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In tuberculosis, T cell-mediated immunity is extensively studied whilst B cells received limited
attention in human and mice. Of interest, Mycobacterium tuberculosis (Mtb) does increase
IL-4 Receptor-alpha (IL4Ra) expression in murine B cells. To better understand the role of
IL4Ra signalling in B cells, we compared wild type mice with B cell-specific IL4Ra deficient
mice (mb1creIL-4Ra-/lox mice). Chronic Mtb aerosol infection in mb1creIL-4Ra-/lox mice
reduced lung and spleen bacterial burdens, compared to littermate (IL-4Ra-/lox) control
animals. Consequently, lung pathology, inflammation and inducible nitric oxide synthase
(iNOS) expression were reduced in the lungs of mb1creIL-4Ra-/lox mice, which was also
accompanied by increased lung IgA and decreased IgG1 levels. Furthermore, intratracheal
adoptive transfer of wild-type B cells into B cell-specific IL4Ra deficient mice reversed the
protective phenotype. Moreover, constitutively mCherry expressingMtb showed decreased
association with B cells from mb1creIL-4Ra-/lox mice ex vivo. In addition, supernatants from
Mtb-exposed B cells of mb1creIL-4Ra-/lox mice also increased the ability of macrophages to
produce nitric oxide, IL-1b, IL-6 and TNF. Together, this demonstrates that IL-4-responsive
B cells are detrimental during the chronic phase of tuberculosis in mice with perturbed
antibody profiles, inflammatory cytokines and tnf and stat1 levels in the lungs.
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INTRODUCTION

B cells are well established as antibody-producing cells critical for
the humoral arm of adaptive immunity against a variety of
infections. Emerging results uncover more complex antibody-
independent involvement of B cells in regulation and effector
functions, influencing the outcome of the disease. B cells can
process and present antigens, act as accessory cells and produce
cytokines that prime other immune cells critical for immunity
against infections (1, 2). Like T cells, studies showed that B cells
are classified as “regulatory” and “effector” B cell subsets based
on the cytokines they produce (3). Regulatory B cells produce
TGF-b and IL-10, important in colitis (4), arthritis (5) and
allergic airway inflammation (6, 7) and tuberculosis (8).
Effector Be1 cells produce IFN-g (9), IL-12, TNF during Th1
driving infections such as Leishmania major (10), Toxoplasma
gondii (3). Effector Be2 (11) cells produce IL-2, IL-4, IL-13
during Th2 driving Heligmosomoides polygyrus (12) and
Nippostrongylous brasiliensis (13) infections. Thus, B cell-
driven cytokines drive host beneficial or detrimental response
during type 1 and type 2 infections.

In tuberculosis, B cells are present in lymphoid clusters in
mouse (14), non-human primate (15) and human tuberculous
granulomas (14, 16, 17). B cells participate in orchestrating
granuloma formation is revealed by studies of targeted
depletion using either anti-CD20 antibody/rituximab (18)
or B cell-deficient mice (19, 20). However; the variations
during tuberculosis outcome ranges from B cells being
redundant (21), delay immune responses (22) and control
lung pathology (19). Moreover, studies showed the role of B
cells in granulomatous inflammatory responses by controlling
neutrophilia and Th17 responses (23), IL-10 regulation and
consequent host protection (19, 24). However, in cynomolgus
macaques, B cell depletion using rituximab showed no influence
on the outcome of tuberculosis disease (25). Such global
depletion approaches masked distinct B cell functions, the
local effects of B cells, the contribution of B cell subsets and
their secreted cytokines in shaping immune responses necessary
for the control of tuberculosis. Hence, such broad approaches
from these studies failed to identify a major role of B cells in
tuberculosis. Apart from B cells, in patients with active
pulmonary tuberculosis, IL-4 secretion from BAL cells
revealed a strong association with acid-fast Mycobacterium
tuberculosis bacilli staining in sputum smear (26), suggesting a
permissive Th2 environment at the site of infection. In some
studies, IL-4 was shown to predict the development of active TB
disease in exposed healthcare workers and household contacts
(27, 28). We have previously shown that the disruption of IL-
4Ra signalling in macrophages/neutrophils did not play a role in
TB disease progression in mice (29). The ability ofMtb to induce
Arginase 1 independent of IL-4Ra signalling contributed to the
lack of phenotype in these mice. In a recent study, recombinant
IL-4 impaired containment of Mtb in monocyte-derived
macrophages associated with the expansion Treg population
amongst Teff cells (30). The effect of IL-4 signalling on
lymphocytic cells may be more profound than myeloid cells
in tuberculosis.
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Therefore, we hypothesized that the ablation of IL-4Ra
signalling on B cells specifically influences the immune
response and the outcome of tuberculosis disease. The present
study used BALB/c mice lacking IL-4Ra specifically on B cells,
mb1creIL-4Ra-/lox, while maintaining intact receptor signalling
on other cells (31). We show that the B cells lacking IL-4Ra have
decreased mycobacterial burdens and lung pathology during the
chronic tuberculosis infection. Importantly, adoptive transfer of
IL-4Ra-sufficient B cells from wild-type donor mice abolished
the protective effect in mb1creIL-4Ra-/lox mice. We uncovered
IL-4Ra deletion on B cells decreased tnf and stat1 expression
and also dampened lung IFN-b production. Mechanistically,
we show that the absence of IL-4Ra on B cells increased
macrophage inflammatory response ex vivo.
METHODS

Mice
Wild-type (BALB/c), littermate control (IL-4Ra-/lox) and B cell-
specific IL-4Ra deficient mice (mb-1creIL-4Ra-/lox) on a BALB/c
background (8-12 weeks) were kept under specific-pathogen-free
conditions in individually ventilated cages. The genotypes of the
mice were confirmed by PCR analysis of the DNA from tail
biopsies. All experiments were performed in accordance with the
South African National Guidelines and University of Cape Town
of practice for laboratory animal procedures.

Mtb Culture and Aerosol or Intranasal
Infection in Mice
Mycobacterium tuberculosis H37Rv was grown in Middlebrook
7H9 broth as described previously (29). Prior to infection, stock
solutions of Mtb were thawed, washed once with phosphate-
buffered saline and inoculum was prepared in sterile saline.
Aerosol infection was performed using an inhalation exposure
system (model A4224, Glas-Col). To infect mice with a low dose
of 100 CFU/lung, animals were exposed for 40 min to an aerosol
generated by nebulizing approximately 6 ml of a suspension
containing 2.4x107 live bacteria. Similarly, for intranasal
infection, 25µl per nostril was administered in anaesthetized
mice to achieve the indicated dose. After infection, the inoculum
was also plated to determine the change in the inoculum.
Infection dose was checked at one day post-infection by
determining the bacterial load in the lungs of four infected mice.

Determination of Mycobacterial
Load, Histopathology and
Immunohistochemistry
Mycobacterial loads in lungs and spleen ofMtb-infectedmice were
determined at different time points post-infection as previously
described (29). Lungs of Mtb-infected mice were fixed with 4%
phosphate-buffered formalin, and 3 mm-thick sections were
stained with either H&E or rabbit anti-mouse antibody specific
for iNOS (Abcam) or rabbit anti-mouse IgA antibody (Abcam).
Detection was performed using HRP-labelled anti-rabbit antibody
(Dako) followed by 3, 3’-diaminobenzidine substrate (Dako). The
lung images and lesion areas, iNOS and IgA positive areas were
June 2021 | Volume 12 | Article 611673
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acquired in Nikon 90i Eclipse widefield microscope and quantified
using NIS elements.

Lung Immune Cell Populations
Single-cell suspensions of the lungs were prepared as previously
described (29). 1x106 cells were then subjected to staining for B
cells (CD3-CD19+), CD4 T cells (CD19-CD3+CD4+), CD8 T cells
(CD19-CD3+CD8+), macrophages (CD11c-CD11b+MHCII+),
dendritic cells (CD11b-CD11c+MHCII+) and neutrophils
(SiglecF-CD11c-Gr-1+) in presence of 1% rat serum and 10mg/ml
FcyR blocking antibody for 30min on ice. Similarly, lung B cell
subsets were analyzed as B-1a (CD19+B220+CD43+CD5highIgM+),
B-1b (CD19+B220+CD43+CD5lowIgM+), B-2 (CD19+B220+CD43-

IgM+IgD+) B-10 (CD19+B220+CD43+CD5+CD1d+), Plasma
(CD19+CD138+MHCIIlowCD44high), Plasmablast (CD19+

CD138+MHCII+CD44high), IgM (CD19+B220+CD43-IgM+) and
IgD (CD19+B220+IgD+) B cells. Cells were washed then fixed in
2% paraformaldehyde overnight and acquired by FACS LSRII
(BD Pharmingen) and analysed by FlowJo (TreeStar, US).
Gating strategies are provided in Supplementary Figures 2
and 3. Flow cytometry antibody details are provided in
Supplementary Table 1.

Analysis of Cytokines and Antibodies in
the Lung Homogenates
Lung homogenates were analysed for the IFN-b (BioLegend),
IL-6 (BD Biosciences), IL-12p40 (BD BioSciences) and IL-10
(BD BioSciences) by ELISA according to manufacturers’
instructions. Total IgA, IgE and IgG1 (Southern Biotech) levels
are measured in lung homogenates by coating with unlabelled
goat anti-mouse antibodies (1:500 dilution) and detection with
alkaline phosphatase-conjugated rat anti-mouse antibodies
(1:1000 dilution).

Adoptive Transfer of B Cells
A single-cell suspension of spleen from wild-type mice was
prepared to stain total spleen cells using CD3, CD19 and B220
(BD Biosciences) surface markers. Double-positive B cells (CD3-

CD19+B220+) were sorted (purity ~98%) using BD FACSAria. 1
million B cells were then transferred intranasally in mb-1creIL-
4Ra-/lox mice. Two days after the transfer, mice were infected
with Mtb and sacrificed at 18 weeks after infection.

Gene Expression in Sorted B Cells From
Chronic Mtb Infection
Single-cell suspensions of the lungs were prepared as described
previously (29). Cells were stained for B cells (CD3-CD19+) and
sorted with BD FACSJazz instrument. Cells were lysed in 0.5 ml
of Qiazol (Qiagen) and total RNA was extracted by RNAeasy
Micro kit (Qiagen). Total RNA was transcribed into cDNA using
Transcriptor First Strand cDNA Synthesis Kit (Roche) according
to the manufacturer’s instructions. Real-time qPCR was
performed with LightCycler® 480 SYBR Green I Master mix in
LightCycler® 480 II (Roche). Quantitative expression analysis of
Ifnb, il10, il6, Tnf and Stat1 were normalized against the
housekeeping gene Hprt, primer sequences are shown in
Supplementary Table 2.
Frontiers in Immunology | www.frontiersin.org 3
B Cell Infection by mCherry Mtb and
Supernatant Transfer to Mtb-Infected
Macrophages
CD19+ bead (Miltenyi) sorted cells from naïve spleens of control
littermate (IL-4Ra-/lox) and B cell-specific IL-4Ra deficient mice
(mb1creIL-4Ra-/lox) were exposed to constitutively mCherry
expressing Mtb for 24 hours at a multiplicity of infection 2. B
cells were later analysed for mCherry, MHCII and CD124
expression by BD Fortessa. B cell supernatants were then
filtered with 0.2 µm filters to remove any extracellular Mtb. The
supernatants were transferred to Mtb-infected bone marrow-
derived macrophages (MOI:0.5) and incubated for 3 days.
Macrophage supernatants were then analysed for the indicated
cytokines by ELISA and nitric oxide by Griess reagent assay.

IL4RA and Arginase Expression on
Peripheral B Cells Isolated From
TB Cohort
We enrolled newly diagnosed, untreated TB cases from the
clinics in Ravensmead and Uitsig, Cape Town. The
participants were treated with standard anti-TB drugs for six
months by the clinic. For this study, we took blood at diagnosis
and at the end of anti-TB treatment after 23 weeks. We also
included healthy participants from the same community. Both
the TB cases and the healthy controls were HIV negative. B cells
were isolated by CD19 MACS beads from peripheral blood
mononuclear cells and RNA was extracted using the RNEasy®

Mini Kit (Qiagen, Germany) according to manufacturer’s
instructions. RNA was stored at -80°C prior to perform the
cDNA synthesis (First Strand Kit (Qiagen, Germany) for
quantitative PCR analysis.

Study Approval
The protocol was approved by the Animal Ethics Committee (AEC
Permit Number: 015/040), Faculty of Health Sciences, University
of Cape Town, Cape Town, South Africa. Participant recruitment
and follow up was approved by the Human Research Ethics
Committee of Stelllenbosch University (N10/01/013). Written
informed consent was obtained from all study participants.

Statistics
Data are represented as mean values ± SEM. Statistical analysis
was performed using Student’s t-test, two-tailed, Welch’s
correction with unequal variance and ordinary one-way
ANOVA, defining differences between mb1creIL-4Ra-/lox and
IL-4Ra-/lox as significant *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001.
RESULTS

IL-4Ra Deletion on B Cells Decreased Mtb
Burdens and Lung Pathology During
Chronic Infection in Mice
We assessed the role of IL-4Ra signalling on B cells using wild-
type (BALB/c), littermate control (IL-4Ra-/lox) and B cell-specific
IL-4Ra (mb1creIL-4Ra-/lox) deficient mice in a time-kinetic
June 2021 | Volume 12 | Article 611673
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manner following Mtb infection. At 4 weeks post-infection,
mycobacterial lung burdens in mb1creIL-4Ra-/lox mice
were similar when compared to littermate control animals
(Figure 1A). However, at 18 weeks post-infection, mycobacterial
burdens in both lungs and spleen were significantly reduced
in mb1creIL-4Ra-/lox mice when compared to littermate controls
(Figure 1B). Furthermore, we determined the lung inflammation
by H&E and performed immunohistochemistry for iNOS
Frontiers in Immunology | www.frontiersin.org 4
expression. At 4- and 18-weeks post-infection, we found that
pulmonary pathology, lesion area (Figures 1C, D) and iNOS
expression (Figures 1C, E) were significantly decreased in
mb1creIL-4Ra-/lox mice, indicating reduced lung tissue destruction
duringMtb infection. These results show that B cell-specific IL-4Ra
ablation decreased mycobacterial burden, lung inflammation
and iNOS expression in mb1creIL-4Ra-/lox mice during
chronic tuberculosis.
A B

D E

C

FIGURE 1 | Deletion of IL-4Ra on B cells decreased mycobacterial burdens and lung pathology during Mtb infection. Wild-type (BALB/c), littermate controls (IL-
4Ra-/lox) and B cell-specific IL-4Ra deficient mice (mb-1creIL-4Ra-/lox) were infected via aerosol inhalation with a dose of 200 CFU H37Rv. (A) Mycobacterial burdens
in the lungs at 4 weeks post-infection. (B) Lung mycobacterial burden and dissemination in the spleen at 18 weeks post-infection. (C) Representative histology
images of lung sections stained with H&E and iNOS at 4 and 18 weeks post-infection (Original magnification: 10X). (D, E) Quantification of lesion area and iNOS
positive area in the lungs at 4 and 18 weeks post-infection. Data are shown as mean ± SEM of n = 6 mice/group and representative of two independent
experiments, analysed by unpaired, student’s t-test versus littermate control, *p < 0.05, **p < 0.01 and ***p < 0.001.
June 2021 | Volume 12 | Article 611673
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Adoptive Transfer of IL-4Ra-Sufficient B
Cells Abolished Decreased Mtb Burdens
and Lung Pathology in mb1creIL-4Ra-/lox

Mice
We investigated whether the host-protective phenotype in
mb1creIL-4Ra-/lox mice was indeed B cell-driven. To this end,
we adoptively transferred one million wild-type B cells in
mb1creIL-4Ra-/lox mice intratracheally followed by Mtb
infection. At 18 weeks post-infection, we found the transfer of
wild-type B cells restored the lung mycobacterial burdens similar
to littermate control animals (Figure 2A). Though the spleen
Frontiers in Immunology | www.frontiersin.org 5
mycobacterial burden was partially restored but not statistically
significant, this is likely due to intratracheal B cell transfer
rendered minor effect on the distal organ spleen (Figure 2B).
We then assessed the cytokine responses in the lung
homogenates, which showed that IFN-b (Figure 2C), IL-6
(Figure 2D) and IL-12p40 (Figure 2E) was significantly
reduced whereas IL-10 (Figure 2F) had no effect in mb1creIL-
4Ra-/lox mice when compared to littermate control animals.
Remarkably, the adoptive transfer of wild-type B cells restored
IFN-b (Figure 2C) production, but not IL-6 (Figure 2D),
IL-12p40 (Figure 2E) and IL-10 (Figure 2F) in the lungs of
A B

D E F

G IH

J K L

C

FIGURE 2 | Adoptive transfer of WT B cells intratracheally restored the bacterial burdens in B cell-specific IL-4Ra deficient mice during Mtb infection. Wild-type
(BALB/c), littermate controls (IL-4Ra-/lox), B cell-specific IL-4Ra deficient mice (mb1creIL-4Ra-/lox) and adoptively transferred B cells in mb1creIL-4Ra-/lox mice
(mb1creIL-4Ra-/lox + WT B cells) were infected intranasally with a 375CFU of H37Rv. (A, B) Bacterial burdens in the lungs and spleen after 18 weeks post-infection.
(C–F) Lung homogenates were analysed for the cytokine responses such as for (C) IFN-b, (D) IL-6, (E) IL-12p40 and (F) IL-10 cytokine production by ELISA. Single
cell suspension of lung cells was analysed for lymphoid (G–I) and myeloid (J–L) immune cell populations by flow cytometry. Cells were identified using the markers in
parathesis; B cells (CD19+CD3-), CD4 T cells (CD3+CD4+), CD8 T cells (CD3+CD8+), dendritic cells (CD11c+CD11b-MHCII+), macrophages (CD11b+CD11c-MHCII+)
and neutrophils (SiglecF-CD11c-Gr1+). Data are shown as mean ± SEM of n = 5 mice/group, representative of two independent experiments, analysed by unpaired,
student’s t-test versus littermate control, *p < 0.05 and **p < 0.01.
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mb1creIL-4Ra-/lox mice. Given the significant differences in IFN-
b, we assessed whether Mtb exposure of wild type B cells
influences ifnb1 mRNA expression levels. We found no
difference in ifnb1 mRNA expression in Mtb-exposed B cells
when compared to naïve cells (Supplementary Figure 1A).
Furthermore, we flow-sorted lung B cells from chronic Mtb-
infected mb1creIL-4Ra-/lox mice, which showed no difference in
ifnb1, il10 and il6 mRNA expression when compared to B cells
from control animals (Supplementary Figure 1B). These
findings indicated that B cells indirectly regulate IFN-b
production. IFN-b can regulate anti-inflammatory responses
by inducing IL-10 expression in the context of LPS stimulated
and Mtb infected macrophages (32, 33). However, intracellular
cytokine staining revealed IL-10-producing B cells were
unaffected in chronic Mtb-infected mb1creIL-4Ra-/lox mice
(Supplementary Figure 1C). We then assessed lymphoid and
myeloid immune cell populations in the lungs by flow cytometry.
We found no difference in B cells (Figure 2G), CD4 (Figure 2H),
CD8 T cells (Figure 2I), macrophages (Figure 2J), dendritic cells
(Figure 2K) and neutrophils (Figure 2L) in the lungs of
mb1creIL-4Ra-/lox mice. Moreover, we further analysed the B
cell subsets in the lungs of Mtb-infected mice. We found that
except CD43-IgM+ B cells, deletion of IL-4Ra had no effect on B-
1a, B-1b, B-2, B-10, plasma cells, plasmablast and IgD+ B cell
populations when compared to control animals (Supplementary
Figures 1D, E). We then assessed the impact of adoptively
transferred wild-type B cells on lung pathology (H&E) and
iNOS expression. Indeed, wild-type B cells restored lung
pathology (Figure 3A) and lesion area (Figure 3B) similar
to control animals but iNOS expression was unchanged
(Figures 3A, B) in mb1creIL-4Ra-/lox mice. This indicates that
B cells do contribute to the lung pathology independent of iNOS
expression. Together, these results suggest that intact IL-4Ra
on B cells contribute to mycobacterial burdens with lung
pathology with no major impact on B cell subsets in chronic
tuberculosis infection.

IL-4Ra Deletion Modulates Antibody
Production in the Lungs of
mb1creIL-4Ra-/lox Mice
We then explored the influence of IL-4Ra deletion on antibody
responses in the lungs during Mtb infection. At 18 weeks post-
infection, we found increased protective IgA (Figure 3C) in the
lung homogenates. The quantification of IgA positive areas in
lung sections by immunohistochemistry further confirmed our
findings of IgA in the lung homogenates (Supplementary
Figure 1G). Permissive IgG1 (Figure 3D) production was
decreased and total IgE (Figure 3E) remained unaffected in the
lungs of mb1creIL-4Ra-/lox mice when compared to littermate
control animals. IL-4 is the first identified stimuli that induce
IgG1 production through isotype class switching by germ-line
transcript induction (34). Sterile transcripts of IgG1 in B cells
stimulated with LPS and IL-4 showed a trend of decreased
production germline IgG1 transcripts in splenic B cells isolated
from mb1creIL-4Ra-/lox mice (Supplementary Figure 1F).
Moreover, adoptively transferred B cells had no major impact
Frontiers in Immunology | www.frontiersin.org 6
on the antibodies in the lungs when compared to mb1creIL-4Ra-/

lox mice, except IgG1 levels which interestingly further decreased
(Figure 3D). These results suggest that IL-4Ra signalling does
modulate B cell antibody responses in the lungs. To better
understand the B cell responses at the molecular level, we
sorted B cells from the lungs of Mtb-infected mice to perform
quantitative PCR after 18 weeks of infection. B cells showed
reduced mRNA transcripts of tnf and stat1 in mb1creIL-4Ra-/lox

mice, which was increased similar to control animals (Figure 3F)
following adoptive transfer of B cells. This points towards a
reduced Be1 signature in mb1creIL-4Ra-/lox mice. Despite
decreased levels of stat1 mRNA expression in B cells, we found
similar levels of IFN-g in the lungs (data not shown), suggesting
that T cells and NK cells may contribute to the production of
IFN-g. Together, these results suggest that the deletion of IL-4Ra
on B cells modulates lung antibody responses and decrease tnf
and stat1 mRNA expression in mb1creIL-4Ra-/lox mice during
chronic tuberculosis infection.

Deletion of IL-4Ra on B Cells Reduced
Association With Mtb
We further investigated whether B cells increase IL-4Ra
expression upon Mtb infection ex vivo. Magnetic bead-sorted
wild-type B cells showed that Mtb infection significantly
increased IL-4Ra expression when compared to naïve B cells
after 24 hours (Figure 4A), which was further confirmed by
qPCR (Supplementary Figure 1H). We then asked whetherMtb
may associate differentially with B cells from IL-4Ra-/lox and
mb1creIL-4Ra-/lox mice. Indeed, flow cytometry revealed the
frequency of mCherry-expressing Mtb positive cells was
reduced in B cells from mb1creIL-4Ra-/lox mice after 24 hours
(Figure 4B). Furthermore, we found increased MHCII positive B
cells (Figure 4C) and expression (Figure 4D), indicating
increased antigen presentation by the B cells from mb1creIL-
4Ra-/lox mice when compared to controls. We then assessed the
potential impact of Mtb-infected B cell supernatants on
macrophages during infection. Following Mtb infection,
macrophages were cultured with supernatants from Mtb
exposed B cells from either mb1creIL-4Ra-/lox or IL-4Ra-/lox

mice. After three days, macrophages cultured with B cell
supernatants from mb1creIL-4Ra-/lox mice showed a significant
increase in nitric oxide (Figure 4E), IL-1b (Figure 4F), IL-6
(Figure 4G) and TNF (Figure 4H) production. Interestingly, IL-
4Ra expression in B cells sorted from peripheral blood of TB
patients at the diagnosis showed no difference in IL4R transcripts
(Figure 4I) when compared to healthy controls. However,
arginase 1 significantly decreased in blood B cells of TB
patients (Figure 4J). Altogether, this indicate that IL-4Ra
deletion on B cells does increase macrophage proinflammatory
responses and their killing effector function.
DISCUSSION

Cytokine measurements in patients with TB suggested a role for
IL-4Ra-driven T helper 2 immunity in the progression of the
June 2021 | Volume 12 | Article 611673
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disease (35). IL-4 secretion in PBMC is elevated and involved in
cavitary granuloma formation in patients with active TB disease
(36, 37). Murine models using IL-4-/-, IL-4Ra-/- and STAT6-/- on
genetically resistant C57BL/6 background proved to be
dispensable in Mtb infection (21, 38, 39). Interestingly in
C57BL/6 mice, transgenic expression of IL-13 uncovered that
IL-13/IL-4Ra signaling contributes to TB-associated pathology
(40). In contrast to overall C57BL/6, TB disease progression
likely associated with Th2 immune response in BALB/c mice
Frontiers in Immunology | www.frontiersin.org 7
during chronic infection (41). Furthermore, immunotherapy
using anti-IL-4 or anti-IL-13 or combined IL-4/IL-13
neutralizing antibodies (42) and high-dose Mtb-infected IL-4-/-

BALB/c mice resulted in decreased bacterial loads (39) and
attenuated lung pathology (41). Together, data derived from
BALB/c mice demonstrated that Th2 immune response
contributes to disease progression, and therefore blocking IL-4
seems an attractive therapeutic approach (43). BALB/c mice
appear to be a suitable model for investigating Th2 immunity in
A

B

D E

F

C

FIGURE 3 | Adoptive transfer of WT B cells in the lungs restored the pulmonary pathology in B cell-specific IL-4Ra deficient mice during Mtb infection. Formalin-
fixed lung samples were stained for the H&E and iNOS expression after 18 weeks post-infection. (A) Representative histology images from all the groups and
(B) quantification of lesions area and iNOS positive staining in the lungs (Original magnification: 2X). Antibody responses in the lungs of mice. (C) IgA, (D) IgG1 and
(E) total IgE production in the lungs after 18 weeks of infection. (F) Tnf and Stat1 mRNA expression in flow-sorted B cells (CD3-CD19+B220+) after 18 weeks of Mtb
infection. Data are shown as mean ± SEM of n = 5 mice/group, representative of two independent experiments, analysed by unpaired, student t-test versus
littermate control, *p < 0.05, **p < 0.01 and ***p < 0.001.
June 2021 | Volume 12 | Article 611673

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Parihar et al. IL-4Ra-Deficient B Cells Increase Protection Against TB
tuberculosis (44). Thus, we assessed whether depletion of IL-4Ra
on B cells in mb1creIL-4Ra–/lox BALB/c mice in tuberculosis.

In addition to IL-4/IL-4Ra axis, B cells are critical in antibody
production and they are efficient antigen-presenting cells. The
success of antibodies in passive immunization suggested that
certain antibodies are protective against TB (45). Mice lacking B
cells showed relatively modest disease phenotypes during Mtb
infection (19, 20). Moreover, B cell-deficient (IgH-6-/-) mice on a
C57BL/6J background were dispensable in chronic tuberculosis
(21). In acute tuberculosis, B cell-mediated humoral immunity is
required to control inflammation and protective immunity (19,
22, 46). Surprisingly, B cell-deficient uMT-/- mice infected with
Frontiers in Immunology | www.frontiersin.org 8
CDC1551 (22) strain of Mtb displayed similar burdens in the
acute phase and reduced lung inflammation in chronic TB. In
contrast, uMT-/- mice showed enhanced mortality as a result of
increased neutrophils and IL-10 production in the lungs in the
Erdman strain of Mtb infection (19). Moreover, the non-human
primate model of cynomolgus macaques showed that Mtb-
containing granulomas are surrounded by proliferating B cells,
secreting Mtb-specific (IgG) antibodies (15). However, B cell
depletion using rituximab resulted in highly heterogeneous
responses in local granuloma immune modulation, due to the
antibody-dependent and -independent functions of B cells
and altogether had no impact on the TB disease outcome (25).
A B
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FIGURE 4 | Mtb infection of B cells from mb1creIL-4Ra-/lox mice induces pro-inflammatory responses in macrophages. B cells were purified by magnetic bead
sorting from the spleen of naïve wild-type mice. B cells were then infected with H37Rv Mtb (MOI=2) for 24 hours. (A) IL-4Ra surface expression measured in naïve
and Mtb exposed B cells by flow cytometry. Magnetic bead sorted B cells from IL-4Ra-/lox and mb1creIL-4Ra-/lox mice were infected with mCherry-expressing Mtb
for 24 hours. (B) mCherry-expressing Mtb and (C, D) MHC II expression on B cells from IL-4Ra-/lox and mb1creIL-4Ra-/lox mice were analysed by flow cytometry.
(E) Mtb-infected macrophages were cultured with the supernatants from the Mtb infected B cells for 72 hours. Supernatants were then analysed for the production
of (E) nitric oxide, (F) IL-1b (G) IL-6 and (H) TNF by ELISA. Data are shown as mean ± SEM of n = 3 mice/group and representative of three independent
experiments, analysed by unpaired, student t-test versus littermate control, *p < 0.05, **p < 0.01. (I) Human IL4R mRNA and (J) Arginase 1 expression was
determined in magnetic bead sorted B cells from healthy, TB patients at diagnosis and after 23 weeks of anti-TB therapy by qPCR with p values between the
indicated groups (n=8-12 samples) analyzed by one-way ANOVA, **p < 0.01 versus controls.
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These studies highlighted the intricate role of B cells in TB
disease stage and regulate the lung granulomatous response.

In wild-type mice,Mtb infection increased IL-4Ra expression
on B cells and the absence of IL-4Ra on B cells decreased the
frequency of Mtb infected B cells from mb1creIL-4Ra-/lox mice.
There are limited studies on B cell internalization of bacteria; it
has been shown that the human Raji B cell line can phagocytose
complement opsonized Mtb (47). Macropinocytosis can also be
employed by immortalized B cells for the uptake ofMtb (48). The
effects of IL-4 signalling on phagocytosis are debatable as both
increased and diminished phagocytic capacity were observed in
macrophages (49–51). In the absence of IL-4Ra, we observed
decreased internalization of Mtb by B cells; however, it warrants
further studies on whether IL-4 alters phagocytic capacity and
phagosome phenotype in B cells (52). Remarkably, genetic
ablation of IL-4Ra on B cells (mb-1creIL-4Ra–/lox) in mice
showed reduced lung burdens and splenic dissemination in
chronic tuberculosis infection. This was also accompanied by
reduced lung pathology, lesion area and iNOS expression. In
contrast, IL-4Ra deleted on macrophage/neutrophils, LysMcreIL-
4Ra-/lox mice had no differences in tissue bacterial burdens (29).
Interestingly, the immune cell populations remained unaffected
in mb1creIL-4Ra-/lox mice, which corroborated with our previous
findings in LysMcreIL-4Ra-/lox mice during tuberculosis (29).
Characterization of lung B cell subsets also revealed no major
differences between mb-1creIL-4Ra–/lox mice and littermate
controls except IgM+IgD-CD43- subset. These cells are either
lung B1 cells expressing low levels of CD43 or distinct anergic,
short-lived, B cell receptor unresponsive cells B2 cells (53, 54).
In-depth phenotyping of this subset may explain whether IL-Ra
signalling is important for the maintenance and the decreased
numbers of these cells contribute to protection in mb-1creIL-
4Ra–/lox mice. In contrast, B cell depletion (rituximab) in
macaques, lead to increased T cell frequencies and cytokine
responses unable to drive host protection during Mtb infection
(25). These data suggest that IL-4Ra signalling on B cells
modulate Mtb infection more at the site of infection in the
chronic phase of tuberculosis.

Remarkably, the adoptive transfer of wild-type B cells in mb-
1creIL-4Ra-/lox mice reversed lung bacterial burdens, lung
pathology and lesion area similar to wild-type mice. The
absence of B cells does not affect lung IFN-g levels (19). This is
likely compensated due to the release of IFN-g from natural killer
and T cells. In tuberculosis, increased levels of type I IFN is host
detrimental (55). The decreased IFN-b production in mb-1creIL-
4Ra-/lox mice in this study might be associated with reduced
tissue pathology and lung bacterial burdens. These parameters
were restored upon the adoptive transfer of wild-type B cells,
suggesting intact IL-4Ra on B cells enhances or mediate disease
pathology, independent of B cell-mediated IFN-b production. A
recent study showed that Mtb-stimulated IL-4Ra-sufficient B
cells drive alternative activation of macrophages through IFN-b
production (56). However, the absence of IL4-Ra signalling on B
cells does not seem to affect IFN-b levels on B cells in both ex vivo
Mtb exposure or in vivo chronic Mtb infection. Therefore, it is
plausible that IL-4Ra-deficient B cells will hinder alternative
Frontiers in Immunology | www.frontiersin.org 9
activation macrophage phenotype through other soluble factors.
Indeed, deficiency of IL-4Ra on B cells increased macrophage
ability to increase proinflammatory cytokines and nitric oxide
production, indicating that IL-4Ra signalling on B cells
modulate macrophage immune responses during Mtb
infection. These animals also showed decreased lung IgG1
(host detrimental) and increased lung IgA (host protective)
levels, which may partly contribute to protection against Mtb
infection. Besides tuberculosis, mb-1creIL-4Ra-/lox mice during
N. brasiliensis infection uncovered that IL-4Ra-responsive B
cells-driven IL-13 and antigen processing contribute to T cell-
mediated protective immunity (13). Furthermore, we
demonstrated that IL-4Ra-responsive B cells are host
detrimental against Leishmania major and host protective in
Schistosoma mansonii infection. Mechanistically, we revealed a
more general phenomenon that B cells regulate T cell
polarization (10). Moreover, in S. mansonii infection, IL-4Ra-
expressing B cells reduced egg-driven host detrimental tissue
granulomatous inflammation via host protective IL-10
production in mice (57). In contrast, we found neither IL-10
nor evident regulation of T cell responses rather macrophage
response modulation in mb1creIL-4Ra-/lox mouse model in TB,
indicating the underlying mechanism is different and appears
more local at the site of disease.

B cell proliferation increased in latent TB granuloma and
decreased in an active TB granuloma. In humans, a study showed
lower IL-4 expression in human B cells in circulation during TB
infection (58). Consistently, we observed a lower trend in IL-4R
and a significant decrease in arginase 1 mRNA expression in
peripheral blood human B cells sorted from individuals
diagnosed with TB pointing towards Be1 phenotype in this
cohort. These findings further reinforce that blood may not be
an appropriate compartment to explore the local tissue effect
of B cells (56, 59). The importance of tissue site is further
demonstrated where IFN-b production was unaffected in B
cells isolated from peripheral blood but significantly
upregulated in B cells from the pleural fluid (56). Therefore, B
cells isolated from the lungs of TB patients will increase our
current understanding of immune modulation at the tissue level.
Overall, our study reveals the underappreciated role of IL-4Ra
signalling on B cells during the chronic phase of tuberculosis
infection in mice.
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(CD19+B220+CD3-) were analysed for Ifnb1, il10 and il-6 transcripts by qPCR.
(C) The frequency of IL-10-producing B cells after 10 hours of PMA (20ng/ml)/
ionomycin (1µg/ml) stimulation was determined by intracellular cytokine assay after
12 weeks post-infection. (D) B-1a (CD19+B220+CD43+CD5highIgMhigh), B1b
(CD19+B220+CD43+CD5lowIgMhigh), B2 (CD19+B220+CD43-IgM+IgD+) B10
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measured by qPCR in splenic B cells stimulated with LPS (10ug/ml)/IL-4 (25ng/ml)
for 48 hours. (G) Representative images and quantification of IgA-positive area of
lung sections at 18 weeks post-infection (Original magnification: 40X). (H) B cells
either left alone or infected with Mtb to determine IL-4Ra mRNA expression by
qPCR. Data are shown as mean ± SEM of n = 6 mice/group, analysed by unpaired,
student t-test or ordinary one-way ANOVA versus the indicated group, *p<0.05,
**p<0.01 and ***p<0.001.
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