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Pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide

and is predicted to become second in 2030 in industrialized countries if no therapeutic

progress is made. Among the different types of pancreatic cancers, Pancreatic Ductal

Adenocarcinoma (PDAC) is by far the most represented one with an occurrence of

more than 90%. This specific cancer is a devastating malignancy with an extremely

poor prognosis, as shown by the 5-years survival rate of 2–9%, ranking firmly last

amongst all cancer sites in terms of prognostic outcomes for patients. Pancreatic tumors

progress with few specific symptoms and are thus at an advanced stage at diagnosis

in most patients. This malignancy is characterized by an extremely dense stroma

deposition around lesions, accompanied by tissue hypovascularization and a profound

immune suppression. Altogether, these combined features make access to cancer cells

almost impossible for conventional chemotherapeutics and new immunotherapeutic

agents, thus contributing to the fatal outcomes of the disease. Initially ignored, the

Tumor MicroEnvironment (TME) is now the subject of intensive research related to

PDAC treatment and could contain new therapeutic targets. In this review, we will

summarize the current state of knowledge in the field by focusing on TME composition

to understand how this specific compartment could influence tumor progression and

resistance to therapies. Attention will be paid to Tenascin-C, a matrix glycoprotein

commonly upregulated during cancer that participates to PDAC progression and thus

contributes to poor prognosis.
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INTRODUCTION

Pancreatic cancer is relatively rare and represents 2.5% of all cancers worldwide in 2018 (1).
However, the fatal outcome of this disease is almost inevitable which consequently ranks this cancer
site as the most devastating one. This poor survival is mainly inherent to the fact that this cancer
evolves with few specific symptoms and is therefore mostly diagnosed at an advanced stage when
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the cancer presents a very aggressive behavior (4). Upon
cancer detection, resection is possible in 10–20% of the
cases, depending on tumor stage, and localization. Before or
after surgery, or for unresectable tumors, various treatments
including chemotherapeutic agents (gemcitabine, nab-paclitaxel,
5-fluorouacil, or FOLFIRINOX) and radiotherapy are generally
used, but demonstrate little improvement of patient survival (4–
6). Therefore, the discovery of new therapeutics and/or earlier
detection of the disease before the onset of signs and symptoms
is mandatory to improve patient survival rate.

Acinar cells are the predominant cell type in the pancreas
and present an intrinsic plasticity enabling them to perform
metaplasia to ductal-like cells. This metaplastic process called
acinar-to-ductal metaplasia (ADM), is observed during acute and
chronic pancreatitis and may represent the initial step toward
the formation of pancreatic intraepithelial neoplasia (PanIN),
which may then progress to PDAC. PanIN lesions are classified
in different grades, from PanIN1A to PanIN3, characterized by
the evolution of epithelial cell morphology (Figure 1).

Pancreatic carcinogenesis is a multi-stage process resulting
primarily from the accumulation of genetic alterations
(average of 63 mutations per patient) in the somatic DNA
of normal cells as well as inherited mutations (7). Among
the numerous referenced alterations, KRAS, CDKN2A,
TP53, and SMAD4 are the four most frequently mutated

FIGURE 1 | Schematic representations and optical microscopic images of normal pancreas, pancreatitis, and progression from PanIN1 to invasive PDAC. Particular

focus is made on development of desmoplastic stroma. Pancreatitis schematic representation from Yao et al. (2), PanIN progression inspired from Morris et al. (3). ID,

Interlobular Duct; IL, Islet of Langerhans; A, Acini; BPC, Benign Pancreatic Cells; WBC, White Blood Cells. Healthy pancreas scheme has been obtained from

OpenStax College - Anatomy & Physiology. http://cnx.org/content/col11496/1.6/.

genes. KRAS proto-oncogene mutations have been detected
in 92% of PDAC and are already detectable in precursor
lesions, including early preinvasive intraepithelial neoplasia.
Interestingly, SMAD4 mutations are associated with tumor
size, lymphatic invasion, and metastasis and no survival at 5
years (8).

Besides the dramatic modifications in epithelial tissue
morphology and genome, PDAC formation is also characterized
by the desmoplastic reaction induced by tumor cells, which
corresponds to a profound modification of the connective tissue
through (1) recruitment and activation of specific fibroblasts
and (4) intense ECM deposition. Initially corresponding to
around 5% of pancreas mass, the connective tissue thus largely
develops up to 90% of tumor area (60% on average) (9).
Changes in stroma composition also lead to modifications in
local immune system and vascularization, which dramatically
influence prognosis (10, 11). However, the TME also contains
anti-tumor components, which could explain why strategies
depleting connective tissue cells have been so ineffective or even
deleterious (12, 13).

The purpose of this review will thus be to describe the changes
(1) in the cellular composition of the TME, as well as (4) in the
ECM composition by attempting to identify which proteins have
a potential pro- or anti-tumoral role with the ultimate aim of
bringing out new therapeutic targets.
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Cellular Composition of the Stroma
Cancer-Associated Fibroblasts
Among the various PDAC stromal cell types, the Cancer-
Associated Fibroblasts (CAFs) are the most abundant. The
CAF population presents a high heterogeneity and diversity of
functions, presumably due to the multiple origins of these cells
(14). Indeed, they can originate from tissue-resident fibroblasts
that are activated under the control of growth factors such as
TGFβ or following genetic mutations such as TP53 or PTEN (15).
Another cellular origin of CAFs, and probably the most frequent
one, is the Pancreatic Stellate Cells (PSCs) (16). PSC activation
occurs following pancreatic injury, or upon PDGF or TGFβ
stimulation, and leads to (1) morphological changes from a star-
like shape into spindle-like cells, (4) loss of vitamin-A droplets
and (5) increase in cell nucleus volume (17–19). CAFs may also
derive from the recruitment and differentiation of bone marrow-
derived mesenchymal stem cells or from the trans-differentiation
of non-fibroblastic lineages such as adipocytes or epithelial cells
(12, 20, 21). Various markers can be used to distinguish the
multiple subsets of CAFs, such as PDGF-receptor α and β

(PDGFRα/β), α-SMA, FAP, and S100A4 (Ca2+-binding protein),
but none of them is exclusively expressed by CAFs, further
highlighting CAF heterogeneity (21, 22). CAFs are responsible
for the deposition of a dense tumor stroma, which subsequently
can function as a physical barrier against immune infiltration or
as a structural scaffold for cell interactions. In addition, CAFs
secrete MMPs, which consequently ensure ECM degradation
and the subsequent release of various factors leading to the
recruitment of specific cells and/or cell dissemination. Finally,
CAFs also produce many growth factors and proinflammatory
cytokines such as TGFβ, vascular endothelial growth factor
(VEGF), interleukin-6 (IL-6) and CXC-chemokine ligand 12
(CXCL12), thereby promoting tumor growth, angiogenesis and
recruitment of immunosuppressive cells into the TME to
assist in immune evasion (20, 23). In an effort to depict the
fibroblast heterogeneity, 3 different CAF subpopulations have
been identified according to their function or gene signature:
the “inflammatory,” “myofibroblastic” and “antigen-presenting”
CAFs (24, 25).

Endothelial Cells
Despite the obvious production of pro-angiogenic factors by
CAFs and pancreatic tumor cells, PDAC is characterized by a low
microvascular density compared to other types of cancers (11).
Indeed, the dense fibrotic stroma forms a physical barrier that
inhibits the formation and the proper functioning of vasculature,
resulting in sparse constricted blood and lymphatic vessels that
are only partially functional and physically separated from the
cancer cells. This feature is deleterious for patient survival since
low vascularity is associated with poor patient survival due to
poor anti-cancer immune cell infiltration and chemotherapeutic
drug delivery (26). Consequently, addition of anti-angiogenic
drug (bevacizumab) to standard chemotherapy demonstrated
no improvement in PDAC outcome (27). On contrary, vascular
normalization aiming at improving drug delivery could be a good
strategy for this type of carcinoma (27).

Infiltrating Immune Cells
Chronic pancreatitis is a risk factor for the development of
PDAC as well as of systemic diseases characterized by chronic
low-grade inflammation, such as metaflammation in patients
with the metabolic syndrome or diabetes (28, 29). Interestingly,
chronic pancreatitis and PDAC tissues show similarities in their
desmoplasia and inflammatory infiltrates, indicating overlapping
inflammatory responses.

The prevention and elimination of cancer cells are dependent
on the immune system around the tumor. The PDAC immune
microenvironment is characterized by (1) the exhaustion of anti-
cancer immune cytotoxic T lymphocytes notably due to high
mechanical constraints within the tumor and (4) the infiltration
of multiple types of tumor-promoting immune cells, including
myeloid-derived suppressor cells, tumor-associatedmacrophages
and regulatory T cells (10, 30). Those tumor-promoting immune
cells, in combination with CAFs and cancer cells secrete
various pro-inflammatory cytokines such as TGFβ, TNFα, and
different interleukins which subsequently favor immune evasion,
PDAC development and metastasis formation (31). Various
strategies are currently developed to treat PDAC by restoring
proper immune system function: enzymatic digestion of TME,
vascular normalization and neutralization of immune system
modulators (21).

ECM Evolution During Pancreatic
Carcinogenesis
PDAC is characterized by an intense desmoplastic reaction,
defined as the fibrotic response of healthy tissue to invasive
carcinoma and consisting of an abnormal accumulation of
ECM components, mostly collagen fibers (32). This new TME
acts as a physical barrier preventing (1) proper angiogenesis,
and subsequent drug delivery, and (4) anti-cancer immune
infiltration (33, 34). Consequently, TME has been considered
as deleterious for patient prognosis and CAFs, which are
responsible for dense ECM deposition, have been the target of
clinical trials. However, CAF depletion resulted in an apparent
paradoxical accelerated disease progression and encouraged a
more detailed analysis of the most differentially regulated ECM
components in the pancreatic tumors vs. healthy tissue, in order
to identify new therapeutic targets within the TME (35, 36).
We hereafter describe these matrix components according to the
matrisome classification [Table 1; (37)].

Core Matrisome

Collagens
Collagens are by far the most represented constituents of the
connective tissue of normal and pathological pancreas (>90%
of ECM proteins), with the type I and III fibrillar collagens
accounting for >90% of all collagen mass (36, 38). Protein
level for those collagens increases 2.6-fold during pancreatic
tumor progression, which explains desmoplasia and justifies
them as crucial targets. Additionally, the stroma undergoes
intense rearrangement, leading to highly aligned collagen fibers,
associated with bad prognosis for patients following pancreatic
cancer resection (111). Despite their increased deposition,
no ratio variation is observed for type I and III collagens
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TABLE 1 | ECM proteins involved in PDAC, presented according to the matrisome classification.

Matrisome category Name Pro (+) or Anti (-) tumoral role in PDAC Secreted

by…

References

Part 1

C
o
re

m
a
tr
is
o
m
e

C
o
lla
g
e
n
s

Collagen type I + Patients • ⇒ Patient survival (analysis of PDAC patient samples and their

corresponding clinicopathological parameters

Stromal cells (36, 38–45)

in vivo • Nutritive source (PKI model)

• + Invasion and EMT

• Mechanical constraint → hypovascularization, low immune cell

infiltration, - chemotherapy delivery

in vitro • + Proliferation, migration, EMT and—apoptosis (pancreatic cancer

cell lines)

• Nutritive source (PK4A cell line)

Collagen type III + in vivo • Desmoplasia/mechanical constraint → hypovascularization, low

immune cell infiltration, – chemotherapy delivery

Stromal cells

Collagen type IV + Patients • High circulating collagen IV: ⇒ survival after surgery (quick relapse)

• Poor outcome

Tumor and

stromal cells

(46, 47)

in vivo • Nutritive source (PKI model)

in vitro • + Cancer cell growth, maintenance of migratory phenotype

and—apoptosis (pancreatic cell lines)

• Nutritive source (PK4A cell line)

Collagen type V + in vivo • + Metastasis formation (orthotopic mouse models of PDAC) Stromal cells,

PSCs

(48)

in vitro • + Adhesion, proliferation, migration and survival (PDAC cell lines)

• + Angiogenesis

Collagen type VI + in vivo • + Metastasis under hyperglycemia conditions (orthotopic

implantation and intravenous injection of PDAC murine cells)

Stromal cells (36, 39)

Collagen type XV – in vitro • – Migratory abilities and EMT (BxPC-3 cell line) Stromal cells (49)

P
ro
te
o
g
ly
c
a
n
s

Testican + Patients • Poor patient survival Stromal cells (50, 51)

in vitro • + Collagen deposition and invasive cancer cell growth (organotypic

coculture models)

• + Cancer cell proliferation, survival, migration, invasion and EMT

(PDAC cell lines)

Lumican – Patients • ⇒ Patient survival

• ⇒ Metastatic recurrence after surgery

Stromal cells (52, 53)

in vivo • – Cancer cell growth (xenograft and syngeneic orthotopic

mouse models)

Decorin – in vitro • – Cell growth (cancer cell lines) Stromal cells (36, 54)

Biglycan – in vitro • Cell growth (PDAC cell lines)

• – Cell migration / metastasis (pancreatic cell lines)

Tumor and

stromal cells

(55–58)

+ Patients • Poor prognosis (⇒ overall survival) Stromal cells

Versican + in vivo and in

vitro

• Immunosuppressive component, ⇒ T cell infiltration (KPC mouse

model and PDAC organotypic spheroid coculture models)

Tumor and

stromal cells

(59, 60)

E
C
M

g
ly
c
o
p
ro
te
in
s

Laminins + Patients • Poor prognosis (public online databases) Tumor cells (61, 62)

in vivo • + Cancer cell proliferation, invasion and migration (+ metastasis)

(subcutaneous xenograft mouse model and pancreatic cancer liver

metastasis mouse model)

in vitro • + Cancer cell proliferation, survival, migration, invasion and EMT

(pancreatic cell lines)

Fibronectin + Patients • Associated with advanced stages, patient short survival and poor

prognosis (analysis of PDAC patient samples and their corresponding

clinicopathological parameters

Tumor and

stromal cells

(63–68)

in vitro • + Tumor growth and invasion

• + Chemoresistance (cells from PDAC patients and pancreatic cancer

cell lines)

TGFβi + Patients • Poor prognosis, associated with patient short survival Tumor and

stromal cells

(69–72)

in vivo • + Tumor rigidity and immunosuppression (various pancreatic mouse

models)

• + Tumor growth

in vitro • + Cancer cell migration and invasion (pancreatic cancer cell lines)

Tenascin-C + Patients • Poor prognosis (PDAC patient samples), may depend on tumor stage

• Correlated with perineural invasion, advanced stages, postoperative

locoregional recurrence and metastases (resected PDAC specimens

and clinicopathological features)

Stromal cells (9, 73–77)

in vitro • + Perineural invasion (coculture model)

• + Cancer cell proliferation, invasion and EMT (metastasis) (PDAC cell

lines and primary PanIN and PDAC cells)

(Continued)
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TABLE 1 | Continued

Matrisome category Name Pro (+) or Anti (-) tumoral role in PDAC Secreted

by…

References

PART 2

M
a
tr
is
o
m
e
-a
s
s
o
c
ia
te
d
p
ro
te
in
s

S
e
c
re
te
d
fa
c
to
rs

TGFβ + in vivo • + PSC activation, proliferation and collagen synthesis

(subcutaneous and orthotopic transplantation models and

transgenic mouse models)

• + Metastasis (orthotopic and transgenic mouse models)

• Immunosuppression and inappropriate inflammation

Tumor and

stromal cells

(40, 78–81)

in vitro • + PSC activation, proliferation and collagen synthesis

• + Cancer cell proliferation and—apoptosis (various pancreatic

cancer cell lines and coculture models)

• + Cancer cell EMT and invasion

SHH + in vivo and

in vitro

• + PSC recruitment and activation (+ desmoplasia) (human

pancreatic primary cells, PDAC cell lines, subcutaneous and

orthotopic transplantation of PDAC cells and transgenic pancreatic

mouse models)

Tumor cells (82)

FGF-2 + in vitro • + PSC activation and collagen synthesis (various PDAC cell lines) Tumor cells (40)

PDGF + in vitro • + PSC activation and collagen synthesis (various PDAC cell lines) Tumor cells (40)

CXCLs + in vivo • + Desmoplastic reaction and tumor angiogenesis (transgenic

mouse models)

• + Cancer cell migration/invasion

• + Inflammation

Tumor cells (36, 83, 84)

S100 proteins + in vivo • + Tumor growth and metastasis (various xenograft and transgenic

pancreatic mouse models)

Tumor cells (85–87)

in vitro • + Cancer cell survival, migration/invasion (PDAC cell lines)

E
C
M

re
g
u
la
to
rs

MMPs + Patients • Poor prognosis (analysis of PDAC patient samples and their

corresponding clinicopathological parameters)

Tumor cells (36, 88–90)

in vivo • ADM induction (various KRAS mouse models)

• + Tumor growth and metastasis (mice harboring orthotopic

pancreatic cancers, subcutaneously injected with pancreatic

cancer cell lines or several genetic Kras-driven PDAC models

• + Angiogenesis (subcutaneously or orthotopically injected mice

with PDAC cells)

in vitro • + Cancer cell proliferation and invasion

ADAMs + Patients • Associated with poor prognosis and invasive tumors (analysis of

PDAC patient samples and their corresponding

clinicopathological parameters)

Tumor and

stromal cells

(91–93)

in vivo • + Tumor growth and metastasis (orthotopically-injected mice and

KRAS mouse model)

• + Angiogenesis

in vitro • + Cancer cell migration/invasion (PDAC cell lines)

• + Angiogenesis

TIMPs – in vivo • Tumor growth and metastasis, + apoptosis (subcutaneous and

orthotopic injection)

• – Angiogenesis

Stromal cells (94–96)

in vitro • – Cancer cell invasion,—invadopodia (co-culture models)

+ in vivo • + Tumor growth and metastasis (KPC and subcutaneously

injected mouse models)

• Drug resistance

Tumor cells

SERPINs +

(–)

Patients • Poor survival / Poor prognosis (analysis of PDAC patient samples

and their corresponding clinicopathological parameters)

Tumor and

stromal cells

(36, 97–100)

in vivo • + Tumor growth, invasion and metastasis (PDAC cells transplanted

mouse models)

LOXs + Patients • Poor survival post-resection (transcriptomic analysis of

patient samples)

Stromal cells (36, 101, 102)

in vivo • Drug resistance: + desmoplasia,—perfusion (orthotopically

transplanted mouse model)

• + Cancer cell migration/invasion, + metastasis (KPC

mouse model)

(Continued)
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TABLE 1 | Continued

Matrisome category Name Pro (+) or Anti (-) tumoral role in PDAC Secreted

by…

References
E
C
M
-a
ffi
lia
te
d
p
ro
te
in
s

Annexins + Patients • Associated with poor patient survival, tumor progression and

recurrence post-resection (analysis of PDAC patient samples and

their corresponding clinicopathological parameters, and TCGA public

online database

Tumor and

stromal cells

(103–109)

in vivo • + Metastasis (pancreatic transplanted mouse model)

in vitro • + Cancer cell growth, - apoptosis

• + Cancer cell invasion and EMT activation (PDAC cell lines)

• + Chemoresistance

Galectins + in vivo • Gal1: ADM induction

• Gal3: + Tumor growth and immune escape

• Gal9: + Immune escape

Stromal cells

(Gal1) and

tumor cells

(Gal3 and

Gal9)

(110)

in vitro • Gal1 and 3: + PSC activation

• Gal1: + Cancer cell proliferation, migration/invasion and

immunosuppression

• Gal3: + Cancer cell growth/proliferation and invasion/migration

– Patients • Gal4: Associated with patient better survival and less metastases Tumor cells

in vitro • Gal4:—Cancer cell migration and invasion (PDAC primary cells and

cell lines)

Pro-(+) or anti-(–) tumoral role as well as cells responsible for their secretion are detailed.+: promotion, –: inhibition, ⇒: increased,⇒ : decreased. Each protein family has been classified

according to the matrisome classification and is highlighted with a specific color. Tenascin-C information is highlighted in dark green.

between healthy and PDAC connective tissues, thus encouraging
attention to other collagens differentially expressed during
pancreatic carcinogenesis (37). Among them, type IV, V, VI,
VII, XII, XIV, and XV collagens are key players in pancreatic
tumorigenesis and act either as beneficial or detrimental
molecules. For instance, collagen IV, which is an essential
constituent of the basement membrane (BM), is produced by
cancer cells, favors cancer cell growth, migration and protect
them from apoptosis. Consequently, high serum level of collagen
IV is associated with quick relapse after surgery and thus
poor survival (46, 47). On contrary, another BM component,
collagen XV, is lost during pancreatic tumorigenesis and its
overexpression reduces the migratory abilities of PDAC cells
in type I collagen-rich matrices (49). Interestingly, collagen
VI is highly expressed during PDAC progression, induces
metastatic colonization particularly in a hyperglycemic context
and could therefore be targeted especially in diabetic patients
(36, 39).

Besides their architectural and signaling role enabling tumor
progression, collagens also serve as a nutritive source. Indeed,
under PDAC specific conditions low in oxygen and nutrients,
tumor cells metabolize collagen molecules, and thus collagen-
derived proline enables PDAC cell proliferation (112). Therefore,
this could explain the correlation between high serum collagen
fragment levels in serum and significantly shorter overall
survival, and prompts detailed analysis of collagen fragment role
during PDAC progression (113).

Proteoglycans
Proteoglycans consist of one or more glycosaminoglycan (GAG)
chain(s)—representing around 85% of the molecule mass—
covalently attached to a core protein, and are categorized
depending of their GAG chain nature and size (114). Among the
small proteoglycans which are mainly expressed by TME, testican

acts as a pro-tumoral molecule by affecting collagen deposition
and thus favoring tumor cell growth and invasion, therefore
leading to a poor patient survival, whereas lumican interferes
with tumor progression and is associated with prolonged patient
survival by limiting cancer cell growth andmetastasis (50, 52, 53).
Decorin is also considered as an anti-tumoral constituent by
reducing tumor cell growth (36, 54) whereas the pro- or anti-
tumoral status of biglycan in PDAC is still under debate. Indeed,
its expression by stromal and epithelial cells (1) is induced by
TGFβ, (4) has been described to inhibit pancreatic cancer cell
growth and migration (55–57), but (5) is associated with poor
prognosis (58). Finally, versican, which corresponds to a large
proteoglycan expressed by both stromal and epithelial cells in
PDAC, acts as an immunosuppressive component by reducing T
cell infiltration and is thus considered as a deleterious molecule
for patient survival (59).

Glycoproteins
Laminins are a family of ECM glycoproteins representing the
major non-collagenous constituent in BM.Most of their subunits
are over-expressed in PDAC and associated with poor outcome
for patient survival (61). Fibronectin (FN1), which supports cell-
ECM interactions, is essential for wound healing, development,
and tissue homeostasis under physiological context. FN1 is also
upregulated in PDAC which leads to tumor growth, invasion and
metastasis formation and is consequently associated with poor
prognosis in PDAC patients (63).

Transforming Growth Factor beta-induced (TGFβi) protein,
also named βig-h3, is able to modulate cell adhesion through
various integrins, including αvβ3, α1β1, and αvβ5.This
glycoprotein is increased during pancreatic cancer and acts
either directly on tumor CD8+ T cells by reducing their
proliferation and activation or on tumor cells by promoting their
migration and invasion (69, 115). TGFβi could thus be regarded
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for its double therapeutic potential to increase local anti-tumor
immunity and subsequently induce cancer cell apoptosis or
inhibit metastasis (69–72).

Among the four members of the Tenascin (TN) family,
Tenascin-C (TNC) is by far the most well-characterized and is
commonly described as being widely distributed in embryonic
tissues, restricted in some adult tissues, such as stem cell
niches and tendons (116), and de novo re-expressed during
physio-pathological contexts such as wound healing and tumor
progression (117). In PDAC, TNC protein is restrained to the
tumor stroma and is not found in epithelial tumor cells or
adjacent normal pancreatic tissue (9). High TNC expression, and
downstream signaling through the Annexin II receptor, have
been initially correlated with poor prognosis but this association
is still controversial and could depend on the stage and grade
of the pancreatic tumor or the specific location of TNC (9,
73, 118). So, high perineural TNC expression is associated with
perineural invasion and poor prognosis with high loco-regional
recurrence (74). In the same line, a recent study highlighted TNC
as a prominent protein found in exosomal compartment and
associated with local invasion and distant metastasis (75).

We recently demonstrated TNXB gene and TNX protein were
significantly downregulated in the six cancers with the highest
incidence and mortality worldwide (i.e., lung, breast, prostate,
stomach, colorectal, and liver carcinomas) and low TNX levels
were associated with poor prognosis in patients suffering from
lung and breast carcinomas (119). In the same study, TNX
protein expression was also decreased in tumor samples from
PDAC patients (119).

Matrisome-Associated Proteins

Secreted Factors
In pancreatic cancer, Various Factors Are Mainly produced by
cancer cells to favor tumor progression. Among them, TGFβ role
is complex and mediates both pro- and anti-tumoral activities
in cancer cells depending on their context, in space and time
and their microenvironment. Indeed, in normal pancreatic cells
and at early stages of pancreatic carcinogenesis, TGFβ exerts
a tumor suppressive effect through SMAD4-regulated genes.
However, in the late phase, SMAD4 is inactivated whereas
TGFβ expression is upregulated leading to PI3K/Akt, Ras/ERK,
p38MAPK, and Rho/GTPase pathway activation and subsequent
tumor progression (120). Then, TGFβ invariably induces (1)
proliferation and survival of PDAC cells, (4) EMT, invasion,
and metastasis, (5) production of a dense fibrotic stroma and
(6) deregulation of the immune microenvironment toward
immunosuppression and inappropriate inflammation. Thus,
various promising pre-clinical and clinical trials have already
evaluated the potential of TGFβ-targeting therapies, through
TGFβ regulator (losartan), TGFβ neutralizing antibodies or
TGFβ receptor inhibitors (78–81, 121, 122). Other signaling
factors are secreted by pancreatic cancer cells, enabling
PSC recruitment and activation, and subsequent desmoplastic
response inducing collagen synthesis. Thus, Sonic HedgeHog
(SHH), Fibroblast Growth Factor-2 (FGF-2) and Platelet-derived
Growth Factor (PDGF) are overexpressed during PDAC and
interfering with their signaling corresponds to valuable strategies

for PDAC treatment (40, 82). However, clinical trials using
IPI-926, vismodegib and sonidegib that target the hedgehog
pathway have so far been disappointing (123). PDAC cells
also overexpress several CXC ligands, which are involved
in desmoplastic reaction, immune modulation and tumor
angiogenesis (36, 124). Thus, blocking the CXCLs-CXCR2
axis improves survival in a PDAC developing mouse model
by reducing cell invasion and inflammation and could be
a therapeutic approach against PDAC progression (83, 125).
Finally, proteomic analyses of ECM during PDAC progression
demonstrated that various members of the S100 Ca2+-binding
protein family, notably S100P and S100A4, are upregulated
in this disease and their high levels are associated with poor
prognosis, thus shedding light on their receptor, i.e., the
Receptor for Advanced Glycation End products (RAGE) and the
RAGE/S100 ligand axis as a promising therapeutic approach (85).
Therefore, various S100 monoclonal antibodies, S100 protein
inhibitors or RAGE antagonist have already demonstrated a
reduction of tumor growth and metastasis formation in mouse
models (85).

ECM Regulators
Many proteins overexpressed during pancreatic tumorigenesis
are responsible for ECM remodeling and are therefore
potential targets for pancreatic cancer treatment.
Matrix MetalloProteinases (MMPs), A Disintegrin And
Metalloproteinases (ADAMs), and A Disintegrin And
Metalloproteinase with ThromboSpondin motifs (ADAMTSs)
are zinc-dependent endopeptidases that are able to degrade all
ECM proteins. Their activities are tightly regulated by proteolytic
activation and inhibition via their natural inhibitors, Tissue
Inhibitors of MetalloProteinases (TIMPs) (126). The imbalance
between the expression of metalloproteinases and TIMPs is thus
of crucial interest in cancer development and metastasis (127).
With some exceptions, those proteases are overexpressed during
pancreatic cancer progression and are the targets of numerous
pre-clinical and clinical trials, which for some of them were
disappointing or less powerful than expected, probably due to
(1) aspecific metalloproteinase targeting (use of broad-spectrum
inhibitors) or (4) compensation mechanisms set up by tumor
cells (88).

Several SERPIN family members are also importantly
differentially regulated during PDAC development, mainly
promoting tumor growth, invasion, and are associated with poor
survival, but their activities have to be analyzed individually
with particular attention paid to their original cells (36, 97–99).
Finally, Lysyl Oxidases (LOX), a family of extracellular copper-
dependent enzymes involved in ECM cross-linking, are also
important matrix regulators over-represented during pancreatic
tumorigenesis (36). Their inhibition in mouse model prolonged
tumor-free survival by interfering with stroma stiffness (101,
102).

ECM-Affiliated Proteins
Among the ECM-affiliated proteins significantly deregulated
during PDAC development, numerous members belong to the
vertebrate “A subgroup” of the annexin superfamily coding a
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calcium- and membrane-binding protein (36). This subgroup
consists of at least 12 members (A1-A11 and A13), all of which
are suspected to be involved in tumor development (103). In
PDAC, annexins are known to favor tumor cell growth, EMT,
invasion and metastasis and to inhibit apoptosis. Additionally,
they interact with various peri-cellular proteins such as S100
proteins and TNC, which are upregulated during PDAC
progression. Therefore, annexin overexpression is associated
with poor patient prognosis and could inspire new therapeutic
strategies (128). Galectins, which are a family of carbohydrate-
binding proteins, are also upregulated during PDAC progression
(36, 110). Besides galectin-4, which has been described as a tumor
suppressor by inhibiting tumor cell migration and invasion,
the other galectins favor pancreatic tumor. Consequently,
galectin inhibitors are considered as promising opportunities
for pancreatic cancer therapeutic interventions, either alone or
combined with current chemo- and/or immunotherapies (110).

CONCLUSIONS

During pancreatic tumorigenesis, important stromal
modifications occur both at the cell landscape level and the
matrix molecular composition in response to tumor signals.
Herein, we have listed these major changes by focusing only
on the proteins belonging to the matrisome. However, other
extracellular components have not been underlined, but can
drastically influence pancreatic tumor progression, as it is the
case for hyaluronic acid (HA) (129–136). Indeed, in PDAC
mouse model, HA deposition (1) was observed very early
during tumor formation in an intralobular position in ADM
regions and close to PanIN lesions and (4) preceded collagen
deposition around lesions that will progress to PDAC (129).
Besides making the ECM denser, HA deposition may be
related to an inflammatory stage allowing the recruitment
of immune cells in ADM areas, which further underlines
the value of HA as a therapeutic target for PDAC treatment.
Various drugs targeting HA have been developed such as
pegylated hyaluronidase (PEGPH20) and Minnelide (132, 137).
However, PEGPH20 in combination with conventional

chemotherapies failed to demonstrate an improvement in
median overall survival, leading to the recent discontinuation of
PEGPH20 development after a phase 3 clinical trial. Minnelide,
corresponding to an active substance extracted from thunder
god vine is still under investigation and its mechanism of action
seems multimodal (132, 138–140). Additionally, abnormal
glycosylation of ECM components such as proteoglycans
and glycoproteins can significantly influence tumor growth,
neoplastic progression, metastasis and chemoresistance and thus
should be considered for new drug design (141, 142). So far,
despite promising results in preclinical models, no therapeutic
strategy targeting the stroma compartment has brought
conclusive results in clinical settings. This could be explained
by differences in pharmacokinetics, pharmacodynamics and
metabolism and the failure to accurately model the tumor
microenvironment of patients using preclinical mouse models.
However, a better understanding of the tumor stroma is
expected to open up new possibilities for the development of
new drugs.
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