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Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress

immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing

immune responses and reestablishing immune homeostasis. The important role of

Bregs in restraining the pathology associated with exacerbated inflammatory responses

in autoimmunity and graft rejection has been consistently demonstrated, while more

recent studies have suggested a role for this population in other immune-related

conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial

studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade

has seen the discovery of other molecules utilized by human and murine B cells to

regulate immune responses. This new arsenal includes other anti-inflammatory cytokines

such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this

review, we examine the main suppressive mechanisms employed by these novel Breg

populations. We also discuss recent evidence that helps to unravel previously unknown

aspects of the phenotype, development, activation, and function of IL-10-producing

Bregs, incorporating an overview on those questions that remain obscure.
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INTRODUCTION

Over the last two decades, the role of regulatory B cells (Bregs) in immunosuppressive responses
has been documented in different contexts and diseases (1). It has been shown, for instance,
that Bregs can suppress animal models of autoimmunity, such as experimental autoimmune
encephalomyelitis (EAE) (2), collagen-induced arthritis (CIA) (3), and spontaneous colitis (4).
Bregs have also been proved to modulate allergy (5), transplantation (6), cancer (7), infections
(8), and chronic metabolic diseases (9). Initial studies in the early 2000s attributed this
immunomodulation to IL-10, which became the hallmark of Breg suppression (4, 10, 11);
however, this notion has lately expanded as new Breg-derived suppressive mediators have been
discovered. This review offers to the reader an updated outlook on the immunosuppressive
mechanisms employed by Bregs. However, before focusing on the regulatory functions, we will
address some concepts with respect to the phenotypic characterization and differentiation of Bregs
that still spark some controversy in the scientific community, using IL-10-producing Bregs as a
prototypic example.
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THE DIVERSIFICATION OF BREG
PHENOTYPES

Despite extensive efforts to phenotypically characterize Bregs,
including transcriptome analyses and multiparametric flow
cytometry, which have been mostly focused on IL-10-secreting
B cells, we still lack a definitive set of phenotypic markers or
a signature transcriptional regulator (equivalent to FoxP3 in
regulatory T cells- Tregs) that enables us to comprehensibly
identify Bregs (12–19). This has been further complicated by
the large heterogeneity of factors described to induce Bregs
in vivo. Surface markers such as CD9 (13, 20–22) and TIM-
1 (23, 24) have been found to be predominantly but not
exclusively expressed across IL-10+ B cell populations. Therefore,
Bregs remain a functionally defined population based on their
capacity to suppress pro-inflammatory responses in vitro or
in vivo, as opposed to effector B cells, which produce pro-
inflammatory molecules or induce other cells to do it. According
to this consensus, different groups have identified phenotypically
distinct B cell populations that, under specific stimulatory
conditions, exhibit a superior regulatory proficiency. Many of
these populations correspond to discrete developmental stages
of the B cell lineage and are enriched in, but not exclusively
composed of, cells expressing immunomodulatory factors, such
as IL-10.

Mauri and colleagues identified a subset of IL-10-producing
B cells with in vitro and in vivo regulatory capacities among
splenic CD21hiCD23hiCD24hiCD1dhi transitional 2-marginal
zone precursors (T2-MZP) in mouse (25). Transitional B
cells correspond to an intermediate stage between immature
cells emerging from the bone marrow and mature cells in
the periphery and can be divided into T1, T2, and T3
subpopulations as they progress in their maturation. T2-
MZP are T2-stage progenitors committed to differentiate into
marginal zone (MZ) B cells in the spleen. Human circulating
CD24hiCD38hi T2 transitional B cells have also been described
to be enriched in IL-10-producing B cells and are able to
suppress T cell responses (26). More recently, it has been
proposed that other subsets of human transitional B cells, namely,
CD24hiCD38hiCD27+ activated memory-like transitional cells,
as well as CD24hiCD38hiIgMloIgDlo anergic-like T3 transitional
B cells, also exhibit regulatory properties (27). In addition,
murine mature MZ B cells, which lack CD23 expression but
maintain high levels of CD1d, have been shown to produce high
levels of IL-10 and exert suppressive functions (28).

In parallel, Tedder and colleagues identified a population of
murine B cells that express IL-10 after ex vivo stimulation with
lipopolysaccharide (LPS) plus phorbol 12-myristate 13-acetate
(PMA) and ionomycin (P+I); such IL-10+ cells are enriched
among CD1dhiCD5+ B cells in the spleen. They termed these
cells B10 (29). The human counterpart of B10 was later found to
be increased within the CD24hiCD27+ memory B cell population
(30). They proposed that B10 originate from progenitors (B10pro
cells) that acquire IL-10-producing competence after stimulation
of CD40 or Toll-like receptor (TLR)-4 and have been extensively
proven to ameliorate an array of inflammatory conditions upon
adoptive transfer (31–37). B10 and B10pro were later found in

other B cell compartments, such as murine B-1a cells (31). The
B-1 lineage of B cells reside primarily in the peritoneal cavity
and spleen and are classified in B1-a and B1-b cells according to
the expression of CD5 (38). Peritoneal cavity CD5+ B-1a cells
are able to secrete high amounts of IL-10 after TLR or CD40
activation and to suppress T cell responses (39–43). Peritoneal
cavity and spleen B10 are likely to derive from both the fetal
liver and adult bone marrow compartments (42). IL-10+ Bregs
can already be found among CD1dloCD5+ neonatal splenic B
cells (31, 44). In addition, a newly identified population of human
cord blood CD5hi cells was found to secrete IL-10 upon infection
by the respiratory syncytial virus (RSV), leading to inhibition of
anti-viral responses and a worse clinical outcome (45). MZ B
cells and B1 cells are regarded as innate-like B cells, given their
capacity to rapidly respond to innate signals, such as TLR ligands,
by producing low-affinity polyreactive natural IgM antibodies
and cytokines. Consequently, some authors have denominated
those first-line IL-10-producing B cells as innate Bregs; however,
the functional implications of this initial regulatory response has
not been fully understood (46, 47).

Recently, IL-10+ Breg populations have been described
among antibody-secreting cells (ASC), such as plasmablasts and
terminally differentiated plasma cells, including those populating
the bone marrow, in both mice and humans (15, 16, 48–
53). Besides, plasma cells expressing other regulatory molecules
have also been described, such as IL-35-expressing CD138+

plasma cells and PD-L1/PD-L2-expressing IgA+ plasma cells
(16, 54). These regulatory ASCs are capable of modulating
immune responses, as shown in EAE and Salmonella infection
models (15, 49, 51, 55). It has been observed that murine IL-
10+ B cells have a greater potential to rapidly differentiate
into ASCs than IL-10− B cells, as determined by their
upregulation of the ASC fate-determining molecule Blimp-1
and the production of IgM (56). Furthermore, studies in IL-
10-reporter mice showed that IL-10+ ASCs are already found
in naïve mice, while LPS administration or infection with
Salmonella rapidly expands ASCs that transiently upregulate
IL-10 production (15, 43, 49, 56). Subsequent findings in the
Salmonella infection model showed that in CD138hi plasma
cells, the il10 locus was already primed for transcription (15).
Transcriptional analyses of human activated IL-10+ B cells
have found, as for mouse, the upregulation of genes coding
for molecules involved in plasma cell differentiation, such as
Blimp-1 and IRF4, thus confirming that human IL-10+ B
cells are also capable of becoming ASCs (12, 17, 19, 57).
Interestingly, it has been suggested that human and mouse IL-
10-producing ASCs can be differentiated directly from immature
and naïve B cells (15, 55), which is supported by the finding
that Blimp-1 is already expressed in recently activated naïve
B cells (58, 59).

Altogether, the phenotypical diversity of Bregs suggests
that, in addition to classical fate-determining programs,
any B cell, regardless of its developmental stage or tissue
residence, holds the potential to engage a regulatory
program, determined by one or more yet-to-be-identified
master transcriptional factors and finely regulated by
environmental conditions.
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BREG DIFFERENTIATION: NURTURE OR
NATURE?

B cell regulatory capacity can be triggered by inflammatory
cues, such as TLR ligands and pro-inflammatory cytokines,
by upregulating a set of inhibitory molecules that restrict the
extent of inflammation (20). This idea is supported by findings
revealing that T2-MZP IL-10+ Breg differentiation can be driven
by IL-1β and IL-6, together with CD40 stimulation, in the
context of inflammatory arthritis (21). Other pro-inflammatory
cytokines involved in Breg induction are B cell-activating factor
(BAFF) and A proliferation-inducing ligand (APRIL). BAFF and
APRIL are mainly produced by myeloid cells and increased upon
inflammation. They participate in B cell homeostasis at different
developmental stages, from transitional cell maturation to plasma
cell survival. Mice overexpressing BAFF develop spontaneous
autoimmunity and increased levels of BAFF have been detected in
patients with autoimmune conditions (22). Nevertheless, BAFF
and APRIL have been shown to also enhance IL-10+ and IL-35+

Bregs in mice and humans (23, 24, 51, 60–64).
A regulatory feedback loop has been demonstrated between

plasmacytoid dendritic cells (pDCs) and B cells in humans
and mice, whereby pDCs respond to inflammation by secreting
interferon (IFN)-α, enhancing the production of IL-10 by
activated B cells, which in turn suppresses IFN-α production by
pDCs (44, 65). Noteworthy, this circuit is impaired in systemic
lupus erythematous (SLE), a disease characterized by an IFN-
α signature that contributes to pathogenesis by stimulating
the differentiation of autoantibody-producing plasma cells.
Interestingly, high concentrations of IFN-α in the presence of a
TLR9 agonist in vitro lead to the differentiation of IL-10− plasma
cells instead of IL-10+ Bregs (65, 66).

IL-21, together with CD40 ligand (CD40L) and/or TLR9
signals, has been described to boost B10 generation or to drive
the emergence of IL-10+ plasmablasts during inflammatory
processes (53, 67–70). IL-21 and CD40L are expressed by
follicular helper T cells (Tfh) in the germinal center (GC),
enabling B cells to express affinity mature class-switched
antibodies and to become memory B cells or long-lived plasma
cells (71). Thus, it is possible that during GC reactions, both
effector and suppressive memory B cells and plasma cells are
generated. Altogether, these results suggest that during an acute
immune response, the generation of effector B cells and Bregs
is balanced; however, when inflammation turns chronic, this
equilibrium may be lost.

Inflammation-induced IL-10+ Bregs employ molecules
involved in both mounting and constraining immune responses.
CD80 and CD86 are co-stimulatory ligands that enable
professional antigen-presenting cells (APCs) to deliver either
activating or inhibiting signals to T cells upon binding to
CD28 or CTLA-4, respectively (72). Memory and GC B cells
exhibit constitutive expression of CD80 and CD86, which
can be upregulated following activation. Antigen presentation
by B cells has been demonstrated to be required for optimal
effector immune responses (73–77). On the other hand, antigen
presentation by B cells that lack CD80/CD86 can induce T
cell anergy or Tregs (78, 79). Pioneering studies showed that

CD86 is involved in B cell suppression of pathogenic T cells
and in preventing disease development in a murine model
of colitis (80, 81). Similarly, MHC II molecules appear to be
necessary for the establishment of cognate interactions between
Bregs and activated T cells (57, 70). These results were further
confirmed for human IL-10+ Bregs, in which CD80 and CD86
work synergistically with IL-10 to suppress Th1 responses
(26, 82). Studies in humans and mice have demonstrated that
the interaction of CD80/CD86 with CD28 is required for
peripheral homeostasis of Tregs, while their engagement of
CTLA-4 is important for Treg-mediated suppression (83–85).
It was later observed that CD80/CD86-deficient B cells were
unable to induce Tregs (81). Although a high expression of
CD86 and CD80 have been described in murine and human
Breg populations, it appears that their sole upregulation does
not enable for a comprehensive identification of Bregs, while a
correlation between high expression and functional relevance
remains to be fully elucidated (86–88). Therefore, it appears
that CD80/CD86 do not constitute a suppressive mechanism by
themselves, but instead allow B cells with regulatory capacity to
establish cognate interactions with activated T cells to inhibit
them or convert them to Tregs.

The fact that, in many cases, similar conditions can induce
the differentiation of effector B cells and IL-10+ Bregs gives rise
to the question of how this fate decision is made. Are some
B cells imprinted, at some point during their ontogeny, with
the potential to produce IL-10 upon an inflammatory challenge
or is the fate of a particular B cell dependent on autonomous
perception of spatiotemporal and environmental cues? Is it a
stochastic event or is it commanded within narrow ranges of
concentration, duration, combination, and concatenation of the
stimuli? Is the regulatory phenotype a transient state of B cells,
which would die immediately after, or even revert to an effector
phenotype if the inflammation persists, or is it a stable trait?
Transcriptomic analysis of B cells isolated from arthritic mice
showed that the expression of pro-inflammatory cytokines is not
substantially different between total IL-10+ and IL-10− B cells
(14). Lately, a characterization of CpG-stimulated human B cells
found that most IL-10+ B cells co-express TNF and IL-6 across
a broad range of phenotypes. When purified, IL-10+ B cells were
re-stimulated, their capacity to produce IL-10 was lost, while IL-
10− B cells were able to secrete IL-10 after a second challenge,
arguing against the existence of a dedicated Breg lineage (18). IL-
10+ Bregs can also be generated induced by anti-inflammatory
factors, such as IL-35 and retinoic acid (89, 90); whether these
Bregs are more stable remains unclear.

REGULATION OF IL-10 EXPRESSION BY B
CELLS

In order to understand better how B cells integrate the different
signals that endorse them with the capacity to produce IL-10,
we considered relevant to present a general overview of the
intracellular pathways involved in this process.

BCR signaling appears to be fundamental for IL-10+ Breg
development, as mice whose B cells have a transgenic BCR
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specific for an irrelevant antigen show reduced IL-10 production
after ex vivo stimulation with LPS and P+I (31). In addition,
in vivo studies show that suppression of inflammation upon B
cell adoptive transfer is significantly more potent when antigen-
experienced B cells compared to B cells from naïve mice or
B cells specific for unrelated antigens are used, suggesting
that BCR engagement is important for optimal IL-10+ Breg
functions (10, 25, 29, 70, 91). This is further corroborated by
the observed expansion or reduction of IL-10+ Bregs following
CD19 overexpression or deletion, respectively (15, 29, 31). Live-
cell imaging of IL-10+ Bregs has recently provided evidence that
these cells need to capture antigen through their BCR, in order to
establish cognate interactions with antigen-specific T cells (52).
IL-10-producing murine B cells have shown a diverse, mainly
germline-encoded, BCR repertoire, part of which is reactive to
self-antigens or antigens from commensal microbes (15, 42, 51,
56). This evidence also supports the notion that Bregs could
play a significant role in sensing autoantigens and/or microbiota,
limiting a potentially noxious activation of immunity.

Several sources have pointed toward TLR and CD40 activation
as an important step in enabling B cells to become competent
IL-10 producers. Stimulation of B cells from naïve mice with
LPS or CpG (a TLR9 ligand) induces a robust production of
IL-10 (31, 92, 93). Moreover, B cell expression of TLR2/4 or
their downstream mediator MyD88 is required for an optimal
IL-10 production upon LPS stimulation and to achieve in vivo
suppression by IL-10+ Bregs in the EAE and Salmonella infection
models (31, 49, 92). On the other hand, stimulation of mouse B
cells with an agonistic anti-CD40 antibody in vitro and in vivo
leads to an increase in IL-10+ Bregs able to suppress arthritis
and lupus in murine models (3, 94), while B cells overexpressing
CD40L exhibit higher frequencies of B10 (31). The activation of
CD40 is believed to be important for IL-10+ Breg generation
as part of cognate interactions with activated T cells, as B cells
lacking CD40 are unable to inhibit T cell activation and to protect
mice from EAE or colitis (10, 70, 80). Human B cells were also
shown to produce IL-10 in response to TLR ligands and CD40L
(30, 55, 95). Innate immune cells, such as pDCs, mast cells,
and type 3 innate lymphoid cells, can be additional sources of
CD40L-derived signals (65, 96–98).

B cells express a large set of inhibitory receptors that deliver
negative signals to counterbalance their activation. Some of these
receptors have also been found to restrain IL-10 production by
Bregs. CD22 is an inhibitory receptor responsible for activating
phosphatases upon binding to mammalian-restricted sialylated
proteins, in order to dampen BCR activation by self-antigens
(99). In agreement with CD22 inhibitory function, murine B10
lacking CD22 present an increased production of IL-10 after
short-term LPS stimulation (31). Likewise, a dramatic expansion
of IL-10+ Bregs is observed when CD22 deletion is incorporated
in CD40L-overexpressing B10 after TLR or CD40 activation,
and they exhibited enhanced EAE suppressive capacity (31,
100). However, lack of CD22 impairs the survival of regulatory
peritoneal B-1a cells and their recruitment to lymphoid organs
(101). Much less studied is the role on B cells of CD72, a
receptor for the inhibitory ligand semaphorin-4D, but that also
recognizes RNA-containing self-antigens, downregulating BCR

signaling (102). Cd72−/− mice display an increased number of
LAG-3+CD138hi plasma cells, which produced augmented IL-10
levels following Salmonella infection, leading to impaired control
of the bacteria (15).

Although antibody-mediated crosslinking of the BCR
precludes IL-10 production upon simultaneous stimulation with
LPS or CD40 ligation in B cells from naïve mice (29, 31, 42, 94)
or human blood (30, 103), Bregs from mice with induced
autoimmunity are able to secrete IL-10 when challenged with
cognate antigens, or BCR crosslinking antibodies, plus CD40
ligation (3, 10, 25). It is possible to infer that a sequential
integration of signals (inflammatory signals first, followed by
T cell help in the form of CD40L and IL-21, plus repeated
antigenic stimulation) can determine the acquisition of IL-10+

Breg proficiency in vivo (32).
The PI3K-Akt pathway, downstream of BCR engagement,

is critical for B10 development in mice, as well as for IL-10
production following TLR4 or CD40 stimulation, suggesting
that a tonic signaling through the BCR is required for further
induction of IL-10 expression by other routes (88). In accordance
with this idea, perturbations in the BCR signalosome adaptor
BLNK and downstream kinase Btk have been found to curb
LPS-mediated activation of the transcription factor STAT3 and
ensuing IL-10 production by murine B10 (104). TLR stimulation
followed by BCR crosslinking has been shown to induce IL-10
expression by B10 from naïve mice, by the calcineurin-dependent
nuclear translocation of the transcription factor NFAT, triggered
by store operated Ca2+ influx (105). This emphasizes the idea
that pre-sensitization of B cells with innate signals is a pathway
to acquire a full Breg competence. An NFAT-independent
calcineurin-mediated induction of IL-10 production in TLR-
activated B cells has also been described (106). Of note, it has
been shown that NFAT-dependent IL-10 production in B cells
involves IRF4 binding to the il10 locus, suggesting a link between
the induction of IL-10+ Bregs and later development of plasma
cells (55, 107). Recently, Blimp-1 has been described to direct
the differentiation of IL-10+ plasma cells (108, 109); however,
further research is needed to dissect the pathways leading to this
particular phenotype.

As for TLR-induced signals, CD40-mediated STAT3 activation
appears to be central for IL-10 expression on B cells. STAT3
phosphorylation is increased in CD40-activated transitional B
cells of healthy subjects but not in those from SLE patients
(26). In addition, CREB, p38 MAPK, ERK1/2, and PI3Kδ have
been described to be required for IL-10 upregulation following
TLR and/or CD40L stimulation (58, 67, 110). c-Maf, a well-
known transactivator of IL-10 in various cell types, has also
been shown to mediate IL-10 transcription by LPS-stimulated
murine B cells (111). Interestingly, c-Maf interacts with aryl-
hydrocarbon receptor (AhR) in promoting IL-10 expression on
Tr1 cells (112). Recent studies have confirmed AhR as a critical
factor governing TLR and BCR-mediated IL-10 production in
CD19+CD21hiCD24hi B cells, while inhibiting the expression of
pro-inflammatory molecules and the differentiation of GC B cells
and plasma cells (14, 113).

AhR activation in Bregs requires increased levels of a
serotonin metabolite, 5-HIAA, generated by gut commensal
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bacteria that are enriched after treatment with the short-chain
fatty acid (SCFA) butyrate (113). Gut microbiota promotes the
differentiation of IL-10+ T2-MZP Bregs in arthritic mice by
inducing IL-6 and IL-1β production by gut-associated lymphoid
tissue (GALT) DCs and macrophages, implying that during
inflammation, T2-MZP migrate to the GALT to acquire the
necessary signals to become Bregs, a process that appears to
be dependent on AhR expression (14, 21). These results are
in line with evidence showing that skewing the gut microbiota
composition with oral antibiotics or probiotics can modify IL-
10+ Breg frequencies (114–116). Moreover, gut commensal flora-
specific IgA+IL-10+ ASC can be recruited to the brain of EAE
mice and reduce disease severity (51). Although gut-associated
bacteria have been reported to be dispensable for IL-10+ Breg
development in naïve mice (31, 42), current evidence suggest
that their presence might be critical for the development of both
inflammation and inflammation-induced IL-10+ Bregs (21).

A direct effect of SCFA pentanoate in potentiating CpG-
induced IL-10 production by B cells was reported to be dependent
on the activation of p38 MAPK and the glycolytic pathway,
enhancing the phosphorylation of mTOR and its downstream
targets S6K and ribosomal S6 (117). An induction of IL-
10 by an alternative pathway involving ERK1/2 and RSK,
upstream mediators of S6 phosphorylation, has been described
in LPS-stimulated peritoneal B cells (118). mTOR inhibition
precludes IFN-λ and IFN-α-induced IL-10 production in BCR-
activated human B cells (119). In agreement with these results,
the levels of IL-10-producing B cells are reduced in kidney
transplant patients receiving inhibitors of mTOR (120). Another
key regulator of the glycolytic pathway, the enzyme GSK3β,
has been described as a repressor of IL-10 synthesis in B
cells by enhancing the expression of NFATc1 (121). mTOR
also enhances the activation of PPAR-γ, a key transcription
factor for adipogenesis and metabolic reprogramming in
activated T cells (122). Remarkably, PPAR-γ-deficient B cells
present a reduced IL-10 production and impaired suppressive
capacities, while treatment with a PPAR-γ agonist significantly
expanded IL-10+ B cells in high fat diet-fed mice (123, 124).
Furthermore, free fatty acid palmitate can increase survival and
IL-10 synthesis by adipose tissue-resident B cells, suggesting a
potential participation of lipid metabolism in Breg functions
(125). Accordingly, a publication has recently described that
atorvastatin, an inhibitor of cholesterol metabolism, prevents
IL-10 production by CpG-activated B cells through reducing
geranylgeranyl pyrophosphate-mediated activation of Akt and
inhibition of GSK3β, leading to a decreased transcription of
Blimp-1 and IL-10 (58). The metabolic regulation of B cell
responses is an emerging field that would offer new insights
into the factors that govern the fate of activated B cells,
including Bregs.

As mentioned above, inflammatory cytokines potentiate IL-
10 expression in B cells. For instance, IL-6 and IL-1β are able
to prolong the phosphorylation of NF-κB and STAT3 achieved
by CD40 ligation in mouse B cells (21). Likewise, IL-21 and
APRIL increase phosphorylation of STAT3 and subsequent IL-
10 production by B cells (53, 60, 67, 68). It has been observed
that IFN-α boosts TLR7/8-induced IL-10 production by human

B cells by enhancing the phosphorylation of ERK1/2 and STAT3
(66). IFN-α-induced STAT3 phosphorylation is decreased in B
cells from SLE patients and is restored upon successful B cell
depletion therapy (65). Contrastingly, the role of IFN-γ on IL-
10+ Bregs is still controversial (70, 126, 127). IFN-γ upregulates
IL-10 production induced by TLR7/8 and TLR9 agonists in
mouse and human B cells, and this involves protein kinases p38
and JNK (118). On murine MZ B cells, IFN-γ, BCR, and TLR9
signals converge for the prolonged activation of the transcription
factor CREB to induce IL-10 expression (128, 129). A recent
publication reported that human IL-10+ B cells distinctively
express TNF receptor 2 (TNFR2) following TLR9 stimulation
and that they respond to TNFR2 agonists by increasing their IL-
10 production. This gives rise to the possibility that interaction
of Bregs with membrane-bound TNF on activated T cells or
monocytes may influence their suppressive functions (130).

Although autocrine IL-10 appears not to be necessary for the
development of B10 or IL-10+ ASCs (56), an autocrine effect on
IL-10+ Breg expansion following stimulation has been suggested
(131). Newly discovered IL-35 also increases IL-10 production in
TLR-stimulated human and mouse B cells by triggering STAT3
activation (132). Moreover, it has been recently described that
tonsil-derived mesenchymal stem cells (MSCs) are an important
source of IL-35, which upon co-culture with murine B cells,
promote the expansion of B10, providing further evidence for
the therapeutical use of MSCs in autoimmune diseases or organ
transplantation (133). Indeed, inoculation with MSCs has been
described to expand IL-10+ Bregs in EAE (134), murine colitis
(135, 136), graft vs. host disease (GVHD) (137, 138), and allograft
transplantation (139–141).

Other cytokines and factors described as IL-10+ Breg inducers
include IL-33 (142, 143), granulocyte macrophage colony-
stimulating factor (GM-CSF) (144), a GM-CSF/IL-15 fusokine
(57), thymosin-α1 (145), human chorionic gonadotrophin (146–
148), retinoic acid (149), hypoxia-inducible factor-1α (150),
vitamin D3 (90), insulin-like growth factor 2 (151), and
indoleamine 2,3 deoxygenase (IDO) (134). Conversely, IL-10
production by B cells has been determined to be repressed by
several molecules such as soluble TNF (152, 153), transforming
growth factor (TGF)-β (70, 126, 127), IL-4 (154, 155), IL-13
(156–158), IL-17 (159), lipoxin A4 (160), prostaglandin E2 (161),
and progesterone and estradiol (162), although some results
are divergent, likely due to different stimulation conditions or
subpopulations assessed (163, 164). In addition, IL-10 expression
by B cells can be upregulated by neurotransmitters such as
dopamine (165) and norepinephrine (166), as well as NMDA-
receptor antagonists (167). Despite lack of information about
transcriptional repressors of IL-10, it has been reported that the
transcription factor Foxd3 negatively regulates the expression of
IL-10 in LPS-stimulated mouse B cells (168).

Despite extensive research into the epigenetic regulation of IL-
10 expression in immune cells, there is still a paucity of studies on
B cells (169, 170). Recent work explored the DNA methylation
signature of the il10 locus in B cells and defined “early” and
“delayed il10 regulatory regions,” which are demethylated, or
accessible, in B cells that produce IL-10 after short- or long-term
stimulation with LPS, respectively (171). These results are even
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more meaningful considering that the “delayed il10 regulatory
region” is a binding site for IRF4 in IL-10+ plasmablasts, where it
might interact with NFATc1 to promote IL-10 expression (55).

Chromatin accessibility analysis of murine IL-
10+CD21hiCD24hi B cells has shown open chromatin regions in
the il10 locus, as expected, but also in the Ahr locus, indicating
an active transcription of this key factor (14). Of note, butyrate
supplementation, which activates AhR in such CD21hiCD24hi

B cells, increases accessibility at binding motifs for partner
transcription factors of AhR, which can be attributed to butyrate
activity as histone deacetylase inhibitor, as has been shown for
Tregs and total B cells (113, 172). A short isoform of NFATc1,
NFATc1/αA, has been shown to repress IL-10 transcription in B
cells, in part by binding to the histone deacetylase HDAC1 upon
BCR or TLR activation (173, 174). TNF and IL-13 repression of
IL-10 production by human B cells can be partially mediated by
enhancing HDAC11 expression (153, 156). Histone acetylation, a
critical mechanism in increasing chromatin accessibility, is read
by BET proteins, which facilitate chromatin remodeling (175).
Although this territory remains largely unexplored in Bregs, it
was recently reported that BRD4 BET enhances IL-10 expression
in LPS-stimulated murine B cells by associating with NF-κB on
the il10 promoter (176).

Finally, the regulation of IL-10 expression by small, conserved,
non-coding RNA—microRNA (miRNA)—has been evaluated in
recent years. Initial transcriptomic studies found 77 differentially
expressed miRNAs in mouse B10 compared to non-B10, the
impact of which has not yet been explored (13). However,
the function of a handful of miRNAs in modulating IL-10
transcription in mouse and human B cells has been described,
many of which are responsive to pro- and anti-inflammatory
cytokines and have been found to be dysregulated in a variety
of immune-related disorders (154, 155, 157–159, 177–189).
Many other signaling molecules, as well as epigenetic and post-
transcriptional regulators of IL-10 expression in B cells, have been
proposed; however, a definite transcriptional program remains
obscure (170).

SUPPRESSIVE MECHANISMS OF BREGS
BY SOLUBLE MOLECULES

The ability of B cells to secrete immunomodulatory molecules
has gained increasing attention over the last years. Although
many Breg functions can be attributed to the release of anti-
inflammatory cytokines, other soluble molecules have been
recently described to mediate B cell suppression, such as
granzyme B (GrB) (190), adenosine (191–193), IDO (194),
progesterone-induced blocking factor 1 (195), and heat shock
protein-70 (196). The main suppressive mechanisms employed
by Bregs through the secretion of soluble molecules are
summarized in Figure 1.

IL-10
In vitro and in vivo adoptive transfer experiments initially
showed that different populations of murine-activated B cells are
able to suppress antigen-specific CD4+ T cell proliferation and

pro-inflammatory cytokine production in an IL-10-dependent
manner and reduce inflammation in autoimmunity models, such
as CIA (3, 23, 25, 36, 197), antigen-induced arthritis (11, 14,
21, 113), spontaneous lupus (94), type 1 diabetes (198), colitis
(42), and EAE (10, 57, 70, 105, 199). IL-10+ B cells and plasma
cells have been found to gain access to the central nervous
system and suppress pathogenic CD4+ T cells, demonstrating
their ability to act in situ (51, 200, 201). The inhibition of
T cell proliferation and production of Th1 cytokines (IFN-γ
and TNF) was also demonstrated in in vitro studies involving
human B10 and IL-10+ transitional B cells; however, B cells
from patients with autoimmune diseases such as SLE, RA, and
type 1 diabetes are unable to achieve this suppression (26, 30,
67, 95, 202, 203). Moreover, immunocompromised humans or
mice with Wiskott–Aldrich syndrome protein deficiency (204–
206), as well as patients with common variable immunodeficiency
(207, 208) exhibit low numbers of IL-10+ B cells that correlate
with increased pro-inflammatory CD4+ T cell responses. As T
cells express low levels of IL-10R, it has been suggested that the
CD4+ T cell suppression relies on an autocrine effect of IL-10,
decreasing CD86 expression and co-stimulation potential of B
cells (209, 210). Murine and human Bregs can also act on naïve
CD4+ T cells, blocking their differentiation into Th17 cells, a
feature important for recovery from CIA. This pathway is also
defective in RA patients (36, 211).

Pro-inflammatory CD4+ T cell responses are a critical
driving force of chronic cardiovascular diseases (212). In the
spleen of atherosclerosis-prone mice, increased IL-10+ B cells
have been detected. These B cells were able to suppress
Th1 responses in vitro in an IL-10-mediated fashion (213).
In a model of arterial injury, a high number of IL-10+

T2-MZP were found in lymph nodes and, upon adoptive
transfer, were able to reduce atherosclerotic lesions (9). IL-
10+ Breg-mediated atheroprotection has been suggested to
be dependent on angiotensin II signaling in B cells (214),
L-selectin expression (215), and IDO activation (216). IL-
10+ B cells have also been recovered from tertiary lymphoid
organs in arteries of atherosclerotic mice, suggesting that in
atherosclerosis (like in neuroinflammation), Bregs may also
suppress inflammation in situ (217). In addition, scattered
publications have reported reduced levels of transitional or
IL-10+ B cells in peripheral blood of atherosclerotic patients
compared to healthy controls (154, 178, 218, 219). Furthermore,
there is accumulating evidence pointing toward a protective
role of IL-10-producing B cells in controlling inflammation and
tissue damage following experimental ischemic stroke (220–
225). A recent study exploring the involvement of IL-10-
producing B cells in myocardial infarction in rodents observed
that these cells are recruited to the infarcted heart from
pericardial adipose tissue and contribute to limit the extent
of inflammation-related injury (226). In this regard, IL-10-
producing B cells have been found to reside in subcutaneous
and visceral adipose tissues from mice and humans; in diet-
induced obesity models, they contribute to the restriction of
local inflammation and thereby control insulin resistance (125,
227, 228). Furthermore, adipose tissue or peripheral blood IL-
10+ B cells are numerically and functionally altered in both
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FIGURE 1 | Suppressive mechanisms of Bregs by soluble molecules. (A) IL-10+ Bregs inhibit Th1, Th17, and CD8+ T cell responses; convert naïve CD4+ T cells into

regulatory T cell populations; and modulate pro-inflammatory innate cells through the production of IL-10. (B) Likewise, TGF-β+ Bregs operate on naïve CD4+ T cells

to generate FoxP3+ Tregs, in addition to induce anergy in CD4+ and CD8+ T cells. (C) IL-35+ Bregs can promote “infectious tolerance” by inducing IL-35-producing

Tregs and expanding the generation of IL-35+ Bregs. (D) GrB+ B cells have been shown to inhibit Th1 and Th17 cell responses and to reduce CD4+ T cell

proliferation by degrading the TCR ζ-chain. DC, Conventional dendritic cell; GrB, Granzyme B; MΦ, Macrophage; NK, Natural killer cell; NO, Nitric oxide; pDC,

Plasmacytoid dendritic cell; TolDC, Tolerogenic dendritic cell; Tr1, Type-1 regulatory T cell.

obese patients and individuals with type 2 diabetes (229–
234).

In addition to inhibiting immunogenic CD4+ T cell
populations, IL-10+ Bregs are also able to convert naïve CD4+

T cells into Tregs and IL-10-secreting type-1 regulatory CD4+

T cells (Tr1), as shown in experimental arthritis (11, 14, 197),
lupus (34, 94), and EAE (104, 235). In agreement with this
evidence, human IL-10+ Bregs from healthy individuals have
been shown to induce Tregs and Tr1 cells; these mechanisms are
impaired in autoimmune patients (211, 236, 237), but enhanced
in chronically virus-infected patients (238).

IL-10+ Bregs promoting a shift toward a Th2 response
has been demonstrated to be beneficial in EAE (115, 239–
241), CIA (25), and lupus (94). IL-10+ Bregs have also been
shown to confer susceptibility or protection to parasite-derived
immunopathology in mice, depending on the pathogen, partially
due to their ability to skew the immune response in favor of
Th2 immunity (242–246). An expansion of IL-10+ Bregs has
been detected in patients with parasite infections (247, 248).
Moreover, parasite-induced IL-10+ Bregs have been suggested
to alter the course of multiple sclerosis (MS) in humans (249)
and to alleviate disease in allergy models (250–254). Remarkably,
allergen-specific oral tolerance induction in mice was associated
with increased frequency of IL-10+ Bregs in mesenteric lymph

nodes (255), and allergen specific immunotherapy drove an
increase in IL-10-producing B cells in allergic patients (17,
256, 257). These findings are validated by studies showing that
adoptive transfer of IL-10+ B cells or plasma cells not only
suppresses Th2 and/or Th17 responses but also induces Tregs, in
allergic airway inflammation (247, 251, 254, 258–261) and food
allergy (255).

The induction of tolerance to exogenous antigens by IL-
10+ Bregs has been further explored in the field of allograft
transplantation. Studies in a model of hematopoietic stem cell
transplantation (HSCT) demonstrated that both donor and host
IL-10-producing B cells are required to prevent acute and chronic
GVHD, in part due to the suppression of T cell cytokine
production and induction of Tregs (37, 116, 262–264). Similarly,
a protective role of IL-10+ Bregs in human GVHD has been
suggested after higher frequencies of these cells were found
reconstituting recipients of HSCT who developed tolerance,
compared to those who developed GVHD (53, 138, 265,
266). Analogous evidence has been obtained from solid organ
transplantation models. Transitional splenic B cells prolonged
skin allografts upon adoptive transfer and suppressed allo-
specific CD4+ T cells in vitro; this effect was dependent on IL-
10 and galectin-1 expression in donor B cells (114, 267). IL-
10 production is critical for T2-MZP-mediated cardiac allograft
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tolerance by downmodulating Th17 responses (268, 269). In
the clinical field, several studies have pointed out that low
numbers or impaired suppressive functions of transitional B
cells are associated with a higher risk of kidney graft rejection
(270–272). In addition, IL-10+ B cells have been shown to be
increased in patients tolerating lung transplants compared to
patients developing chronic graft dysfunction (273). Another
study observed that the IL-10+/TNF+ ratio in T1 transitional B
cells was lower in patients rejecting kidney grafts compared to
patients with stable graft function, and predicted a worse long-
term outcome (274, 275). A number of studies have also shown
increased circulating transitional B cells in tolerant kidney-
transplanted patients despite withdrawing immunosuppression,
compared to patients with stable grafts on immunosuppression
(276–279). This high B cell-derived IL-10 expression was later
associated with a decreased expression of CD86 and an increased
CD40 activation by recipient T cells (209, 280). Besides allograft
tolerance, mounting evidence implicates IL-10+ B cells in
mechanisms governing tolerance to semi-allogeneic fetus during
pregnancy in both mouse (147, 281–285) and human (146, 147,
286–289), which include the generation of tolerogenic DCs and
Tregs and a reduction in Th17 cells (281, 282, 290).

In addition to their effects on CD4+ T cells, it has been
demonstrated that IL-10+ Bregs inhibit antigen-specific CD8+

T cell activation. For instance, during murine cytomegalovirus
and influenza virus infections, B cell-derived IL-10 restrains
virus-specific CD8+ T cell responses (43, 291). Breg-mediated
inhibition of CD8+ T cell proliferation and IFN-γ production
has also been demonstrated in patients infected with human
immunodeficiency virus (HIV) (292, 293) and hepatitis B
virus (294) and in a humanized murine model of hepatitis
C virus infection (295). There is evidence that Bregs can
reduce CD8+ T cell responses indirectly through inhibition
of CD4+ T cell help (296). Thus, the activity of IL-10+

Bregs generated during chronic viral infections can become
dysregulated, impairing virus clearance. However, in other
settings, such as ankylosing spondylitis and obesity, defective
IL-10-mediated downregulation of CD8+ T cell responses by B
cells may promote unwanted inflammation and tissue damage
(125, 297).

Given the pleiotropic effects of IL-10 on B cells, it has
been difficult to ascertain how IL-10+ Bregs modulate humoral
immune responses. IL-10 is a potent survival factor for B cells,
preventing GC B cell apoptosis and favoring their development
into plasma cells (298–302). In vitro and in vivo studies have
proposed that these actions can be provided through autocrine
and paracrine IL-10 secretion (19). In addition, IL-10+ Bregs
can suppress IL-10− B cell proliferation (142). Therefore, while
suppressing T cell activation, B cell-derived IL-10 may support
a sustained humoral response, involving their own progression
toward IL-10+ ASC.

The regulation of innate elements of the immune response
appears to be a fundamental feature of IL-10+ Bregs. B10 were
shown to inhibit TNF or nitric oxide (NO) production by
monocytes, macrophages, and microglia (30, 200, 303). Besides,
murine IL-10+ Bregs can prevent the recruitment of neutrophils
to the sites of inflammation in a model of colitis (42). Likewise,

in a model of Salmonella infection, IL-10 production by B cells
was essential for reducing neutrophil mobilization and TNF
production, as well as downmodulating NK responses (49);
this ultimately contributes to an impaired pathogen clearance,
as has been shown for other bacterial or fungal infections
(109, 304). B cell-derived IL-10 has also been suggested to be
important in increasing the turnover of maturing neutrophils
in the bone marrow following Pneumocystis infection in mice
(305). Additionally, murine Breg-derived IL-10 can suppress IgE-
mediated degranulation of mast cells (97). As mentioned above,
human andmouse IL-10+ Bregs are potent inhibitors of cytokine
production by pDCs, but also by conventional DCs (44, 65).

Since DCs are conspicuous for their capacity to bridge
innate and adaptive immune responses by priming antigen-
specific naïve T cells, it has been evaluated whether IL-10+

Breg suppression of T cell responses can be indirectly mediated
through DCs. Matsushita et al. found that co-incubation of
murine DCs with activated B10 reduce DCs ability to activate
encephalitogenic CD4+ T cells (199). This evidence, together
with data showing that IL-10+ B cells or plasmablasts inhibit
Th1 and Th17-inducing DCs or induce tolerogenic DCs, in
addition to direct inhibition of Th1 and Th17 cells, contribute
to clarify the suppressive role of B10 in EAE and other
inflammatory conditions (55, 92, 306, 307). Similarly, B cell-
mediated induction of Th2 responses in Leishmania infection is
associated with IL-10-dependent decrease in IL-12 production
by DCs (244). Modulation of antigen presentation by IL-10+

Bregs is also frequent during bacterial infections. For instance,
Escherichia coli induces a population of IL-10+ Bregs capable of
inhibiting DCs maturation (308). In experimental infection with
Listeria, B10 decrease phagocytosis of bacteria and subsequent
IFN-γ and TNF secretion by macrophages, reducing antigen-
specific CD4+ T cell proliferation and cytokine production (309).
Another study showed that MZ B-derived IL-10 inhibits NO
synthesis on neighboring metallophilic macrophages, increasing
the intracellular survival of Listeria, and facilitating the trans-
infection of DCs, which leads to increased bacterial burden,
but also to efficient CD8+ T cell priming (310). Interestingly, it
has been shown that IL-10+ Bregs can establish longer contact
times with CD4+ T cells than their IL-10− counterparts (11).
Based on this, a supplementary mechanism for interrupting
antigen presentation has recently been suggested, where longer
cognate interactions between IL-10+ Bregs and T cells reduces
the chances of effector T cells to encounter antigen-loaded
DCs and become activated (52). The effects of murine IL-
10+ Bregs on DCs can be extrapolated to humans, as human
B cells overexpressing IL-10 have been described to suppress
differentiation of monocytes to DCs and to promote the
generation of tolerogenic DCs (311).

Immune evasion processes involving IL-10+ Bregs can also
be induced by neoplastic cells. The role of Bregs in cancer
had already been suggested in experimental models, since mice
lacking or depleted of B cells exhibit enhanced anti-tumor CD8+

T cell responses and are resistant to tumor progression (312–
316). More recently, IL-10+ B cells and IL-10+ plasmablasts have
been recovered from tumor or tumor draining lymph nodes,
while cancer patients show increased circulating IL-10+ Bregs
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(82, 317–323). Tumor cells can induce B cells to secrete to
IL-10 through multiple mechanisms including CD40L signals
(315, 322) and tumor-derived exosomes (324–327). In vitro and
in vivo studies have demonstrated that IL-10+ Bregs induced
by mouse tumor cells are able to reduce IFN-γ production by
antigen-specific CD8+ and CD4+ T cells as well as NK activation
(315, 324). Adoptive transfer of B10 can also prevent anti-
CD20-mediated lymphoma depletion, likely through inhibiting
macrophage activation (303). In a similar manner, tumor-
induced human IL-10-producing B cells or plasmablasts have
been described to suppress IFN-γ and GrB expression by CD8+

T cells (317, 318, 321), as well as pro-inflammatory cytokines
secreted by CD4+ T cells (82, 324, 328). These effects can
have an impact on tumoral cell survival, as demonstrated by a
study where IL-10+ Bregs showed the ability to block antibody-
dependent cytotoxicity of NK on myeloma cells (329). These
results have prompted the design of new therapeutic tools for
cancer based on specific IL-10+ Breg-depletion, as recently
published (330, 331).

In many cases, activated B cells can simultaneously produce
other anti-inflammatory cytokines along with IL-10, such as
TGF-β and IL-35, which can be uniquely responsible for some
of the immune regulatory properties assigned to Bregs, as
described below.

TGF-β
The members of TGF-β superfamily exhibit pleiotropic activities,
the effects of which are both cell type- and context-dependent.
TGF-β participates in the regulation of B cells at various
stages of their development, with an important involvement
in the control of self-tolerance and autoimmunity (332).
On the other hand, evidence confirms that resting human
B cells express TGF-β and TGF-β receptors, the expression
of which is increased upon activation (333). It has been
extensively described that several murine and human IL-10+

Breg populations can also secrete TGF-β; however, in many
cases, the role of TGF-β suppression mediated by these cells
has been excluded (26, 94, 334, 335). Nevertheless, in other
cases, TGF-β has been described to exert a dominant part
in Breg functions. In particular, TGF-β has the capacity to
convert naïve CD4+ T cells into Tregs (336). Consequently,
it was not surprising to find out that TGF-β+ Bregs are able
to induce Tregs in healthy mice and humans (194, 337), as
well as in inflammatory conditions such as transplantation
(338), allergy (339, 340), and cancer (86, 341–343). In this
regard, studies in a breast cancer model have described a
population of CD25hiCD69hi Bregs, induced by tumor-secreted
factors such as leukotriene B4. These Bregs promote lung
metastasis by inducing Tregs via STAT-3-dependent TGF-β
production (86, 342, 344, 345). In addition, TGF-β secreted by
tumor-evoked Bregs increased reactive-oxygen species and NO
production by myeloid-derived suppressive cells, which in turn
inhibited proliferation of CD4+ and CD8+ T cells, favoring
metastasis (346).

Moreover, in accordance with the inhibitory functions of
TGF-β on effector T cell proliferation and differentiation, TGF-
β+ Bregs were reported to trigger anergy in CD4+ and CD8+

T cells (347, 348). In a more recent study, it was detailed
that transgenic mice deficient for TGF-β1 specifically in B cells
developed EAE at an accelerated rate compared to wild-type
controls. This was associated with an increased frequency of
activated DCs and an expansion of pathogenic IFN-γ+ IL-17+

CD4+ T cells in the central nervous system, suggesting indirect
control of inflammatory T cells by TGF-β+ Bregs (349). TGF-
β-producing Bregs can also be induced in mice infected with
helminths. Such Bregs are able to suppress Th1- and/or Th2-
mediated colitis through a mechanism involving cooperation
with anti-inflammatory macrophages (350). Noteworthy, TGF-
β+ Bregs have been described to be decreased in the alveoli of RA
patients with interstitial lung disease (351), and in the blood of
patients with myasthenia gravis (352), and increased in the blood
of gastric cancer patients (341).

The phenotype of TGF-β+ Bregs has been poorly
characterized. Some reports have identified them within
the CD5+ or CD25hiCD69hi B cell populations in mouse
(86, 353) and within the T2 transitional B cell subset in
humans (341).

IL-35
IL-35, a potent anti-inflammatory cytokine, is the newest
member of the IL-12 family of heterodimeric cytokines and is
composed of the Ebi3 and the IL-12p35 chains. IL-35 has been
described to be produced in large quantities bymouse and human
Tregs and to be an important factor for their suppressive activities
(354). Similarly, a role for IL-35 in Treg induction has been
proposed; these Tregs then further mediate suppression via IL-
35 (355). However, whether other immune cell types can produce
IL-35, andwhat functions this cytokine exerts, is amatter that had
not been fully assessed until recently.

In this regard, Egwuagu and colleagues have shown that
addition of IL-35 to LPS-stimulated human or murine B
cells induces not only an expansion of IL-10+ Bregs but
also the generation of IL-35-producing B cells (89, 356).
These cells, named IL-35+ Bregs, develop spontaneously in
mice with experimental autoimmune uveitis (EAU), exhibit
a CD1dhiCD21hi phenotype, and are a major source of IL-
35. Furthermore, IL-35+ Bregs are expanded in vivo upon
injection of IL-35, which is associated with an increase in
Tregs, and a decrease in Th1 and Th17 cells via IL-10 and
IL-35 production, reducing the severity of EAU (89, 356), but
impairing protective immunity in a mycobacterial infection
model (357). In parallel, Shen et al. described the ability of CD40
and TLR4 stimulation to induce IL-35 production by murine B
cells. They also reported that a population of CD138+ plasma
cells were the main producers of IL-35 in EAE mice and mice
infected with Salmonella. B cell-restricted deletion of either IL-35
chain exacerbated EAE, but reduced Salmonella burden. These
phenomena were correlated with exacerbated Th1 and Th17
responses and higher antigen-presenting capacity of B cells (16).
The generation of IL-35+ Bregs appears to be mediated by the IL-
12p35 subunit and IL-12Rβ2, leading to the activation of STAT1,
STAT3, IRF-4, IRF-8, and BATF (89, 147, 356, 358). Whether
IL-35+ and IL-10+ Bregs correspond to separate populations
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FIGURE 2 | Different Breg populations utilize cell surface-expressed molecules to suppress immune responses. Bregs interact with NKT cells via CD1d, inducing the

production of IFN-γ, which inhibits Th1 and Th17 responses in a murine arthritis model. PD-L1+ Bregs decrease the production of pro-inflammatory cytokines by

PD-1-expressing CD4+ T cells and macrophages and the cytotoxic functions of PD-1-expressing CD8+ T cells and NK cells. In addition, they interact with

PD-1-expressing follicular helper T cells, leading to an inhibition of humoral immune responses. On the other hand, PD-L1 expressed on tumor cells engage PD-1+

Bregs, triggering the production of IL-10 and the suppression of anti-tumor responses. Finally, FasL+ B cells induce apoptosis on Fas-expressing CD4+ and CD8+ T

cells, as well as on B cells. GrB, Granzyme B; iTCR, invariant T cell receptor; MΦ, Macrophage; NK, Natural killer cell; NKT, Natural killer T cell; Tfh, Follicular helper

T cell.

or display some degree of overlap is an issue that requires
further clarification.

In a model of pancreatic ductal adenocarcinoma, IL-35+

Bregs were found to be induced by IL-1β plus IL-6 and
CD40 stimulation and to participate in tumorigenesis (359).
These results are in line with a previous study showing that
IL-35+CD1dhigh B cells are expanded in mouse and human
pancreatic tumors and that these cells are able to promote tumor
growth via IL-35 secretion (360). IL-35+ Bregs can also be
generated from MZ B cells upon exposure to BAFF through
the classical NF-κB pathway. These cells are increased in the
spleen of mice with lupus and are able to suppress Th1 responses
and expand Tregs in an IL-35-dependent manner (62). IL-
35+ Bregs have been detected in human decidua (361), while
low frequencies have been found in decidua of abortion-prone
mice (362). IL-35+ B cells have also been detected in intestinal
mucosa from patients with Crohn’s Disease (CD), but not from
ulcerative colitis (UC) (363). Although IL-35 expression by
in vitro-activated peripheral blood B cells is defective in CD
patients, it can be rescued after incubation with exogenous IL-
35, endowing them with enhanced suppressive capacities on
pathogenic Th1 and Th17 cells (364). Similarly, Breg-mediated

suppression of Th1 and Th17 responses in UC patients was
restored upon addition of IL-35 (365), supporting the therapeutic
use of IL-35 for inflammatory bowel diseases. Reduced frequency
of IL-35+ Bregs in the peripheral blood has been observed in
SLE patients (366), while increased frequencies of these cells
have been reported in patients with active tuberculosis (367),
leprosy (368), and gastric cancer (369). This further broadens
the spectrum of conditions that could benefit from IL-35+ Breg-
targeting therapies. Approaches to expand IL-35+ Bregs or IL-
35+ Tregs in vivo has already been tested, such as through the
provision of IL-12p35 (358, 370), or the heterodimeric cytokine
(89), as well asMSCs overexpressing IL-35 (371). A novel strategy
using IL-35+ Breg-derived exosomes that contain bioactive IL-
35 has shown promising results as therapy in EAU; given the
potential of exosomes to cross the blood–brain barrier, they could
be considered for the treatment of autoimmune diseases affecting
the central nervous system (372). Furthermore, studies of IL-35+

Tregs have demonstrated that this cytokine is displayed on the
plasma membrane and associated with the tetraspanin molecule
CD81 and that its release in exosomes enables transfer of surface
IL-35 to bystander B and T cells (373). These results, in addition
to the evidence of IL-35-dependent conversion of IL-35+ Bregs
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and IL-35+ Tregs, have prompted the proposal of an “infectious
tolerance” mechanism that could amplify the therapeutic effect of
IL-35-containing exosomes (374).

Granzyme B
Bregs suppress inflammatory responses not only through the
secretion of immunomodulatory cytokines but also through the
release of cytotoxic GrB. Granzymes are a group of cytotoxic
serine proteases that mediate target cell apoptosis upon entering
the cytoplasm after perforin-mediated membrane disruption.
There are 5 different types of granzymes in humans and there
are 10 different types in mice. Among these, GrB has been
described as the most powerful pro-apoptotic granzyme (375–
377). Furthermore, GrB can also play a role in tissue remodeling
by cleaving a number of components of the extracellular matrix
and, in inflammation, through the processing of IL-1α, IL-18, and
TGF-β (378–381).

Although GrB has been broadly described as part of the
cytotoxicity machinery of activated CD8+ T cells and NK cells,
Jahrsdörfer and colleagues described that BCR stimulation in the
presence of IL-21, among other stimuli, can induce human B cells
to secrete GrB and acquire cytotoxic potential. Several studies
have shown GrB expression by other regulatory cell populations,
such as Tregs and pDCs, which exert immunosuppressive
functions over effector T cells, possibly mediated by perforin-
independent degradation of the TCR ζ-chain, together with
other mechanisms (382–384). Following these studies, an
immunosuppressive role for GrB-secreting B cells was evaluated,
observing that these cells are able to inhibit CD4+ T cell
proliferation, as well as Th1 and Th17 responses, by a mechanism
involving a rapid GrB-mediated degradation of the ζ-chain, but
not T cell apoptosis (385, 386).

Moreover, GrB+ B cells are expanded in subjects vaccinated
against viral diseases, implying a regulatory function in anti-
viral immune responses (190, 385, 387). Indeed, CD4+ T cells
from HIV patients that secrete IL-21 but express low levels of
CD40L are able to expand a population of suppressive GrB+

Bregs (388). Although initially GrB-producing B cells were
identified among stimulated naïve CD27−IgD−IgM+CD5+ cells,
subsequent studies have also described other human B cell
subsets with this capability, such as IgD−CD27− double negative
and memory B cells, as well as plasma cells (190, 389–391). It is
important to consider that GrB expression has not been detected
in murine B cells (190, 392).

Numerous studies have proposed a role for GrB+ Bregs
in controlling inflammatory processes, since alterations in this
population have been described in immune-related conditions.
For instance, functional impairments in peripheral blood GrB+

Bregs were found in RA patients, which were reversed after
achieving clinical remission (386). Likewise, patients receiving a
kidney graft showed a decreased frequency of GrB+ Bregs, while
an expansion of GrB+ Bregs was found in patients developing
kidney transplant tolerance (390, 393). Contrastingly, it has
been shown that unstimulated B cells from SLE, RA, and pSS
patients exhibit a high expression of GrB (394–396), and GrB+

plasma cells were increased in the lamina propria of patients with
inflammatory bowel diseases (397). This implies that, depending

on the context, GrB+ Bregs can instead contribute to tissue
damage secondary to autoimmune inflammation. Importantly,
tumor- and lymph node-infiltrating GrB+ Bregs have been
described in several carcinomas; however, whether GrB+ Bregs
are important for anti-tumoral immunity or tumor evasion
remains to be further elucidated (385, 398).

Although the abovementioned studies have confirmed the
ability of B cells to secrete GrB to the extracellular milieu, a direct
interaction with target cells has been proposed to be required
for the inhibitory functions of GrB+ Bregs (385, 390). This
contact dependency is not exclusive for GrB+ Bregs, as similar
results have been described for IL-10+ Bregs (26, 265) and TGF-
β+ Bregs (399), suggesting that cell-to-cell contact interactions
are important either to promote Bregs to secrete modulatory
molecules or as an independent mechanism of suppression.

SUPPRESSIVE MECHANISMS OF BREGS
BY CELL SURFACE-EXPRESSED
MOLECULES

In the following section, we will discuss the suppressive
mechanisms employed by Bregs through cell surface-expressed
molecules (Figure 2), which can coexist or be autonomous from
the soluble molecules examined above.

CD1d
CD1d is a non-polymorphic MHC class I-like molecule that
presents glycolipid antigens to a subset of T cells called natural
killer T (NKT) cells. NKT cells are innate-like T cells that
rapidly respond to glycolipid antigen recognition through their
TCR, by secreting abundant amounts of cytokines that lead
to the activation of CD1d-expressing cells, such as monocytes,
macrophages, DCs, and B cells (400). NKT cells are divided
into two populations based on their TCR diversity: Type I or
invariant (i)NKT cells, which exhibit a semi-invariant TCR that
recognizes the exogenous lipid antigen α-galactosylceramide (α-
GalCer), and type II NKT cells that have a more diverse TCR
repertoire (401). Interestingly, the administration of α-GalCer
has shown to confer protection for a number of autoimmunity
models, suggesting an immunoregulatory role for iNKT cells in
certain conditions (402–404).

Among B cells, CD1d is most highly expressed on murine
splenic CD24hiCD21hiCD23lo MZ B cells and human MZ-like
B cells and, to a lesser degree, by naïve and memory B cells.
Once B cells present glycolipids to NKT cells via CD1d, activated
NKT cells provide in return differentiating factors such IFN-
γ and IL-4, allowing B cells to proliferate, mature, and secrete
antibodies (405–408). In vitro, CD1d has been found to be
upregulated shortly after CD40 activation (409). Early studies
on different subsets of murine IL-10+ Bregs already described
an upregulation of CD1d within these cells (4, 25, 29, 410).
Moreover, CD1d expression on B cells was found to be essential
for IL-10-dependent suppression of colitis (4). Similarly, human
IL-10+ Bregs also express high levels of CD1d, as described
for T2 transitional B cells, mature naïve B cells, and CD5+ B
cells (249, 411, 412). CD1dhi Bregs have also been shown to
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concomitantly secrete TGF-β in both mice and humans (87, 413).
Despite these findings, a role for CD1d in mediating immune
suppression by Bregs was not explored until recently.

Oleinika et al. demonstrated that α-GalCer fail to protect mice
from arthritis in the absence of CD1d-expressing B cells. This
protection was attributed to T2-MZP and was independent of
IL-10 secretion by B cells. The authors of this study proposed a
model where T2-MZP B cells would present α-GalCer via CD1d,
inducing the secretion of IFN-γ by iNKT cells, which in turn
suppress Th1 and Th17 responses in arthritis (414). Although
this study ruled out a requirement of iNKT cells for IL-10+ Breg
differentiation, previous findings have suggested that cognate
interactions with iNKT cells can drive an expansion of Bregs
(415, 416). Likewise, abnormalities in iNKT cell homeostasis have
been attributed to dysfunctional CD1d-mediated presentation
of self-lipids by B cells in autoimmunity-prone mice, thus
confirming the importance of CD1dhi B cells in maintaining
self-tolerance (417).

In line with these results, several studies have observed
alterations in the NKT compartment in patients with
autoimmune diseases such as RA, SLE, and MS (418–421).
Although the causes and consequences of these alterations are
not fully understood, it has been shown in healthy individuals
that B cells are essential for in vitro iNKT proliferation,
activation, and cytokine production in a CD1d-dependent
fashion, a pathway that is defective in SLE patients. This defect
could be explained by a decrease in CD1d surface expression on
SLE transitional B cells due to a higher internalization rate (412).

PD-1/PD-L1
Immune checkpoints are inhibitory receptors that modulate
the activation of immune cells in order to limit immune
responses and preserve self-tolerance. The importance of
immune checkpoints is highlighted not only by the success
of therapeutic approaches blocking CTLA-4 and PD1 that
boost anti-tumor responses in cancer patients but also by the
autoimmune side effects unleashed by these drugs (422, 423).
Experience from checkpoint blockade has inspired the design of
therapies to activate immune checkpoints for the treatment of
autoimmune diseases (424). Among these, there are increasing
studies demonstrating the efficacy of PD-1 activating therapies
in mouse models of EAE, colitis and lupus, as well as in
transplantation (425–429).

PD-1 is a type I transmembrane receptor expressed in
activated monocytes, DCs, NKT cells, B cells, and T cells.
The engagement of PD-1 by its ligands, PD-L1 and PD-L2,
delivers inhibitory signals that downmodulate receptor-triggered
cell survival, differentiation, and secretion of pro-inflammatory
cytokines. PD-L1 is constitutively expressed onmouse T cells and
B cells, DCs, andmacrophages, among other cell types, while PD-
L2 expression is restricted to mature DCs, macrophages, mast
cells, and a subset of B1 cells. PD-L1 and PD-L2 can also deliver
reverse inhibitory signals upon PD-1 or CD80 engagement. Of
note, both PD-1 and PD-L1 are highly expressed on Tregs and
have been involved in Tregs induction and suppressive functions
(430–433). These findings prompted investigations to discover
similar functions of PD-1 and its ligands in Breg biology.

Studies have shown that some PD-1+ and PD-L1+ B cells
co-express IL-10 and, that upon engagement of PD-1, suppress
CD4+ and CD8+ T cell activity and induce Tr1 cells, suggesting
a role of PD-1 in promoting IL-10 expression (292, 296, 434, 435).
For instance, CD5hiPD-1+ B cells with amemory phenotype have
been found to be enriched in hepatocellular carcinoma and to
produce IL-10 upon PD-1 engagement by PD-L1 (436). Adoptive
transfer of CD5hiPD-1+ B cells from hepatoma-bearing mice
effectively suppressed CD8+ anti-tumor responses and promoted
tumor growth (436). Another study reported that PD-L1 on
human tumors can endow tumor-infiltrating B cells with Treg-
inducing properties (437). Also, human PD-1+PD-L1high Bregs
infiltrating thyroid tumors were shown to decrease CD4+ and
CD8+ T cell survival, an effect that was reversed by PD-L1
blockade (438). Nevertheless, other studies in cancer have shown
that PD-L1 can mediate IL-10-independent suppression by B
cells. In pancreatic cancer models, PD-L1+ B cells were reported
to inhibit NK and CD8+ T cell cytotoxicity via PD-L1 (359, 439).
PD-L1+ Bregs have also been described to be expanded in tumors
and draining lymph nodes of mice bearing breast or cervical
cancer (399, 440, 441). In addition, PD-L1+ B cells have been
identified within IgA+ B cells in mice bearing liver tumors and
have been proposed to mediate resistance to chemotherapy in
prostate cancer, which can be overturned by PD-L1 blockade
(50, 442). Altogether, these findings underscore a novel role of
Bregs behind the mechanisms of action PD-1/PD-L1 targeting
therapies in cancer.

IgA+ plasma cells from small intestine lamina propria require
both PD-L1 and PD-L2 to induce Tregs, suggesting that PD-
1/PD-L1+ Bregs could be important in keeping peripheral
tolerance (54). Along these lines, IgA+PD-L1+ Bregs were shown
to dampen TNF production by macrophages and T cells and
to ameliorate EAE development (61). Other PD-L1+ B cell
subsets have also been shown to be essential for EAE protection
by reducing Th1/Th17 responses (443–445). It has also been
described that PD-L1-expressing Bregs have high avidity for
BAFF and that these cells are spared after B cell depletion in EAE
mice, an intervention that raises BAFF serum levels, revealing a
novel aspect of a therapy that is successfully used in patients with
MS (446). Furthermore, alterations in PD-L1+, PD-L2+, and
PD-1+ Bregs have been reported in patients with autoimmune
conditions (237, 434, 447–450).

Inflammatory signals also trigger the upregulation of PD-L1
in B cells (434, 451). It has been described that PD-L1 expression
on B cells is crucial in supporting the generation of long-lived
plasma cells, limiting the expansion of PD-1-expressing Tfh cells
but increasing the availability of IL-21 (452–455). However, a
recent report showed that the adoptive transfer of PD-L1hi B
cells to EAE mice results in milder disease associated with a
reduced Tfh-cell expansion, as well as decreased antigen-specific
IgG and Th1/Th17 cells (446). These findings suggest that, during
inflammation, expression of high levels of PD-L1 can endow
B cells with regulatory properties. Finally, PD-1 and PD-L1
expression on B cells was described to be upregulated by in vitro
stimulation with Helicobacter and to mediate Tr1 differentiation
(456). Moreover, PD-L1 upregulation on B cells, associated with
T cell exhaustion, was observed in RSV-infected mice (457) and
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HIV-infected patients (455), suggesting a role for PD-L1+ Bregs
as a mechanism to limit tissue damage that can be subverted by
pathogens in their benefit.

FasL (CD95L)
Above, we have discussed the inactivation of immune cells
through the secretion of GrB as one of the suppressive
mechanisms displayed by Bregs. However, induction of anergy
or apoptosis of activated T cells by Bregs can also rely on cell
surface-expressed molecules (458). Ligation of the Fas death
receptor (CD95) on activated T cells by FasL, a process known
as activation-induced cell death, is a common apoptotic pathway.
The Fas:FasL interaction is essential for the maintenance of self-
tolerance, as alterations in the expression of these molecules
lead to spontaneous systemic autoimmunity in mice (459).
Remarkably, selective deletion of FasL on B cells is able to break
tolerance and drive T cell expansion and the production of
autoantibodies (460). Expression of functional FasL in murine
B cells has been described upon activation by LPS plus P+I
(461). In addition, FasL-expressing human B cells have been
identified in tonsil GCs, in the bone marrow, and among
plasma cells populating different tissues (462–464). Killer B cells
constitutively expressing FasL were found to be expanded in
autoimmune-prone mice, a finding that was also reported in
peripheral blood of SLE and type 1 diabetes patients (465–467).
Whether this expansion is due to compensatory mechanisms
and/or contributed to the pathogenesis of autoimmune diseases
is yet to be resolved; however, progress has been made in
recent years.

The physiological relevance of FasL+ B cells was assessed in
the NOD mouse model of diabetes, where these cells promote
apoptosis of diabetogenic T cells in vitro and a reduction of
antigen-specific Th1 responses in vivo (468). FasL+ B cells
were also shown to directly mediate apoptosis of CD4+ T
cells in a murine model of Schistosoma infection (469). During
Schistosoma infection, constitutively high expression of FasL
was found within splenic CD5+ B cells (470). Moreover, in
arthritic mice, splenic CD5+FasL+ B cells reduced the frequency
of pathogenic Th17 cells in a FasL-dependent manner (471). It
was also shown that FasL+ B cells fall into the CD5+CD1dhi

population, and there was only partial overlap with IL-10+

Bregs (472, 473). Another population of FasL+ Bregs have been
described within immature IgM−CD1d+ pro-B cells, which are
able to kill effector T cells while protecting NOD mice from
diabetes (474).

FasL+ Bregs can also be subverted by infectious agents to
avoid inflammatory responses. FasL+ Bregs have been detected
upon in vitro infection with Epstein–Barr virus and in patients
with filarial parasites or HIV infections (475–477). In these
circumstances, FasL+ Bregs can also induce the apoptosis of
cytotoxic CD8+ T cells, which can correlate with a reduced
control of the infection (478, 479). The targets of FasL+ B cells
are not restricted to T cells, as shown in a murine model of
Trypanosoma infection, where a “fratricide” killing of parasite-
specific B cells has been described (480, 481). Furthermore, in an
inflammatory context, FasL+ B cells can also induce apoptosis of
non-immune cells, such as pulmonary epithelial cells in an acute

lung injury model (482). Besides, FasL+ B cells recovered from
tumor-draining lymph nodes were capable of killing tumor cells
in vitro (483, 484). Taken together, these results show that FasL+

Bregs are generated under inflammatory conditions and that they
may play a role in the maintenance of peripheral tolerance and
control of exacerbated responses but can also be responsible for
inflammation-induced damage and anti-tumoral immunity.

It is worthwhile noting that B cells have been reported to
induce contact-dependent apoptosis or immune modulation
through other members of the TNF family, such as membrane-
bound TNF (485), GITR (486), and TRAIL (487, 488). In
addition, recent studies have shown that IL-10+ Bregs from
RA patients can acquire ectopic expression of RANKL, an
important molecule involved in osteoclast activation and bone
destruction (489).

TIM-1-EXPRESSING BREGS (TIM-1+

BREGS)

TIM-1+ Bregs are a newly discovered population of human and
murine Bregs that has gained increasing attention, since TIM-
1+ Bregs phenotypically and functionally overlap with many of
the abovementioned subsets, including IL-10+ Bregs, TGF-β+

Bregs, and PD-L1+ Bregs. TIM-1 can function as a receptor
that licenses B cells to express suppressive cytokines or ligands,
although, a contact-dependent effect on immune cells expressing
TIM-1-binding partners has not been excluded so far.

TIM receptors represent a family of molecules that play
critical roles in the regulation of immune responses. To date,
four members of this family have been identified in mice
(TIM-1,−2,−3,−4) and three in humans (TIM-1,−3, and−4)
(490). TIM-1 is expressed in several immune cells, including
activated T cells, Th2 cells, B cells, NKT cells, macrophages,
and DCs, whereas TIM-4, one of the ligands for TIM-1, is
expressed on monocytes, macrophages, and DCs (491). TIM-
1 has been described as a phosphatidylserine (PS) receptor
mediating phagocytosis of apoptotic bodies and in the regulation
of immune responses (492). In T cells, TIM-1 functions as a co-
stimulation signal, inducing T cell activation and IL-4 secretion
(493, 494). In DCs, TIM-1-mediated signaling promotes their
maturation, enhancing their ability to induce Th17 responses
and inhibit the generation of Tregs, implying a cell-dependent
fine-tuning of TIM-1 functions (495).

Early studies identified TIM-1 expression inmurine GCB cells
(496, 497). Later on, it was shown that mice treated with a low-
affinity agonistic anti-TIM-1 antibody, either alone or in addition
to anti-CD45RB, displayed long-term tolerance to allografts, an
effect that was completely reversed in the absence of B cells.
B cells were shown to be responsible for anti-TIM-1-mediated
Th2 responses and IL-10 production by Tregs in these settings.
TIM-1+ B cells were enriched in IL-4- and, importantly, TGF-β-
and IL-10-producing cells, regardless of the developmental stage
or anatomic localization of these populations and were induced
and expanded after transplantation or anti-TIM-1 treatment in
grafted mice. Both IL-10 and TGF-β have been found to be
essential for antigen-specific tolerogenic properties of adoptively
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FIGURE 3 | Model of suppression of immune responses by TIM-1+ Bregs. TIM-1+ Bregs secrete IL-10 and TGF-β upon engagement of TIM-1 by phosphatidylserine

and possibly by interacting with TIM-4-expressing antigen-presenting cells, inhibiting Th1, Th17, and CD8+ T cells, as well as inducing regulatory T cell populations.

These changes could also be mediated indirectly, by decreasing antigen presentation and the production of pro-inflammatory cytokines by dendritic cells (DCs) or

modulating monocytes to differentiate into tolerogenic DCs. DC, Conventional dendritic cell; Mo, Monocyte; TolDC, Tolerogenic dendritic cell; Tr1, Type-1 regulatory

T cell.

transferred TIM-1+ Bregs (52, 91, 498–500). The regulatory
nature of TIM-1+ B cells was further validated in different
models, as the transfer of these cells can reduce the severity
of allergic airway inflammation (91) and colitis (501), while
promoting tumor growth (183, 502). These results support a role
of TIM-1 as an encompassing IL-10+ and TGF-β+ Breg marker
with functional implications.

Subsequently, it was demonstrated that the mucin domain
of TIM-1 was crucial for IL-10 induction by B cells following
stimulation with PS-containing apoptotic cells, suggesting a
physiologic pathway whereby dying cells promote tolerance
to self-antigens and resolution of inflammation by activating
IL-10+TIM-1+ Bregs (503–505). This proposition is further
sustained by observations in mice with a B cell-specific deletion
of TIM-1 or mice lacking the mucin domain of TIM-1, which
present a profound defect in IL-10+ Bregs and multi-organ
tissue inflammation. Furthermore, these mice exhibit a severe
EAE course or accelerated lupus-like syndrome on a susceptible
background (506, 507). Moreover, amelioration of EAE following
inoculation with apoptotic cells was abrogated in recipient
mice with TIM-1-deficient B cells, showing expanded Th1/Th17
responses and reduced Treg generation (508).

Accordingly, in vitro and in vivo studies have demonstrated
that murine TIM-1+ Bregs are able to inhibit the differentiation

of Th1 or Th17 cells and to promote Treg and Tr1 generation,
which has been primarily attributed to the production of
IL-10 or TGF-β, although cytokine-independent mechanisms
have also been suggested (91, 183, 500, 507–510). In this
regard, a recent study has revealed that the expression of the
immune checkpoint TIGIT is enriched among TIM-1+ Bregs and
depends on TIM-1 signaling and subsequent activation of AhR.
TIGIT-deficient B cells showed an impaired IL-10 production,
facilitating the development of spontaneous neuroinflammation
with infiltration of Th1 and Th17 cells. In addition, these mice
presented a more severe EAE, while transfer of TIM-1+ B cells
from TIGIT-deficient mice showed reduced ability to ameliorate
EAE. Since not all TIGIT+ B cells express IL-10, and vice
versa, these results suggest that TIGIT expression can be an
independent mechanism of suppression by TIM-1+ Bregs (507).

A number of reports showing the expression of TIM-1
in human B cells have been published in recent years. In
accordance with mouse data, studies in healthy donors and
HIV patients found an enrichment of IL-10-producing cells
within TIM-1+ B cells. In patients with HIV infection, TIM-1+

B cells specific for HIV antigens suppressed IL-17 and IFN-
γ production by HIV-specific CD8+ and CD4+ T cells, which
was partially reversed by IL-10 blockade (293, 511). Human
IL-10+ TIM-1+ Bregs can also be found infiltrating tumors
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and have been described to suppress CD8+ and CD4+ T cell
anti-tumor responses (323, 512, 513). The utility of TIM-1 as
a marker for a proportion of human IL-10+ Bregs has been
further confirmed in inflammatory and autoimmune diseases,
such as in RA patients, who exhibit reduced frequencies of
TIM-1+ Bregs (514). In agreement with these studies, we
reported that TIM-1 and IL-10 were preferentially co-expressed
in transitional B cells from healthy donors upon BCR and TLR9
activation; however, this population is significantly decreased
in patients with systemic sclerosis (SSc). In addition, TIM-
1+ Bregs from SSc patients exhibited an impaired suppression
of pro-inflammatory cytokines by CD4+ T cells (515). As
for mice, human TIM-1+ Bregs have also been proven to
secrete TGF-β, together with IL-10, and to promote Tregs
differentiation, which seems to be mediated by TGF-β (510,
516).

Therefore, it is becoming apparent that TIM-1+ Bregs have
a regulatory role in the homeostasis of the immune system,
but more studies are necessary to unveil the mechanisms that
this population employs for such effects. Currently, our group
is characterizing the influence of TIM-4 and TIM-4-expressing
cells in the activation of TIM-1+ Bregs. Previous studies using
a fusion Fc-TIM-4 murine protein have shown that TIM-
4 binds to and activates TIM-1 expressed on T cells (490,
517, 518). Human and murine TIM-4 are expressed in APCs,
recognize PS, and are important for the clearance of apoptotic
cells (490, 519, 520). This has led to the interpretation that
TIM-1:TIM-4 interactions could be bridged by PS-containing
exosomes (519, 521). Additionally, TIM-4+ myeloid cells have
been encountered infiltrating human tumors in close vicinity
to TIM-1+ B cells, which suggests that myeloid cells could
induce TIM-1+ Bregs to produce IL-10 through TIM-1:TIM-
4 interactions (513). We have preliminary data indicating that
TIM-1+ Bregs directly interact with TIM-4+ APCs and decrease
their antigen presentation capacity, as well as the production
of pro-inflammatory cytokines. From these data, and previous
evidence, we postulate that TIM-1+ Bregs could be involved in
tolerance induction both directly acting on T cells and indirectly
bymodulating TIM-4-expressing APCs or generating tolerogenic
DCs, which result in the suppression of pro-inflammatory T cells
and the induction of Tregs (Figure 3).

CONCLUDING REMARKS

The crucial role of Bregs in homeostasis and different
immune conditions is now emerging in the literature, as
new evidence confirms them as an important member of the
immunosuppressive cell family. However, much needs to be
elucidated regarding their origin, phenotype, function, and
suppressive mechanisms. Experimental studies have focused on
soluble mediators as the main regulatory molecules of Bregs.
On the other hand, research on surface molecules that allow
Bregs to establish cellular interactions with other cell populations
and convey inhibitory signals is lagging behind. Herein, we
have aimed to consolidate and update the current knowledge
about the cellular and molecular regulatory mechanisms that are
exhibited by Bregs and identify themain cell populations targeted
by them. It is conceivable that the considerable phenotypical
and functional Breg heterogeneity is required to effectively
limit inflammation and reestablish immune homeostasis in
diverse anatomical sites, stages of the inflammatory process, and
pathological conditions. Understanding how Bregs are able to
exercise their suppressive action will be of great importance when
applying the biological function of Bregs in clinical settings.
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