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Neutrophils are the most abundant innate immune cell with critical anti-microbial
functions. Since the discovery of granulocytes at the end of the nineteenth century, the
cells have been given many names including phagocytes, polymorphonuclear neutrophils
(PMN), granulocytic myeloid derived suppressor cells (G-MDSC), low density neutrophils
(LDN) and tumor associated neutrophils (TANS). This lack of standardized nomenclature
for neutrophils suggest that biologically distinct populations of neutrophils exist,
particularly in disease, when in fact these may simply be a manifestation of the plasticity
of the neutrophil as opposed to unique populations. In this review, we profile the surface
markers and granule expression of each stage of granulopoiesis to offer insight into how
each stage of maturity may be identified. We also highlight the remarkable surface marker
expression profiles between the supposed neutrophil populations.
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INTRODUCTION

Neutrophils are critical actors in the innate immune system and the body’s first line of defense
against pathogens (1, 2). Approximately 100,000,000,000 neutrophils are generated in the bone
marrow every day, making them the most common leukocyte in human blood (3). Neutrophils
extravasate from the vasculature and are recruited to the site of infection to kill invading pathogens
(4). Deficiencies in neutrophils have significant adverse effects on the overall response to infection.
For instance, neutropenia, a reduction in the number of circulating neutrophils, is a condition
associated with high morbidity and mortality (5). A hallmark of chronic granulomatous disease is
impaired nicotinamide adenine dinucleotide phosphate (NADPH) activity, which results in reduced
neutrophil bactericidal capacity (6).

The anti-microbial roles of neutrophils also include degranulation, whereby neutrophils release
granule-derived mediators, engulfing pathogens by phagocytosis, and the release of neutrophil
extracellular traps (NETs) which ensnare invading bacteria, fungi and viruses (7, 8). Neutrophils are
highly pro-inflammatory; therefore, excessive neutrophil accumulation and prolonged activation
org April 2021 | Volume 12 | Article 6029631

https://www.frontiersin.org/articles/10.3389/fimmu.2021.602963/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.602963/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Eleanor.molloy@tcd.ie
https://doi.org/10.3389/fimmu.2021.602963
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.602963
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.602963&domain=pdf&date_stamp=2021-04-15


McKenna et al. Neutrophils: Need For Standardized Nomenclature
can result in tissue damage and chronic inflammation (4). A vital
activity of neutrophils is the release of reactive oxygen species
(ROS). During this oxidative burst, the neutrophil consumes
oxygen, which is converted to superoxide radicals via the
NADPH oxidase 2 (NOX2) complex (4, 9, 10). Through
NOX2, neutrophils primarily produce hydrogen peroxide and
superoxide (11). NOX2 is highly active during neutrophil-
mediated phagocytosis and localized in the phagosomal
membrane to guide superoxide into the phagosome.

Neutrophils follow the leukocyte adhesion cascade to move
from the bone marrow to sites of infection or inflammation (12).
Novel aspects occur in the regulation of the leukocyte adhesion
cascade during which time they display different phenotypes
which results in various neutrophils with distinct properties (13)
and specialized functions. The neutrophil response varies
dramatically during this time in a process known as priming,
allowing the cell to specifically target the particular site and
modulate its anti-microbial action (14). This migration of
neutrophils follows a circadian pattern. Circadian rhythms are
important regulators of specific immune functions (15) and
amongst the three main funct ions of neutrophi ls ,
degranulation, netosis and phagocytosis, neutrophils can
produce cytokines in a circadian manner (16) fine-tuning the
immune response and playing an essential role in modulating the
activity of the innate immune response.

Neutrophils recognize opsonized microorganisms and engulf
them via phagocytosis, once internalized the microorganisms are
stored in intracellular vacuoles called phagosomes where they are
destroyed by an oxidative burst released by active NOX2 (11).
However, NETs can be produced independently of NOX2 via vital
NETosis using mitochondrial ROS (17). NOX2 is necessary for
NET production although it is unknownwhich oxide is involved, it
is speculated to be single oxygen, superoxide, hydrogen peroxide
and hypochlorous acid. NOX2 is an electron-transfer complex
assembled in the plasma membrane. Gp91phox is the catalytic
subunit composed of the FAD-containing cytoplasmic domain,
two b-type cytochromes and the p22 subunit. Neutrophil activation
triggers phosphorylation events which activates enzyme activity of
NOX2 by recruiting several cytoplasmic regulatory subunits to the
cytoplasmic domain. Phagocytosis stimulates NOX2 assembly and
electrons move through the NOX2 complex from NADPH so that
oxygen loses an electron (11). The flow of electrons in NOX2
complex is in one direction, fromNADPH in the cytosol to oxygen
in the membrane. The pH of NOX2 phagosomes is constantly
alkaline (pH 9) when the complex is active, in contrast to
macrophage phagosomes.

Neutrophil dysfunction has been associated with adverse
prognosis in a variety of diseases including sepsis, rheumatoid
arthritis (RA), systemic lupus erythematosus (SLE), human
immunodeficiency virus (HIV), mycobacterium tuberculosis
infection and antineutrophil cytoplasmic antibody (ANCA)-
associated vasculitis (AAV) (18–24). The production of NETs
can contribute to autoimmune disease progression due to exposure
to autoantigens within NETS, this occurs in several conditions
such as RA, SLE and autoimmune small vessel vasculitis (25–27).

Neutrophil dysfunction is also evident in cancer whereby a
high volume of intra-tumoral neutrophils is correlated with poor
Frontiers in Immunology | www.frontiersin.org 2
outcome (28). Emergency granulopoiesis typically associated
with cancer progression contributes to poor patient survival,
likely due to the generation of neutrophils with altered immune
functions, namely immunosuppressive TANs and G-MDSC.
Neutrophils contribute to the disease progression of cancer by
favoring metastasis, angiogenesis and inhibiting anti-tumor
immune cells, for example, inhibition of T cells via
programmed death ligand 1 (PD-L1) (20).

The stages of neutrophil granulopoiesis are promyelocytes,
myelocytes, metamyelocytes, band cells and segmented
neutrophils (29). Several studies have identified a higher
proportion of immature neutrophils is indicative of infection,
particularly neonatal sepsis (30–32). This expansion of immature
neutrophils in the bloodstream is known as left shift and can be
measured using immature-to-total (I/T) neutrophil ratio (33) in
the blood of adult patients with sepsis, the presence of immature
band cells may be useful as a diagnostic marker of sepsis while
immature myelocytes and metamyelocytes may be predictors of
mortality (34). Immature neutrophils have been implicated in
lung, breast and ovarian cancer and associated with poor
prognosis (35). Therefore, the ability to differentiate neutrophil
lineages is of paramount clinical importance in the setting of
disease. However, it remains challenging to differentiate between
stages of neutrophil granulopoiesis because there are no defined
surface markers to identify immature and mature neutrophils.

Neutrophils normally have a short half-life of approximately
6-8 hours, hence studying them is a challenge as they need to be
processed rapidly upon sampling (3). Measurement of absolute
neutrophil counts (ANC) to detect neutrophilia and neutropenia
is one of the most commonly used tests clinically (36). In this
review, we propose a guide to aid in identifying the different
lineages of neutrophils based on surface marker expression and
correlate granule production to neutrophil function. We also
explore the remarkable similarities between proposed
neutrophil ‘subpopulations’.
NEUTROPHIL “SUBSET”
NOMENCLATURE

In a pre-antibiotic era, Elie Metchnikoff and Paul Ehrlich were
awarded the Nobel prize in 1908 for their discovery of phagocytic
cells, macrophages and neutrophils (as they were subsequently
named) (37). Since this discovery of granulocytes at the end of
the nineteenth century, the cells Ehrlich termed “cells with
polymorphous nuclei” have been referred to by many names,
including phagocytes, polymorphonuclear neutrophils (PMN),
myeloid derived suppressor cells (MDSC), low density
neutrophils (LDN) and tumor associated neutrophils (TANS)
(1). As Shakespeare remarked “A rose by any other name would
smell as sweet”, different nomenclature has been used in the
literature for neutrophils in the absence of clear biological
differences. This had led to the misleading concept that
biologically distinct populations of neutrophils exist,
particularly in disease, when in fact these are all one adaptable
cell type. Neutrophils are an incredibly plastic cell type that
allows them to respond and adapt to a variety of stimuli, which in
April 2021 | Volume 12 | Article 602963
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fact may explain the apparent biological differences between
these neutrophil “subpopulations” (38).

Low Density Neutrophils (LDN) or
Granulocytes (LDG)
Discontinuous density gradients are used to isolate neutrophils
from whole blood. Normal-density neutrophils (NDN) usually
reside in the high-density fraction but a subpopulation of
neutrophils are found in the low-density fraction, which are
known as low-density neutrophils (LDNs) or, less commonly,
LD-PMN (39, 40). LDNs have been reported in a wide array of
diseases including rheumatoid arthritis, systemic lupus
erythematous (SLE), cancer, sepsis and asthma (41–43). LDNs
display either an immature morphology with banded nuclei or
myelocyte features, and are likely released in response to
emergency granulopoiesis, or have a mature morphology with
segmented nuclei (3, 20). Uı ́ Mhaonaigh et al. found that
CD16int/-CD10- LDNs resemble immature neutrophils while
CD16+/CD10+ LDNs share morphological features with NDNs
(44). Similar to descriptions of TANs, LDNs exhibit pro-
tumorigenic and immunosuppressive functions (20).

There are several theories about the origin of LDNs. Firstly,
LDNs are a mixture of mature and immature neutrophils, which
may be immunomodulatory (44). Secondly, LDNs could be
neutrophils after undergoing degranulation and hence display
a lower density which could explain the presence of neutrophils
in the low density fraction (3). Interestingly, after TGF-b
stimulation in a mouse model, LDNs can be derived from
mature neutrophils and in human studies, LDNs can be
generated by incubation with Mycobacterium tuberculosis (45–
47). As shown in Table 1, G-MDSC, TANs and LDN show
almost the exact same surface marker profiles. TANs and LDN
also display similar pro-tumor properties, making it biologically
difficult to distinguish between these subpopulations. It is
possible that the plasticity of the neutrophil and the influence
of the tumor microenvironment may explain how all these
neutrophil “subpopulations” are in fact a normal neutrophil
under the influence of a distinct local environment. There is
not enough scientific evidence to confirm that G-MDSC, TAN
and LDN are unique cell populations.
Frontiers in Immunology | www.frontiersin.org 3
Cassetta et al. suggest that information in the literature
regarding neutrophil subsets, such as G-MDSC, LDN, Tan, is
varied and contradictory due to the use of different models and
isolation techniques. Surface markers on neutrophils isolated
from murine models and non-human primates correlate poorly
with corresponding human markers. Not only are cell surface
markers different between mice and humans but some
neutrophil subtypes, such as MDSC, are isolated from blood in
humans but are studied at tissue level in mice (58). Therefore,
standardized protocols are essential to gain further insight into
the biological significance of neutrophil subtypes.

Myeloid Derived Suppressor Cells (MDSC)
MDSC were identified as myeloid cells that suppress immune
responses and aid tumor progression in mouse models of cancer
but not in humans (55, 62). The cells were named MDSC by
Gabrilovich et al. (63). There are believed to be two
subpopulations of MDSC: monocytic (Mo-MDSC) and
granulocytic (G-MDSC or polymorphonuclear (PMN)-MDSC)
(64, 65). Pillay et al. suggest that G-MDSC are a bona fide
phenotype of neutrophils, which (unlike conventional
neutrophils) are found in the low density fraction of peripheral
blood (3, 64). Mo-MDSC are also found in the low density layer
and are morphologically similar to monocytes (20). Interestingly,
G-MDSC show similar morphology to mature neutrophils (66).
MDSC display similar surface marker expression patterns to
neutrophils but it is their suppressive functions which define this
population: cluster of differentiation molecule (CD)66b+, CD16+,
CD15+ and CD14- (56). As reviewed by Rosales in 2018, both
Mo-MDSC and G-MDSC are low density, CD11b+, CD33+ and
CD66b+, G-MDSC are human leukocyte antigen-DR isotype
(HLA-DR)- and Mo-MDSC are HLA-DR-/low (3). Mo-MDSC
differ from G-MDSC in being CD14+ and CD15-, whereas G-
MDSC are CD14- and CD15+ (3, 57). G-MDSC are often further
subdivided based on whether they are CD16- or CD16+/INT (56).
G-MDSC are most likely a mixed low-density population of
immature and mature neutrophils. A general consensus has been
established for identification of G-MDSC whereby there must be,
at a minimum, the following surface marker profile: CD15+,
CD11b+, CD14-, HLA-DR-, and CD33mild (58).
TABLE 1 | Surface marker and functional profile of G-MDSC, TAN and LDN neutrophils.

Neutrophil Subtype Metamyelocyte LDN (20, 39, 41–44, 48) TAN (canonical) (49–54) G-MDSC (3, 55–61)

Function Immature
neutrophil
subset

Pro-tumor in cancer. Present in
RA, SLE, sepsis and asthma.

Pro-tumor, contributes to angiogenesis
and tumor progression in cancer.

Suppress immune response and aid tumor
progression in mouse model of

CD66b + + + +
CD15 + + + +
CD33 + + + +
CD10 – +/- – –

CD11b + + + +
CD16 + +/-int + +
HLA-DR – + – –

CD62L – ? + +
CXCR2 + ? + +
CXCR4 + ? + +
April 2021 | Volume 12 | Article 602963
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Tumor-Associated Neutrophils (TAN)/N2
Tumor-associated neutrophils (TAN) may be polarized towards
two potential phenotypes similar to macrophages: N1, which are
anti-tumor, and N2, which are pro-tumor, however, these are
limited to mouse models and not yet identified in humans. Each
subpopulation has distinct functions, cytokines and gene
expression profiles (50, 67). N2 have circular nuclei while N1
show hypersegmented nuclei (49). N2 are promoted by
transforming growth factor-b (TGF-b) and N1 are recruited by
interferon-b (IFN-b), N1 neutrophils are likely stimulated by the
tumor microenvironment (49, 50, 68). Tumor cells use
chemokines to attract TANs to the tumor site, such as the
potent neutrophil chemoattractant CXCL8, which entrains the
CXCR1 and CXCR2 expression on neutrophils. CXCR1 has been
shown to contribute to angiogenesis and tumor progression (50,
69). TANs are believed to be distinct from normal density
neutrophils (NDN) and G-MDSC as TANS exhibit high
chemokine production, few granules and low ROS production
(70). TANs may be evidence of the plasticity of neutrophils in
response to factors in the tumor microenvironments of specific
cancers, rather than a novel neutrophil subpopulation (20).
NEUTROPHIL GRANULOPOIESIS STAGES
DEFINED BY DENSITY, MORPHOLOGY
AND MATURITY

Maturity
Neutrophils are a heterogenous population comprised of
phenotypically distinct subtypes during granulopoiesis (71). To
date, two contrasting models have been described for the
generation of blood cells from hematopoietic stem cells (HSC).
These are the ‘classical model’ that has been used for generations
and describes a cells ability to determine its cellular fate prior to
single lineage commitment and is subsequently defined by its
inability to differentiate into other progenitor cells. This model
describes HSCs giving rise to either Common myeloid
progenitors (CMPs) or common lymphoid progenitors (CLPs).
The CMP then further differentiates into either a granulocyte
monocyte progenitor (GMP) or a megakaryocyte erythroid
progenitor (MEP). However, with the recent advancements in
single cell sequencing, an ‘alternative model’ has been proposed
which highlights that both CMPs and CLPs have mixed lineage
potential defined by their transcription heterogeneity and their
cellular fate is determined by external differentiation factors (72).

Transcription factors have long been known to regulate the
commitment and subsequent activation of variousmyeloid derived
cells from HSCs (73). This complex process involves the
upregulation of and silencing of various developmental genes
under the control of certain transcription factors (TF). The
process that governs the development of CMPs to GMPs is
dependent on the following transcription factors including
CCAAT/enhancer-binding proteins (C/EBPs), GATA-1, and
PU.1 (74). C/EBP-a, -b, and –ϵ have long been known to regulate
neutrophil development in which mutations in either result in the
Frontiers in Immunology | www.frontiersin.org 4
developmentofmyeloid leukemia (75, 76).Additional transcription
factors including PU.1, and Irf8 induce CMPs to differentiate into
monocytes whereas neutrophil differentiation involves a complex
interplay of transcription factors Gfi-1, PU.1 and C/EBPs (77).

In the bone marrow, hematopoietic stem cells (HSCs)
differentiate into myeloblasts, which in turn become
promyelocytes, myelocytes, metamyelocytes, band cells and,
lastly, segmented neutrophils (29) (Figure 1). Inside the bone
marrow there are three compartments where neutrophils reside:
stem cell pool, mitotic pool and post-mitotic pool (78).
Undifferentiated progenitor cells such as HSCs, are found in the
stem cell pool, the mitotic pool holds myeloblasts, promyelocytes
and myelocytes and, finally, metamyelocytes, band cells and
segmented neutrophils are localized within the post-mitotic
pool (33). At the metamyelocyte stage, the neutrophil can no
longer proliferate, signaling the start of terminal differentiation
(79). In the absence of infection, there are more neutrophils
stored in the bone marrow than in the circulation. In response to
signals at the site of infection, only mature segmented neutrophils
migrate out of the bone marrow in large numbers to the site of
infection (80).

Terminal differentiation of GMPs into neutrophils involves the
acquisition of neutrophil specific granule components at various
stages of neutrophil maturation. This includes the storing of
primary granules such as MPO and NE (at early stages), and,
subsequently, Cathelicidin and lactoferrin (81).An importantTF in
this process is lymphoid enhancer factor-1 (Lef-1), deficiency of
which results in impaired neutrophil maturation through the
expression C/EBPa (82). Moreover TF Erg, Myb, Fos-like antigen
(Fosl) 1, Fosl2, JunB proto-oncogene, B-cell lymphoma (Bcl) 6,
Kruppel like factor (Klf) 6, and interferon regulatory factor 1 (Irf) 1
are known to regulate late stage neutrophil differentiation,
revealing a complex network of TF involved in the process of
granulopoiesis (83).
NEUTROPHIL DENSITY AND ITS
ASSOCIATION WITH NEUTROPHIL
DEVELOPMENT

The increased granularity and cell size that occurs with
neutrophil maturity is directly proportional to a change in
density. Therefore, neutrophil lineages can be separated using
density gradient centrifugation (35). Mature neutrophils localize
in normal to high density fractions, while immature neutrophils
reside in low density fractions, although this is probably
preparation dependent and the low density fraction is likely a
mixed population of neutrophil maturity (35, 46).

Morphology
Neutrophil subtypes differ in their nuclear morphology. The
most immature neutrophils, the myeloblasts, have large, sphere-
shaped nuclei containing few nucleoli. Promyelocytes and
myelocytes lack nucleoli and exhibit elevated chromatin
condensation compared to myeloblasts. An indented nucleus is
April 2021 | Volume 12 | Article 602963
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characteristic of a metamyelocyte. The band cell nucleus is
shaped like a horseshoe and it constricts to form nuclear lobes,
while segmented neutrophils are distinguishable by their
segmented nucleus, with three to five lobes (84). The thin
filaments which connect the lobes contribute to the migratory
capability of mature neutrophils (85).
NEUTROPHIL SURFACE MARKER
EXPRESSION DURING GRANULOPOIESIS

Neutrophil surface markers change to facilitate altered functions
as the neutrophil matures (Table 2). During this process,
immature surface markers are no longer be expressed (e.g.
CD49d) and markers of maturity appear (e.g. CD10) (86).
Frontiers in Immunology | www.frontiersin.org 5
Although there is no consensus on human neutrophil
phenotypic markers on flow cytometry the following are
commonly used: CD11b+CD66b+CD15+CD14- (20). CD16 is a
marker of phagocytic capacity and may be used to exclude CD16-

eosinophils. CD14+ cells are considered to be mostly
macrophages and monocytes, although some studies indicate
that neutrophils express CD14 at low levels (115, 116). CD16
is exclusively expressed at the metamyelocyte stage and is
highly expressed by banded and segmented neutrophils, while
activation marker CD11b is only found at the myelocyte stage
onwards (94, 97–100). CD11b and CD18 form the Mac-1
complex which plays a role in phagocytosis and migration
with CD18 expression commencing at the myeloblast stage
of granulopoiesis (86). Differentiation marker CD15 and
activation marker is found on all neutrophil subpopulations
and CD66b from the promyelocyte stage; these are also core
FIGURE 1 | Expression of surface markers during granulopoiesis. Figure illustrates the surface marker expression at each stage of granulopoiesis; myeloblast,
promyelocyte, myelocyte, metamyelocyte, band cell and segmented neutrophil. The intensity of the surface marker is shown whereby; low intensity (+), medium
intensity (++) and high intensity (+++).
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markers of neutrophil lineage (86–88). Surface markers may
be expressed at low, medium or high intensities, see Figure 1
(86, 88).
MARKERS OF MATURITY AND
IMMATURITY

HLA-DR (major histocompatibility complex II, MHC class II),
which is involved in antigen presentation to CD4+ T cells, and
CD34, an adhesion marker, are two markers exclusively expressed
on the most immature neutrophil, the myeloblast (94, 106). HLA-
DR is not present on circulating neutrophils but is expressed on
the surface of tissue neutrophils under specific inflammatory
conditions, such as RA synovial fluid (105). CD33 is a
differentiation marker found on myeloid blast cells in acute
Frontiers in Immunology | www.frontiersin.org 6
myeloid leukemia (AML) (93). CD33 surface expression is
gradually downregulated from the myeloblast stage to segmented
neutrophil, with a low level expressed on the latter (91, 92).

CD10, a marker of differentiation and maturity is found only
on mature segmented neutrophils, and absent on immature
neutrophils. Immature CD10- neutrophils may be important
drivers of inflammatory disease and neutropenia (87, 88, 98).
Reduced surface expression of CD10 and CD16 on granulocytes
predicts poor outcome in sepsis patients (117). CD10dim immature
neutrophils have been implicated in the immunosuppression
observed in sepsis (118).

Conflicting results exist for the marker of maturation CD24.
Elghetany et al. found that CD24 expression begins at the
myelocyte stage and is a marker of maturation (97). In
contrast, Hernández-Campo et al. found that CD24 is present
on CD34-/low myeloblasts, is highly expressed by myelocytes and
decreases from metamyelocyte to segmented neutrophil (119).
TABLE 2 | Neutrophil surface marker expression.

Surface
marker

Protein name Surface marker type Lineage stage Reference

CD66b Carcinoembryonic
antigen-related
cell adhesion
molecule 8
(CEACAM8)

Granulocyte activation marker and
neutrophil lineage marker

Promyelocyte-segmented neutrophil (86–89)

CD15 Lewisx, X-hapten Differentiation marker and neutrophil
lineage marker

Promyelocyte-segmented neutrophil (86, 90, 91)

CD33 Gp 67 Differentiation marker Myeloblast-segmented neutrophil (91–94)
CD49d VLA-6 a subunit, a5

integrin subunit
Adhesion marker Myeloblast-metamyelocyte (95–97)

CD10 Common acute
lymphoblastic leukemia
antigen (CALLA)

Differentiation marker of maturity Segmented neutrophil (87, 98)

CD11b Complement receptor 3,
integrin aM subunit,
Mac-1

Phagocytosis, part of the Mac-1
complex with CD18, activation marker

Myelocyte- segmented neutrophil (94, 97–102)

CD11c Complement receptor 4,
integrin aX subunit

Cell migration Myelocyte- segmented neutrophil (94, 103)

CD18 Integrin b2 subunit Phagocytosis, part of the Mac-1
complex with CD11b

Promyelocyte-segmented neutrophil (101)

CD34 Unknown Adhesion marker and marker of
progenitor neutrophil cells and
hematopoietic stem cells

Myeloblast (94, 104)

CD16 FcgammaR3b Marker of phagocytotic capacity Metamyelocyte- segmented neutrophil (35, 97–99)
HLA-DR MHC class II Antigen presentation to CD4+ T cells. Myeloblast. Not expressed on circulating neutrophils but is

found on tissue neutrophils under inflammatory conditions,
such as RA synovial fluid

(94, 105–107)

CD24 Heat-stable antigen
(HSA), BA-1

Differentiation marker Myelocyte-segmented neutrophil (97)

CD87 Urokinase plasminogen
activator receptor
(uPAR)

Cell migration Band-segmented neutrophil (98)

CD35 Complement receptor 1 Adherence of C4b and C3b-bound
ligands after internalization

Band- segmented neutrophil (97, 98, 108)

CD62L L-selectin L-selectin involved in adhesion Myeloblast-segmented neutrophil (109, 110)
CXCR2 Interleukin 8 receptor Neutrophil mobilization and exit from

bone marrow
Myeloblast- segmented neutrophil (73, 86, 88, 111, 112)

CXCR4 CXC chemokine
receptor type 4

Neutrophil retention in /return to bone
marrow

Myeloblast-segmented neutrophil (73, 88, 113)

CD177 Neutrophil specific
antigen 1 (NB1)

Extravasation Myelocyte-segmented neutrophil (114)
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MARKERS OF ADHESION AND
EXTRAVASATION

The integrin very late antigen complex 4 (VLA-4) is involved in
the adhesion of hematopoietic progenitor cells and leukemic
blast cells in AML (120). VLA-4 is composed of CD49d and
CD29, CD49d being a commonly used marker of neutrophil
immaturity (120, 121). Promyelocytes, myelocytes and
metamyelocytes are CD49d+ while more mature bands and
segmented neutrophils are CD49d- (97). Given the role of
CD49d in the recruitment of progenitor cells leukemic blast
cells and their migration from the bone marrow, it is likely that
CD49d must be expressed on neutrophil blast cells (95, 96).
Interestingly, CD49d expression reappears on the surface of aged
neutrophils (122).

High CD162, or P-selectin glycoprotein ligand-1 (PSGL1), is
an L-selectin molecule involved in adhesion that is found on the
surface of myeloblasts to segmented neutrophils (109, 123).
CD35, involved in the adherence of C4b and C3b bound
ligands after internalization, and CD87, involved in cell
migration, are solely expressed by bands and segmented
neutrophils (97, 98). CD11c is a another marker of cell
migration and is expressed at the myelocyte stage (94, 103).

Surface expression of CD177, a receptor involved in
extravasation and surface expression of proteinase-3, begins at
the myelocyte stage (114). Interestingly, there is an increase in
CD177+ circulating neutrophils in diseases such as sepsis,
vasculitis and SLE (124, 125).
CHEMOKINES AND CHEMOKINE
RECEPTORS

Immature neutrophil retention in the bone marrow is achieved by
the cross-talk between CXCR4 expressed on neutrophils and
CXCL12 by bone marrow stromal cells. CXCR4 is involved in
neutrophil retention in the bone marrow and return of aged
neutrophils to the bone marrow (73, 126). Upregulated expression
of CXCR4 on segmented neutrophils ready to undergo senescence
or apoptosis triggers their return to the bone marrow where they
are engulfed by macrophages (113, 127). While both immature
and mature neutrophils express CXCR4, immature neutrophils
may express a higher level of CXCR4 than mature cells (73, 88).
The chemokine receptor CXCR2 plays a role in neutrophil
mobilization and exit from the bone marrow (86, 111).
Immature neutrophils before the band stage exhibit reduced
CXCR2 surface expression compared to bands and segmented
neutrophils (73, 88). However, CXCR4 and CXCR2 may not be
useful in differentiating between neutrophil subtypes due to
similar expression levels in each population.

Thus, surface markers on neutrophils demonstrates that flow
cytometry, or other techniques, could be employed to separate
neutrophil lineages based on surface marker expression. This
information highlights that banded neutrophils and segmented
neutrophils are the most similar in their surface expression and
may be the most difficult to differentiate due to a lack of unique
Frontiers in Immunology | www.frontiersin.org 7
markers on either cell type (110, 128). Some surface markers
undergo changes following migration, e.g. CD62L and activation,
e.g. CD62L/CD11b/CD18, which makes it difficult to identify
highly specific markers of maturity (35).
NEUTROPHIL GRANULES

The production of neutrophil granules begins as the immature
neutrophil transitions from a myeloblast to a promyelocyte and
continue to be produced up to the segmented neutrophil stage
(129). There are four main groups of granules: azurophilic
(primary) granules, specific (secondary) granules, gelatinase
(tertiary) granules and (most recently discovered) ficolin-1
granules (Figure 2, Table 3). Neutrophils also contain secretory
vesicles, which are not defined as granules (101, 144). A
comprehensive review of granulopoiesis granule production and
associated transcription factors is provided by Lawrence et al. (82).

Prominent production of the heme enzyme myeloperoxidase
(MPO) is the main characteristic feature of azurophilic granules.
MPOmakes up 5% of the weight of a neutrophil (82).Azurophilic
granules contain MPO, neutrophil elastase (NE), proteinase 3
(PR3), lysozyme, azurocidin 1, cathepsin G and neutrophil serine
protease 4 (NSP4) (129, 132, 133). The main neutrophil
antimicrobial peptides, a-defensins, are also stored in azurophilic
granules (136). The formation of azurophilic granules begins at the
promyelocyte phase (132) (Figure 2). Cathepsin G and NE may
contribute to downregulation of neutrophil adhesion by proteolysis
of CD62L, preventing its binding to P-selectin on the endothelium
(146). Lysozyme mediates killing of bacteria by hydrolyzing the
peptidoglycan cell wall (135). NE, PR3, MPO, a-defensins, and
cathepsin G are all involved in NETosis (130, 131, 147–149). PR3,
cathepsin G, NE and NSP4 contribute to extracellular matrix
(ECM) degradation by mediating proteolysis of components such
as laminin, elastin and type IV collagen (82).

Specific granules contain large amounts of lactoferrin, which
plays a key role in NETosis (129, 132). Other components are
olfactomedin-4 (OLFM-4), which helps fight bacterial infections
such as Staphylococcus aureus, resistin, a pro-inflammatory
cytokine and T-cell chemoattractant, the receptor CD177 and
antimicrobial neutrophil gelatinase-associated protein lipocalin
(NGAL) (82, 138–140, 143). Specific granules are formed at the
myelocyte stage (82) (Figure 2).

Gelatinase granules store arginase 1, matrix metallopeptidase
(MMP)-9, gelatinase and surface receptors including CD11b/
CD18 (Mac-1) (129, 132). The main function of gelatinase
granules such as MMP-9 and gelatinase is to facilitate the
breakdown of the ECM and basement membrane, aiding
migration into tissue (81). Metamyelocytes begin to form
gelatinase granules (101) (Figure 2).

Segmented neutrophils form ficolin-1 granules, the contents
of which play roles in migration and adhesion, for example, actin
and vanin-2 (82, 144). Segmented neutrophils also produce
secretory vesicles, these contain actin, alkaline phosphatase and
receptors including CD11b, CD10 and CD16 (82, 101, 144)
(Figure 2).
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NEUTROPHIL GRANULES INVOLVED IN
NEUTROPHIL EXTRACELLULAR TRAPS

Active neutrophils undergo NETosis, a form of cell death that
involves releasing decondensed chromatin in response to stimuli,
such as bacteria (7). NETs contribute to a wide range of
inflammatory diseases including as rheumatoid arthritis,
systemic lupus erythematosus and autoimmune small vessel
vasculitis (25–27). NETs exhibit anti-microbial functions by
trapping extracellular microbes (128). The formation of NETs
in response to pathogens involves key granular components: NE,
PR3, MPO, a-defensins, cathepsin G, lactoferrin, and reactive
oxygen species (ROS) (130, 131, 147–149). NETs are induced by
the translocation of NE from granules to the nucleus where it
cleaves histones, resulting in chromatin decondensation and
Frontiers in Immunology | www.frontiersin.org 8
breakdown of the plasma membrane (150). With the exception
of lactoferrin, which is located in specific granules, all other
major proteins involved in NET formation are located in
azurophilic granules whose formation begins at the
promyelocyte stage. Therefore, NET formation likely begins at
this stage of granulopoiesis (129, 132) (Figure 2). To our
knowledge, no study has identified any surface markers
of NETosis.
NEUTROPHIL GRANULES INVOLVED IN
ROS PRODUCTION AND PHAGOCYTOSIS

Neutrophils are the greatest producers of ROS in response to
infection. The NADPH oxidase complex is responsible for the
FIGURE 2 | Granule production and functionality during granulopoiesis. Figure shows granule production during the stages of granulopoiesis. Granule formation
begins with azurophilic granules at the promyelocyte stage, specific granules are first formed by myelocytes, gelatinase granules are formed at the metamyelocyte
stage and only band cells and segmented neutrophils can form ficolin-1 granules and secretory vesicles. NET formation, antimicrobial functions and degradation of
the extracellular membrane and basement membrane begin at the promyelocytes stage with azurophilic granule formation. ROS production, phagocytosis and
adhesion to vasculature starts at the myelocytes stage with the formation of specific granules. Metamyelocytes are the first stage to perform transmigration and
diapedesis through a vessel wall, which correlates with gelatinase granule formation.
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production of ROS, which drives the antimicrobial function of
neutrophils by inducing degranulation, NETosis and release of
pro-inflammatory cytokines (151). Phagocytosis is the process
of engulfing and destroying pathogens (152). The NADPH
oxidase complex localizes in the phagocytic vacuole and
causes a ‘respiratory burst’ of oxygen, producing superoxide
(O2-) during phagocytosis. A flavocytochrome b, gp91phox,
enables electron transfer and interacts with NADPH in the
phagocytic vacuole (153). CD11b/CD18 (Mac-1) and
flavocytochrome b are formed and stored in gelatinase and
specific granules, indicating that these granules play a role in
phagocytosis (101, 129, 137). This implies that phagocytosis
begins at the myelocyte stage when these specific granules are
formed (129, 132) (Figure 2).
NEUTROPHIL GRANULES INVOLVED IN
DEGRANULATION

The steps involved in neutrophil degranulation are, firstly,
translocation of granules to the target membrane, which is
achieved by the assembly of microtubules and actin
rearrangement. G protein, Rab, and snap receptor (SNARE)
membrane trafficking proteins facilitate docking of granules
which can then be released from the neutrophil by exocytosis
(154). SNARE protein vesicle-associated membrane protein 2
(VAMP2) aids the exocytosis of granules from the neutrophil
Frontiers in Immunology | www.frontiersin.org 9
and is formed in gelatinase granules (8, 101). Granules produced
at more advanced stages of neutrophil granulopoiesis are more
likely to be released by exocytosis than those formed in early
stages. Degranulation appears to occur at a low level with the
formation of azurophilic granules by promyelocytes and
increases with each subsequent stage of granulopoiesis, with
secretory vesicles produced by bands and segmented
neutrophils accounting for the highest degree of degranulation
(154, 155) (Figure 2).
NEUTROPHIL GRANULES INVOLVED
IN EXTRAVASATION

Neutrophil extravasation is the process by which circulating
neutrophils pass through the blood vessel endothelium to
reach the site of infection. The neutrophil extravasation
cascade is initiated by leukocytes at the site of infection, which
release inflammatory signals (e.g. histamine) to induce changes
in endothelial cells, for instance the upregulation of P-selectin.
Extravasation is facilitated by receptor-ligand interactions
between the neutrophil and endothelial cells. The steps
involved include neutrophil tethering to endothelial cells via
receptor-ligand interactions, adhesion to the endothelium,
crawling, rolling and, finally, transmigration through gaps
between endothelial cells (145).

CD177 has a high affinity for platelet endothelial cell adhesion
molecule (PECAM-1), allowing the neutrophil to pass through
TABLE 3 | Functionality and localization of neutrophil granules.

Protein Key function Granule Lineage
stage of
onset

Reference

MPO MPO uses hydrogen peroxide to generate secondary oxidants necessary to
destroy pathogens. MPO also plays a role in NETosis

Azurophilic granules Promyelocyte (11, 82, 130, 131)

Neutrophil
elastase

Roles in NETosis, adhesion, ECM degradation. Plays roles in non-oxidative
pathways of destroying pathogens, both intracellular and extracellular

Azurophilic granules Promyelocyte (129–133)

Cathepsin G NETosis, adhesion, ECM degradation. Plays roles in non-oxidative pathways of
destroying pathogens, both intracellular and extracellular

Azurophilic granules Promyelocyte (129, 130, 132–
134)

Proteinase 3 NETosis. Plays roles in non-oxidative pathways of destroying pathogens, both
intracellular and extracellular

Azurophilic granules Promyelocyte (82, 129, 130, 132,
133)

Lysozyme Killing of bacteria by hydrolysis of cell wall peptidoglycan, ECM degradation Azurophilic granules Promyelocyte (129, 132, 135)
NSP4 ECM degradation Azurophilic granules Promyelocyte (82, 129, 132)
Azurocidin 1 Antibacterial functions Azurophilic granules Promyelocyte (82, 129, 132)
Alpha-defensins Anti-microbial functions and roles in NETosis Azurophilic granules Promyelocyte (130, 131, 136)
Flavocytochrome
b (gp91phox)

Phagocytosis Specific granules Promyelocyte (137)

Lactoferrin Role in NETosis and anti-bacterial properties. Specific granules Myelocyte (129, 132)
OLFM-4 Bacterial infections against S. aureus Specific granules Myelocyte (82, 138)
Resistin Chemoattractant Specific granules Myelocyte (82, 139)
CD177 Adhesion, extravasation, antimicrobial functions Specific granules Myelocyte (82, 140–142)
NGAL Antimicrobial functions Specific granules Myelocyte (82, 143)
MMP-9 Migration through extracellular matrix Gelatinase

granules
Metamyelocyte (81, 129, 132)

Gelatinase Migration through basement membrane Gelatinase granules Metamyelocyte (81, 129, 132)
Mac-1 Phagocytosis, adhesion, crawling, transmigration and diapedesis of vessel wall Gelatinase granules Metamyelocyte (101, 129, 145)
LFA1 Rolling, adhesion, transmigration and diapedesis of vessel wall Secretory vesicles and

ficolin-1 granules
Band (82, 144, 145)

VLA-4 Rolling, tethering, adhesion, crawling, transmigration and diapedesis of vessel wall Granule unknown Unknown (145)
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the endothelium (141, 142). CD177 and PR3 are co-expressed on
the neutrophil surface and may co-operate to promote
extravasation, although a recent study has indicated that
CD177 may have an inhibitory effect on PR3 (141, 156).
CD177 is stored in specific granules starting at the myelocyte
stage and is expressed on the surface of myelocytes through to
segmented neutrophils (114, 140).

Mac-1 (CD11b/CD18) plays a vital role in neutrophil
extravasation. It binds to endothelial markers ICAM1 and
ICAM2 and facilitates neutrophil adhesion, crawling along the
blood vessel wall, transmigration and diapedesis (145). The Mac-
1 complex can only be formed when both CD11b and CD18 have
been produced; CD18 is produced by promyelocytes in specific
granules and CD11b is produced by myelocytes in gelatinase
granules. Therefore, Mac-1 is first formed at the myelocyte stage
(101) (Figure 2).

Leucocyte function antigen 1 (LFA1) is composed of CD11a
and CD18 and is involved in neutrophil rolling and adhesion by
binding to ICAM1 and transmigration and diapedesis via
binding to junctional adhesion molecule A (JAM-A) on the
endothelium (145). LFA1 is stored in secretory vesicles and
ficolin-1 granules and, therefore is only produced by bands
and segmented neutrophils (82, 144).

There are several other adhesion molecules involved in
neutrophil extravasation with unclear granule location; these are
b2-integrin, L-selectin (CD62L), CD44 and CD49. In terms of
extravasation, VLA-4 (CD49D/CD29) aids neutrophil tethering,
rolling, adhesion, transmigration and diapedesis via VCAM1 or
JAM-B. Interestingly, VLA-4 is produced by myelocytes but the
specific granule that produces VLA-4 is unknown (145).
CONCLUSIONS

The neutrophil is an adaptable cell type capable of rapidly
responding to changes in its environment. However, the
neutrophil has been given many names in the literature,
suggesting that multiple unique populations exist despite
biological similarities. There is a lack of standard techniques
Frontiers in Immunology | www.frontiersin.org 10
for isolating neutrophils, which may account for varied results in
the literature, and differences between these neutrophil
populations. Neutrophils from murine models and humans
have distinct patterns of surface markers that make it difficult
to draw significant conclusions about the idiosyncratic nature of
neutrophil populations such as MDSC, LDN and Tan. Therefore,
standardized protocols are necessary to gain further insight into
the biological significance of neutrophil populations and
determine whether they are genuine, distinct populations or a
result of activation during isolation or differences in the biology
of mice and humans.

Different neutrophil nomenclature is often necessary, for
instance LDN and NDN to differentiate between neutrophils of
different densities and since LDNs are often present at higher
levels in disease. Minimal nomenclature based on biological
properties such as density should be maintained. We suggest
using the longstanding nomenclature describing mature and
immature neutrophils with immature types classified as band
forms, myelocytes, promyelocytes and metamyelocytes with
clarification of the surface markers for each on flow cytometry.
This can then standardize the cell types across all disease states
rather than the plethora of names such as MDSC, LDN and TAN
often describing similar cells. The detailed function of each cell
stage of maturity, granules and surface markers could be
clarified. This would allow targeted interventions in distinct
cell types that could be used in areas from cancer to other
inflammatory disorders. In the future which would allow
standardized classification and allow more extensive
collaboration to characterize all functional and phenotypic
variation among all the cells with this classification system.
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