
lyophilized product was dissolved in 100 ml water and mixed
with sodium dodecyl sulfate (SDS) loading buffer for Western
blot using antibodies against cleaved IL-1b.

THP-1 differentiated macrophages lysates were prepared with
RIPA lysis buffer (50 mM Tris, pH = 7.4, 150 mM NaCl, 1%
Triton X-100, 1% sodium deoxycholate, and 0.1% SDS) with
proteinase inhibitor cocktail, followed by the test of protein
concentration with BCA assay (Takara, Japan) and mixed with
SDS loading buffer.

Supernatants or cell lysate samples were electrophoresed in SDS-
polyacrylamide gel electrophoresis gel (PAGE) and transferred onto
nitrocellulose (NC) membrane (Millipore, MA, USA). NC
membranes were blocked with 5% skimmed milk in TBS with
0.1% Tween-20 (TBST) and incubated with the antibody at 4°C
overnight. After incubation with the HRP-conjugated secondary
antibody, protein band was detected using SuperSignal West Pico
Chemiluminescent Substrate Kit (Thermo Scientific, Rockford, IL)
according to the manufacturer’s instructions. All the western-blot
experiments were done at least twice.

Immunofluorescence Assay
Monoclonal antibody TF2 was isolated using recombinant
SFTSV nucleoprotein (NP) as a bait from a phage-display
antibody library derived from the peripheral blood
mononuclear cells of a patient that recovered from SFTS
disease. Since only the sequence of the variable region was
available, the full-length heavy and light chains were
constructed by combining the variable region with the constant
region of human IgG1. The full-length mAb TF2 was produced
by cotransfection in HEK293T cells with heavy and light chains
and purified by a protein A column and a Superdex 200 column.

The infected monocytes were fixed with 4% paraformaldehyde
for 15 min. After washing with PBS, the cells were permeabilized
with PBS containing 0.2% Triton X-100 for 10 min and blocked
with PBS containing 5% BSA for another 1 h. The cells were
incubated with anti-SFTSVNPmAb TF2 at 4°C overnight, followed
by the incubation with FITC-conjugated anti-human IgG for
30 min. After washing, cells were incubated with 4,6-diamidino-2-
phenylindole (DAPI) solution for 5 min and washed three times
with PBS. The cells were analyzed with a fluorescence microscope
(Olympus, Tokyo, Japan).

ASC Oligomerization
ASC oligomerization was detected as previously reported (29).
Macrophages were seeded in 6-well plates (2 × 106 cells per well)
and treated with different stimuli. The cells were pelleted by
centrifugation and lysed by Pierce™ IP Lysis Buffer (Thermo)
with PMSF and a protease inhibitor mixture. The cell lysates
were then centrifuged at 5,000×g for 10 min at 4°C, and the
pellets were washed twice with ice-cold PBS and resuspended in
500 ml of PBS. Next, the resuspended pellets were crosslinked
with fresh DSS (4 mM) for 30 min and pelleted by centrifugation
Frontiers in Immunology | www.frontiersin.org 4
at 5,000×g for 10 min. The crosslinked pellets were resuspended
in 40 ml of non-reducing SDS buffer, separated using 12% SDS-
PAGE and immunoblotted using anti-human ASC antibodies.

Statistical Analyses
The results were expressed as mean values (± standard deviations).
Statistical analyses were performed using a two-tailed student t-test
or one-way ANOVA (for multiple comparisons) followed by a
Sidak, Tukey or Dunnett multiple comparison test as appropriate.
GraphPad Prism 8 was used to generate all charts and statistical
analyses, and Gaussian distribution and correction post-test of
statistics analysis was performed. Any p-value less than or equal
to 0.05 was considered statistically significant.
RESULTS

SFTSV Infection Triggers NLRP3
Inflammasome Activation and
IL-1b Secretion
PBMCs were used as a cell model to determine the release of IL-1b
during SFTSV infection, where PBMCs were infected at various
MOIs (0.1, 0.5, 1, and 2). Cells treated with LPS were used as a
positive control. SFTSV RNAwas detected in infected PBMCs in 24,
36, and 48 h, which indicated that SFTSV can infect PBMCs and
replicated well in the cells (Figures 1A, B). The mRNA expression
of IL-1b, NLRP3, caspase-1, and ASC were stimulated by LPS and
SFTSV (Figures 1C, D, Figures S1A–F). IL-1b level significantly
increased in the supernatants of cells infected with SFTSV or cells
treated with LPS than those of mock cells (Figure 1E). Next C57/
BL6 mice were infected with SFTSV or mock infection, the viral
RNA was detected, and the declined trend was observed from day 3
to day 5 in the spleen (Figure 1F). IL-1b mRNA expression in the
spleen and IL-1b in the sera increased compared to the mock mice
(Figures 1G, H), demonstrating that SFTSV induces IL-1b
production and secretion.

THP-1 differentiated macrophages were also applied to
determine the effect on the IL-1b secretion during SFTSV
infection. An anti-SFTSV NP monoclonal antibody TF2 was
expressed and purified (Figure S2). SFTSV NP was detected in
the macrophages, indicating that SFTSV replicated well in the cells
(Figure S3 and S4). Compared with the mock infection, pro-IL-1b
in cell lysates, IL-1b and cleaved caspase-1 (p20) in supernatants
were induced by LPS, LPS/Nigericin, and SFTSV (Figures 2A–D).
In SFTSV infected cells, accumulation of NLRP3, pro-caspase-1,
and cleaved caspase-1 was observed compared with the mock
infection, and ASC dimer, trimer, and oligomer were detected in
the infected cells (Figures 2B, D, E). In summary, we demonstrated
that SFTSV infection could activate NLRP3 inflammasome and
induce the production and secretion of IL-1b.

SFTSV Infection Induced IL-1b Secretion
Is Dependent on the Active
Caspase-1 Formation
To determine the mechanism associated with the secretion of IL-
1b upon SFTSV infection. We first assessed the role of caspase-1
February 2021 | Volume 12 | Article 595140
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in the SFTSV-induced IL-1b secretion. In THP-1 differentiated
macrophages supernatants, IL-1b and cleaved caspase-1 level
was significantly higher in the LPS/Nigericin or SFTSV-treated
cells than mock infected cells (Figures 2B, D). LPS or LPS/
Nigericin stimuli served as a positive control for stimulation of
IL-1b secretion. To inhibit the proteinase activity of caspase-1,
caspase-1 inhibitor VX-765 was added to the medium prior to
and during SFTSV infection and LPS treatment. We observed a
significant increase in the release of IL-1b in the supernatant of
SFTSV infected cells, LPS, or LPS/Nigericin-treated cells
compared with mock-infected cells on 48 h after infection. At
the same time, IL-1b secretion stimulated by SFTSV infection or
LPS/Nigericin was all repressed by inhibitor VX-765 on 48 h
after infection (Figures 3A, B). The decrease of IL-1b level in the
Frontiers in Immunology | www.frontiersin.org 5
supernatants of the SFTSV infected macrophages was dose-
dependent on VX-765 (Figure 3B). Collectively, these data
demonstrated that active caspase-1 plays a dominant role in
the IL-1b secretion induced by SFTSV infection.

NLRP3 Inflammasome Is Involved in
SFTSV Induced IL-1b Secretion
Previous studies have demonstrated that the IL-1b maturation
and secretion are mediated by cleavage of caspase-1 under the
control of the inflammasome, including NLRP3, NLRC4, and
AIM2 inflammasome (13). Here, we focused on NLRP3
inflammasome, the best-characterized inflammasome involved
in the maturation and secretion of IL-1b. To examine the role of
NLRP3 inflammasome in the SFTSV induced release of IL-1b,
A D

E

F H

B

C

G

FIGURE 1 | SFTSV infection induces the release of the pro-inflammatory cytokines interleukin-1b (IL-1b) in human PMBCs and C57/BL6 mice. (A, B) SFTSV viral
RNA and b-actin mRNAs in human PBMCs were quantified by qPCR. (C, D) IL-1b and b-actin mRNAs in human PBMCs were quantified by qPCR. (E) Human
PBMCs were infected with SFTSV at different MOIs (0.1, 0.5, 1, and 2) or treated with LPS. IL-1b levels were measured in the supernatants by enzyme-linked
immunosorbent assay (ELISA). (F) SFTSV viral RNA and b-actin mRNAs in mice spleen were quantified by qPCR. (G) IL-1b and b-actin mRNAs in mice spleen were
quantified by qPCR. (H) IL-1b levels in mice sera were determined by ELISA. Data are mean values ± SD derived from the samples collected in two times under
identical conditions. *P<0.05, **P<0.01, ***P<0.001.
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NLRP3 assembly inhibitor CY-09 was added to the medium
prior to and during SFTSV infection and LPS/Nigericin
treatment. A significant increase of IL-1b was observed in the
supernatant of SFTSV infected cells, or LPS/Nigericin-treated
cells (Figure 3C). However, IL-1b and cleaved caspase-1
secretion stimulated by SFTSV infection or LPS/Nigericin were
all inhibited by the inhibitor CY-09 (Figure 3D). And we also
found that the decrease of IL-1b level in the supernatants of the
SFTSV infected macrophages was dose-dependent on CY-09
(Figures 3C, D). The results demonstrated that NLRP3 assembly
plays a crucial role in SFTSV infection induced IL-1b secretion.

Next, short hairpin RNA (shRNA) was used to knockdown
the components of NLRP3 inflammasome (NLPR3, ASC, and
pro-caspase-1). Western blot confirmed the knockdown of
NLPR3, ASC, and pro-caspase-1 at protein level 3 days after
lentivirus infection (Figure 4A). Wild-type THP-1 differentiated
macrophages and target proteins knockdown cells were infected
with SFTSV at MOI = 1 for 48 h. We found that mature IL-1b
and cleaved caspase-1 were significantly lower in sh-NLRP3, sh-
Frontiers in Immunology | www.frontiersin.org 6
ASC, and sh-caspase-1 than the wild type and control
macrophages in the supernatants (Figures 4B, C). While in the
cell lysates, significant accumulation of pro-IL-1b was detected in
the shRNAs’ knockdown cells compared with the wild type cells
(Figure 4C). In all, the knockdown of NLRP3 inflammasome
components attenuated the SFTSV induced IL-1b maturation
and release.

Moreover, we screened NLRP3-knockout THP-1 cells by a
CRISPR-Cas9 system and puromycin treatment (Figure 4D). The
wild type and NLRP3 KO THP-1 cells were infected with SFTSV
(MOI = 1) or stimulated with LPS/Nigericin or mock infection.
After SFTSV infection and LPS/Nigericin stimulation, the knockout
of NLPR3 was confirmed (Figure 4F). SFTSV replication was not
affected by NLRP3 knockout (Figures 4E, F). IL-1b was observed
with a significant decrease in the supernatant of SFTSV infected
NLRP3 KO THP-1 cells 48 h after infection compared with the wild
type THP-1 cells, while no significant change of TNF-a and IL-6
was detected in the NLRP3 KO cells compared with wild type cells
(Figures 4G–I). The result was the same in the LPS/Nigericin
A

B

C E

D

FIGURE 2 | SFTSV infection triggers NLRP3 inflammasome activation and IL-1b production and secretion. (A, B) THP-1 macrophages were treated with LPS (1 mg/
ml) for 4 h (or then 2 mM Nigericin for 30 min) or infected with SFTSV for 48 h at different MOIs (0.1, 0.5, 1, or 2). (C, D) THP-1 macrophages were treated with LPS
(1 mg/ml) for 4 h (or then 2 mM Nigericin for 30 min) or infected with SFTSV at an MOI = 1 for 24, 36, 48, or 60 h. (A, C) IL-1b levels in the supernatant were
determined by ELISA. (B, D) Mature IL-1b and cleaved caspase-1 in supernatants or NLRP3, pro-caspase-1, cleaved caspase-1 pro-IL-1b, ASC, SFTSV NP and
b-actin in lysates were determined by Western blot. (E) THP-1 macrophages were treated with LPS (1 mg/ml) for 4 h (or then 2 mM Nigericin for 30 min) or infected
with SFTSV at an MOI = 1 for 48 h. ASC oligomerization was determined by Western blot. Data are mean values ± SD derived from the samples collected in
triplicate. ***P<0.001.
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stimulated wild type and NLRP3 KO THP-1 cells (Figures 4G–I).
In summary, in SFTSV infection, IL-1b secretion was mainly
regulated by NLRP3 inflammasome activation.
DISCUSSION

Inflammasomes are important components of the host innate
immune system against pathogen infection (13). Previous studies
have demonstrated that mycobacterium tuberculosis and
Candida albicans were able to activate NLRC4 and NLRP3
inflammasomes (30–32), while Influenza virus, Zika virus,
Enterovirus 71, and Hepatitis virus C could activate NLRP3
inflammasome to stimulate pro-inflammatory cytokine IL-1b
maturation and secretion (17, 18, 20, 33). However, the
interaction between inflammasome and SFTSV is not clear.
Here, we demonstrated that SFTSV infection could also
activate the NLRP3 inflammasome leading to the cleavage of
Frontiers in Immunology | www.frontiersin.org 7
caspase-1 and the release of IL-1b. Human PBMCs were infected
with SFTSV, and SFTSV RNA was detected in the infected cells,
indicating that SFTSV replicated well in the PBMCs (Figures 1A,
B). SFTSV infection promoted the transcription of IL-1b and
NLRP3 inflammasome components and the secretion of mature
IL-1b (Figures 1C, D, Figure S1). To determine the role of
NLRP3 inflammasome in SFTSV infection induced IL-1b
secretion, we found that treated with NLRP3 assembly
inhibitor, the knockdown and knockout of NLRP3 in the
THP-1 macrophages led to the prohibition of SFTSV-induced
secretion of IL-1b. The results demonstrated that the NLRP3
inflammasome is required for maturation and release of IL-1b. In
addition, after SFTSV infection, IL-1b release significantly
decreased in NLRP3 knockout THP-1 macrophages than wild
type cells, but it was higher than mock infection in NLRP3
knockout macrophages (Figure 4G). That was probably because
SFTSV infection could activate other inflammasomes except for
NLRP3 inflammasome.
A C

B D

FIGURE 3 | SFTSV infection induced IL-1b secretion is dependent on active caspase-1 and NLRP3 assembly. (A, B) THP-1 macrophages were treated with the
caspase-1 inhibitor (VX-765) at indicated concentration for 1 h prior to infection. Then the cells were treated with LPS (1 mg/ml) for 4 h (or then 2 mM Nigericin for
30 min) or infected with SFTSV at an MOI = 1 for 48 h. (C, D) THP-1 macrophages were treated with the NLRP3 assembly inhibitor (CY-09) at indicated
concentration for 1 h prior to infection. Then the cells were treated with LPS (1 mg/ml) for 4 h (then 2 mM Nigericin for 30 min) or infected with SFTSV at an MOI = 1
for 48 h. (A, C) IL-1b levels in the supernatant were determined by ELISA. (B, D) Mature IL-1b and cleaved caspase-1 in supernatants or NLRP3, pro-caspase-1,
cleaved caspase-1 pro-IL-1b, ASC, SFTSV NP and b-actin in lysates were determined by Western blot. Data are mean values ± SD derived from samples collected
in triplicate. ***P<0.001.
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It has been shown that potassium efflux, calcium influx,
mitochondrial reactive oxygen species, even viral RNA or RNA
cleavage products participate in the NLRP3 inflammasome
activation to induce caspase-1 activation and IL-1b maturation
(13, 34, 35). Thus far, several models have been proposed to
explain NLRP3 inflammasome activation by RNA viruses. First,
viral proteins could directly interact with NLRP3 to facilitate the
assembly of NLRP3 inflammasome complex. For example, Zika
virus NS5 protein and EV71 3D protein could interact with
NLRP3 directly to active NLRP3 inflammasome (17, 18, 21).
Second, HCV core protein and p7 protein enhanced calcium
influx and potassium efflux to drive the NLRP3 inflammasome
Frontiers in Immunology | www.frontiersin.org 8
activation and IL-1b release in macrophages (36, 37). In
addition, the 2B proteins of EMCV and human rhinovirus
triggered NLRP3 inflammasome activation by inducing Ca2+

flux from the ER and Golgi compartments (38, 39). When
infected, SFTSV expressed four proteins, including
nucleoprotein (NP), glycoprotein (Gn/Gc), RNA-dependent
RNA polymerase (RdRp), and non-structural protein (NSs).
Previous studies reported that SFTSV NSs played an important
role in immune escape to facilitate SFTSV replication. NSs could
form inclusion bodies in the cytoplasm and hijack host cell
molecules like STAT1/2 and IRF7 into the inclusion bodies to
inhibit the NF-kB signal pathway activation (28, 40–43). We also
A D G

B

C F

E

H

I

FIGURE 4 | The role of NLRP3 inflammasome in the regulation of SFTSV induced IL-1b secretion. (A) THP-1 cells expressing shRNAs with the target at ASC,
NLRP3, or pro-caspase-1 were lysed, and the targeted proteins were determined by Western blot at 3 days after lentiviral particles infection. THP-1 cells expressing
shRNAs targeting ASC, NLRP3, or pro-caspase-1 were infected with SFTSV (MOI = 1) or mock infection for 48 h. (B) IL-1b levels in the supernatant were
determined by ELISA. (C, F) Mature IL-1b and cleaved caspase-1 in supernatants or NLRP3, pro-caspase-1, cleaved caspase-1 pro-IL-1b, ASC, SFTSV NP and
b-actin in lysates were determined by Western blot. (D) THP-1 cells (wild type and NLRP3 KO) were lysed, and the targeted proteins were determined by Western
blot. (E) Differentiated THP-1 cells (wild type and NLRP3 KO) were infected with SFTSV (MOI = 1) or mock infection for 24 or 48 h. SFTSV viral RNA and b-actin
mRNAs were quantified by qPCR. (G–I) Differentiated THP-1 cells (wild type and NLRP3 KO) were infected with SFTSV (MOI = 1) or treated with LPS/Nigericin or
mock infection for 48 h. IL-1b, TNF-a and IL-6 levels in the supernatant were determined by ELISA. Data are mean values ± SD derived from the samples collected
in triplicate. ***P < 0.001, NS, no significance.
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expressed SFTSV single protein (RdRp, Gn/Gc, NP and NSs) in
THP-1 macrophages, and stimulated the cells by LPS, but no
significant increase of IL-1b in the supernatant compared with
LPS treated alone (data not show). However, a study by
Moriyama et al. reported that both wild-type NSs and the 21/
23A mutant of SFTSV suppressed NLRP3 inflammasome-
dependent IL-1b secretion (44). We thought NLRP3
inflammasome activation in SFTSV infection might be
stimulated by calcium influx or potassium efflux. To detect the
effect of calcium influx/potassium efflux stimulation, THP-1 cells
were pretreated for 30 min with BAPTA-AM (a chelator of
intracellular Ca2+ stores) (0, 2, 4,8 mM) or KCl (used to prevent
potassium efflux) (0, 3.125, 6.25, 12.5 mM) before SFTSV
infection. The results showed that the secretion of IL-1b
decreased with the increases of concentrations of BAPTA-AM
and KCl. These results indicated that calcium influx/potassium
efflux stimulation did influence IL-1b secretion during SFTSV
infection (Figure S5). Zhang et al. found that SFTSV infection or
glycoprotein expression alone was sufficient to stimulate
endoplasmic reticulum stress (45), which might result in the
inflammasomes activation. It was reported that cleaved caspase-1
could activate GSDMD to form the functional GSDMD-N to
induce cell pyroptosis. We found that SFTSV infection could
induce mild pyroptosis in the THP-1 macrophages. IL-1b level
significantly increased in the supernatants, while IL-18 level was
a slight higher in SFTSV infected supernatants (Figures S6A, B).
GSDMD mRNA was stimulated, and GSDMD-C (cleaved
GADMD C domain) increased in SFTSV infection THP-1 cells
compared with mock infection, which indicated that SFTSV
could induce pyroptosis (Figure S6C, D). But cell damage or
membranolysis did not appear at 24 h post SFTSV infection
(Figure S6E). It was probably that a SFTSV protein could inhibit
the process of pyroptosis in the infection. The details of how
SFTSV stimulates the release of pro-inflammatory cytokines
through the activation of the inflammasome should be further
investigated, and it will provide strategies for the intervention of
SFTSV infection, especially for the critical patients.

In conclusion, we revealed that SFTSV infection facilitated
the maturation and secretion of pro-inflammatory cytokine IL-
1b through NLRP3 inflammasome activation.
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Supplementary Figure 1 | SFTSV infection triggers NLRP3 inflammasome
components transcription in PBMCs. Human NLRP3, caspase-1, ASC and b-actin
mRNAs were quantified by qPCR. *P < 0.05, **P < 0.01, ***P < 0.001.

Supplementary Figure 2 | Monoclonal antibody TF2 purification and binding
activity with SFTSV. The full-length mAb TF2 was produced in HEK293T cells and
purified by Superdex 200 column (top). SFTSV NP was stained with mAb TF2 by
IFA after infection for 48 h in THP-1 macrophages. Blue color shows the nucleus.
(bottom).

Supplementary Figure 3 | SFTSV replicates well in the THP-1 macrophages.
THP-1 macrophages were infected with SFTSV at MOI = 1 for 24, 36, 48, or 60 h or
mock infection. SFTSV NP was stained with mAb TF2 by IFA (green). Blue color
shows the nucleus.

Supplementary Figure 4 | SFTSV replicates well in the THP-1 macrophages.
THP-1 macrophages were infected with SFTSV for 48 h at different MOIs (0.1, 0.5,
1, or 2) or mock infection. SFTSV NP was stained with mAb TF2 by IFA (green). Blue
color shows the nucleus.

Supplementary Figure 5 | Calcium influx and potassium efflux stimulation
influence IL-1b secretion during SFTSV infection. THP-1 cells were pretreated with
BAPTA-AM (0, 2, 4,8 mM) and KCl (0, 3.125, 6.25, 12.5 mM) 30 min before SFTSV
infection. The secretion of IL-1b was detected by ELISA after 48 h post infection.

Supplementary Figure 6 | SFTSV infection triggers pyroptosis in THP-1
macrophages. THP-1 macrophages were treated with LPS (1 mg/ml) for 4 h (or then
2 mM Nigericin for 30 min) or infected with SFTSV for 24 h at different MOIs (0, 1, or
2). (A, B) IL-1b and IL-18 levels in the supernatant were determined by ELISA. (C)
Human GSMDM mRNA was quantified by qPCR. (D) GSDMD, GSDMD-C and b-
actin in lysates were determined by Western blot. (E) Cell membranolysis was
determined by CCK8.
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