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The cardiometabolic syndrome involves a clustering of metabolic and cardiovascular

factors which increase the risk of patients developing both Type 2 Diabetes Mellitus

and cardio/cerebrovascular disease. Although the mechanistic underpinnings of this

link remain uncertain, key factors include insulin resistance, excess visceral adiposity,

atherogenic dyslipidemia, and endothelial dysfunction. Of these, a state of resistance to

insulin action in overweight/obese patients appears to be central to the pathophysiologic

process. Given the increasing prevalence of obesity-related Type 2 Diabetes, coupled

with the fact that cardiovascular disease is the number one cause of mortality in this

patient population, a more thorough understanding of the cardiometabolic syndrome

and potential options to mitigate its risk is imperative. Inherent in the pathogenesis of

insulin resistance is an underlying state of chronic inflammation, at least partly in response

to excess adiposity. Within obese adipose tissue, an immunomodulatory shift occurs,

involving a preponderance of pro-inflammatory immune cells and cytokines/adipokines,

along with antigen presentation by adipocytes. Therefore, various adipokines differentially

expressed by obese adipocytes may have a significant effect on cardiometabolism.

Clusterin is a molecular chaperone that is widely produced by many tissues throughout

the body, but is also preferentially overexpressed by obese compared lean adipocytes

and relates strongly to multiple components of the cardiometabolic syndrome. Herein, we

summarize the known and potential roles of circulating and adipocyte-specific clusterin

in cardiometabolism and discuss potential further investigations to determine if clusterin

is a viable target to attenuate both metabolic and cardiovascular disease.
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INTRODUCTION

Although the exact diagnostic criteria varies (1–3), the metabolic syndrome involves a clustering
of abnormalities including obesity, insulin resistance, hypertension, and dyslipidemia. These in
turn heighten the risk of cardio- and cerebrovascular disease (CVD) [elevated risk of primary and
recurrent stroke (4) and myocardial infarction (5)], Type 2 Diabetes Mellitus (T2D) (6, 7), and
non-alcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) (8). Initially termed the metabolic
syndrome, Reaven’s syndrome, or Syndrome X, among others (9, 10), the ramifications of metabolic
disease on CVD risk have subsequently led to a broadening of terminology (i.e., the cardiometabolic
syndrome). Although the criteria are the same (Table 1), the term cardiometabolic syndrome has
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TABLE 1 | Clinical definitions of the cardiometabolic syndrome based on the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and

Treatment of High Blood Cholesterol in Adults Adult Treatment Panel III, the International Diabetes Federation (IDF), and the World Health Organization (WHO).

WHO (11) NCEP ATP III (2) IDF (12)

T2D or IFG or IGT or insulin

resistance plus ≥ 2 of the

following:

3 of the following: Central obesity defined as WC above

the ethnicity-specific cut-off plus ≥ 2

of the following:

Body Weight • BMI > 30 kg/m2 or WHR >

0.85 (females) or > 0.90 (males)

• WC > 88 cm (females) or >

102 cm (males)

Population specific

Lipid Profile • HDL < 1.0 mmol/L (< 40

mg/dL) and/or

• TG ≥ 1.7 mmol/L (150 mg/dL)

• HDL < 1.3 mmol/L (< 50

mg/dL) and/or

• TG ≥ 1.7 mmol/L (150 mg/dL)

• HDL < 1.3 mmol/L (< 50 mg/dL) or

specific treatment and/or

• TG ≥ 1.7 mmol/L (150 mg/dL) or

specific treatment

Blood pressure • BP ≥ 140/90 mmHg or use of

blood pressure medication

• BP ≥ 135/85 mmHg or use of

blood pressure medication

• BP ≥ 135/85 mmHg or use of

blood pressure medication

Other • Microalbuminuria > 20 pg/min

or Alb/Crea ratio ≥ 30 mg/g

• Fasting plasma glucose ≥ 5.6

mmol/L (100 mg/dL) or previously

diagnosed T2D

BP, blood pressure; HDL, high density lipoprotein cholesterol; IGT, impaired glucose tolerance; T2D, type 2 diabetes; TG, triglycerides; WC, waist circumference; WHR, waist to hip ratio.

gained more widespread acceptance due to the intersection of
risk factors that contribute to both CVD and metabolic disease
and involve similar pathophysiologic processes.

The cardiometabolic syndrome is highly prevalent, affecting
over 30% of the adult population in the United States (U.S.) and
rising, with especially high prevalence rates (>40%) in patients
older than 60 years old (13, 14). Compared to the general
population, the relative risk for developing CVD with coexistent
cardiometabolic syndrome is doubled (15), with 3-fold the risk
of T2D (13). In addition, all-cause mortality is higher in those
with the cardiometabolic syndrome. Importantly, factors related
to ethnicity/race, gender, and socio-economics affect risk, with

the highest rates occurring in non-Hispanic white men and black
women (14). In addition, socio-economic factors such as low

education level and advanced age are independently associated
with a higher risk of the cardiometabolic syndrome. The reasons
for these differences are incompletely understood and likely

multifactorial, but remain a critical focus of future research with
significant public health ramifications (16–19).

THE CENTRAL ROLE OF
OBESITY-RELATED INFLAMMATION AND
INSULIN RESISTANCE IN
CARDIOMETABOLISM

Over 35% of the adult US population is obese (20), and excess

adiposity contributes to multiple complications including T2D
and accelerated rates of CVD (21). In fact, CVD is the number
one cause of mortality in diabetic patients, with a 2–3-fold higher

risk of clinical atherosclerosis (22), illustrating a close association
between metabolic disease and CV risk. As such, underlying
the dysfunction in cardiometabolic disease are four interrelated

central features: insulin resistance, excess visceral adiposity,
atherogenic dyslipidemia, and endothelial dysfunction (23).
Of these, obesity-related insulin resistance appears to the most
important trigger. Among all the cardiometabolic risk factors,

the relationship between insulin resistance and hypertension
is the best established, and end-organ insulin resistance is a
central tenet in its pathophysiology (24). Various mechanisms
have been put forth to explain this connection including a
decrease in insulin-mediated renal artery vasodilatation and
uncompensated sodium reabsorption, with a resultant increase in
blood pressure. Systemic and vascular insulin resistance occurs
in conjunction with inappropriate activation of the renin–
angiotensin–aldosterone system (RAAS) (25). Hyperinsulinemia
also increases sympathetic nervous system activity (26),
contributing further to the development of hypertension, a
prominent component of the cardiometabolic syndrome.

Obesity and its associated comorbidities (including T2D
and CVD) are associated with a state of chronic low-grade
inflammation (27) that is well-recognized as a major cause
of decreased insulin sensitivity (28–30). Inflammatory pathway
activation has been observed in all classical insulin target
tissues, indicating the key role of inflammation in driving
the pathogenesis of systemic insulin resistance. Particularly, in
adipose tissue (AT), macrophages play a central role (28, 31,
32); however, recent studies have highlighted the importance of
several other key immune cells in maintaining lean AT, including
immunosuppressive regulatory T (Treg) cells, which contribute
to a “Type 2” anti-inflammatory immunoenvironment (33, 34).
In obesity, this immunologic milieu is shifted to a more pro-
inflammatory state, in which the normal architecture, energy
storage, and endocrine activities of adipocytes are profoundly
altered. Activation of a proinflammatory pathway in AT leads
to the secretion of numerous cytokines such as tumor necrosis
factor-alpha (TNF-α), interleukin-6 (Il-6) and interleukin-1β (IL-
1β) (35) that activate toll-like receptors (TLR2 and TLR4) and
impair glucose uptake (36). Cytokines also impair suppression
of AT lipolysis, with resultant free fatty acid (FFA) release
into the circulation (37–39), which hinders the ability of
insulin to stimulate muscle glucose uptake (40) and suppress
hepatic glucose production (41), the two major factors in
the pathogenesis of insulin resistance. Therefore, disruption
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in AT fatty acid metabolism is likely an underlying factor
in cardiometabolic disease, by promoting both hyperglycemia
and dyslipidemia.

Obesity, the cardiometabolic syndrome, and T2D have also
long been associated with higher risk of cerebrovascular disease
and cognitive decline (42–52). One potential reason for this
connection is that insulin has direct effects on neurotransmission
and neuropathology in the brain (53–56), including alterations
in the production, degradation and clearance of β-amyloid
(Aβ) that lead to plaque deposition in Alzheimer’s disease (57).
Various murine models of obesity and diabetes (including after
high-fat diet feeding) (58–61) have indicated a relationship
between peripheral and “central” insulin resistance, and in
humans altered metabolic brain activity occurs in peripherally
insulin-resistant subjects (62–64), with dysregulation in CNS
insulin signaling (65–67). In fact, intravenous insulin infusion
(57, 68, 69), inhaled insulin (69, 70), the insulin-sensitizing
agent pioglitazone (70, 71), metformin (72, 73), and weight-loss
interventions, including bariatric surgery, have demonstrated
beneficial effects on memory (74–77). Cerebrovascular disease
(78–80) and vascular dementia (81, 82) are also strongly
related to insulin resistance, even independent of frank diabetes,
and the Insulin Resistance Intervention after Stroke (IRIS)
trial established that improving insulin sensitivity can prevent
cerebrovascular events (83).

CHARACTERISTICS OF CLUSTERIN AND
PHYSIOLOGIC ROLES

The human clusterin (CLU) gene (encodes the protein
clusterin/apolipoprotein J) was first identified by Blaschuk
et al. (84). This highly conserved gene consists of nine exons
located on chromosome 8 that encode different isoforms
resulting from alternative splicing and post-translational
modifications (glycosylation, disulfide bond cleavage, etc.)
(85, 86). The CLU gene promoter is highly conserved among
species, with numerous identified regulatory elements including
TGF-β inhibitory element, activator protein-1 and−2, and
nuclear factor, but is also responsive to many environmental and
cytokines that vary depending on the involved tissue (87–89).
Although expressed by nearly every tissue in the human body,
clusterin is predominantly made by epithelial tissues during
embryonic development and in the testis, ovary, adrenal gland,
liver, heart and brain of adults (85, 86). Its identified receptors
are varied and often tissue-specific and include the HDL
cholesterol receptor, low density lipoprotein-related protein
2 (LRP/megalin) (90), ApoER2 (91), and very low density
lipoprotein receptor (VLDLR), many of which are critical to
cardiovascular health.

There are two major forms of clusterin: a stress-induced, non-
glycosylated, nucleocytostolic 55kDa variant (nCLU) consisting
of parallel α and β chains, and a secreted or cytosolic variant
(sCLU) that is proteolytically cleaved, connected by five disulfide
bonds, and released from cells in an antiparallel fashion (92).
Heterodimeric sCLU circulates mainly as a component of
high-density lipoprotein (HDL) cholesterol, but has also been

found to be bound to apolipoprotein (Apo) A1, various lipids,
paroxanase, beta (β)-amyloid protein, and complement proteins,
among others [summarized in Trougakos and Gonos (93)].
In healthy subjects, a higher prevalence of sCLU is bound
to cardioprotective HDL cholesterol, suggesting that secreted
clusterin may play a role in preventing progression of vascular
disease (94). In contrast, nCLU predominantly promotes ionizing
radiation-induced death of cells and triggers apoptosis in a
BAX-dependent mechanism, and has yet to be linked with
cardiometabolic pathology (95). Therefore, the remainder of this
review will focus on the relationship of CVD and metabolic
disease with sCLU.

One of the major roles of clusterin is to act as a molecular
chaperone that assists folding of secreted proteins (87). Clusterin
may also serve as a sensor of oxidative stress and is reduced upon
exposure to acute stress (96). As a result of its ubiquitous nature,
it has been implicated in a wide range of pathologic processes
including cancer development and progression, complement
regulation, and sperm maturation (93, 97, 98). CLU gene
transcription and protein expression is upregulated in breast
cancer (99), ovarian cancer (100), and prostate cancer (101), and
inhibition of CLU expression protects the cell from apoptosis
induced by chemotherapy, radiotherapy, and androgen/estrogen
depletion (102–104). Clusterin is also involved in CNS lipid
trafficking (105, 106) and is widely expressed in the brain (107).
Accordingly, clusterin has clinical associations with Alzheimer’s
disease (AD) (108, 109) and has been proposed as a biomarker
of AD (110). In fact, risk variants in CLU are strongly associated
with AD (108). In patients with both mild cognitive impairment
and AD, clusterin levels are elevated in the brain, cerebrospinal
fluid, and blood (111–114), and accordinglyCLU gene expression
is elevated in these pathologic conditions (107).

ROLE OF CIRCULATING CLUSTERIN IN
INSULIN RESISTANCE AND METABOLIC
DISEASE

There are numerous identified mechanisms by which circulating
clusterin could impact the risk of metabolic disease. Leptin
resistance has been demonstrated in both murine models and
human obesity, with reduced transport across the blood-brain-
barrier (BB) (115). In turn, sCLU affects the transport of leptin
across the BBB via LDL cholesterol (116), and through its
binding to the receptor LRP2 can sensitize leptin receptors
in the hypothalamus (117). This suggests that clusterin may
play a role in modulating appetite and contributing to obesity
(117). Clusterin can also directly affect insulin signaling and
inflammation, two factors that can lead to insulin resistance,
via its actions on macrophage phosphoinositide 3-kinase (PI3K;
a mediator of insulin signaling) and NFκB (a major pro-
inflammatory pathway in insulin resistance) (118). Clusterin
induces directional migration of macrophages acting as a
chemoattractant (119). This stimulates the expression and
secretion of TNF-α and various chemotactic cytokines allowing
clusterin to serve as a link between inflammation and remodeling
of tissues by directing immune cells (120). Therefore, clusterin
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plays a significant role in inflammation and immune responses
through its molecular interactions with complement factors,
immunoglobulins, and inflammatory pathways (121).

In support of these identified mechanistic processes, both
murine and human studies have demonstrated a significant
link between circulating clusterin and features of the metabolic
syndrome. Skeletal muscle and hepatic gene expression of CLU
increase following high-fat diet feeding in mice, and whole body
clusterin knockout mice are insulin sensitive compared to wild-
type mice (122). Obese patients without diabetes following a
2 week very low calorie diet have reduced plasma clusterin
levels (123), and in obese compared to lean subjects, plasma
clusterin levels are elevated and positively relate to body mass
index, waist circumference, markers of inflammation (hsCRP
and retinol-binding protein-4) (124), and insulin resistance
(125). In addition, polymorphisms in CLU have been linked
to insulin resistance [by the homeostasis model of insulin
resistance [HOMA-IR] and impaired insulin secretion [HOMA-
β]] (126). In contrast to these deleterious metabolic effects,
clusterin has been shown to reduce hepatic fibrosis via stellate
cell downregulation of the Smad3 signaling pathway (127).

CARDIOVASCULAR AND
CEREBROVASCULAR EFFECTS OF
CIRCULATING CLUSTERIN

The mechanistic effects of circulating clusterin on CVD are
controversial, due to seemingly paradoxical effects in the existing
literature, and the mechanisms behind such a link remain
unclear. Clusterin is found in a subset of dense HDL cholesterol
particles and has wide-ranging effects on lipid transport (121,
128). In plasma, clusterin forms HDL particles with ApoA-I
and ApoE and aids in the transfer of HDL cholesterol from
peripheral tissues to the liver, diverting lipoproteins away from
atherosclerotic lesions (129, 130). In contrast, clusterin may have
a deleterious effect on the antioxidant activity of paroxanase-1
(PON1), whose deficiency enhances atherosclerosis by increasing
the accumulation of oxidized phospholipids in atherosclerotic
plaques (131).

There are multiple lines of evidence suggesting that human
clusterin may have a significant clinical association with multiple
facets of cardiovascular risk. Circulating plasma clusterin (sCLU)
levels are strongly associated with the pro-inflammatory factor C-
reactive protein (CRP) (124), various lipid markers of heightened
cardiovascular risk, and increasing systolic and diastolic blood
pressure (90, 132). Circulating clusterin is also negatively
associated with leptin in obesity-related CVD (133). In addition,
clusterin bound to HDL cholesterol is reduced in obese males
and is associated with lower levels of HDL cholesterol, higher
TGs (134) and low-density lipoprotein (LDL) cholesterol levels,
and accelerated atherogenesis (135), and may confer higher
cardiovascular risk during the aging process (135). Interestingly,
proteomic analysis has shown that higher levels of clusterin are
found in carotid atherosclerotic compared to non-atherosclerotic
plaques (136). Not all studies, however, have confirmed a
beneficial role for clusterin in CVD. A recent study showed

that lower serum clusterin was associated with higher rates
of mortality in heart failure patients (137), indicating some
uncertainty on the importance of circulating clusterin in the
CVD process.

ADIPOCYTE-DERIVED CLUSTERIN AND
ITS POTENTIAL ROLE IN
CARDIOMETABOLIC DISEASE

The adipocyte is no longer viewed as simply a storage depot
for lipids, but is now recognized as an important determinant
of an obesity-related proinflammatory environment, instigating
inflammation in expanding AT (138). Despite significant
progress in our understanding of the role of the adipocyte
as an immumodulator, and evidence that circulating plasma
and HDL cholesterol bound clusterin may be involved in the
metabolic syndrome, insulin resistance, atherogenesis, and CV
risk, the importance of adipocyte-derived clusterin in human
cardiometabolic disease remains largely unknown. In whole
human AT, CLU gene expression is higher in obese compared
to lean subjects, and is decreased following weight loss induced
by VLCD or bariatric surgery (123). We have recently shown
that clusterin derived specifically from the adipocyte may play
an important role in cardiometabolic disease (90). In obese
compared to lean human subjects, adipocyte gene expression
and protein levels of clusterin were higher and responsive to
(FFA) palmitate stimulation (a major component of a high
fat diet enriched in fatty acids) (139). In addition, we found
strong associations of adipocyte clusterin with systemic insulin
resistance, multiple components of the metabolic syndrome
(HDL cholesterol, the ratio of HDL cholesterol to total
cholesterol, and TGs, and both systolic and diastolic blood
pressure), and overall CVD risk and mortality. In this same
study, clusterin treatment of human liver cells reduced insulin
signaling by lowering Akt phosphorylation and promoting key
genes involved in gluconeogenesis; yet hepatic expression of
the major regulator of hepatic de novo lipogenesis [sterol
regulatory element-binding protein-1 [SREBP-1]] and APOA1
were decreased in response to clusterin binding to LRP2.
These results suggest that the liver receptor LRP2 may be a
key target for the potential cardiometabolic role of clusterin.
Knockdown of SREBP-1 can perpetuate hyperglycemia via
enhanced gluconeogenesis and reduced glycolysis and glycogen
synthesis (140). APOA1 is a major protein associated with
HDL cholesterol particles in plasma which facilitates efflux
of cholesterol from cells, notably from macrophages within
atherosclerotic plaques, to the liver for excretion. Low plasma
APOA1 levels are also a strong predictor of CVD (141). In a
mouse model prone to non-alcoholic steatohepatitis (NASH)
adipocyte CLU expression also paralleled an increase in liver fat,
hepatic fibrosis, and steatohepatitis (90).

Although these results suggest several mechanisms by which
clusterin could link insulin resistance, metabolic disease, and
CVD (Figure 1), further investigation is needed to fully elucidate
the cardiometabolic role of AT clusterin, and specifically clusterin
derived from the adipocyte. Although treatment with the FFA
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FIGURE 1 | Summary of proposed mechanism for clusterin-mediated cardiometabolic disease. Various stimuli may increase adipocyte expression of CLU from

adipocytes in the setting of obesity. Circulating clusterin subsequently has multiple effects on the liver (reduction in ApoA1 expression, dyslipidemia, impaired insulin

signaling, and potentially increased steatosis and inflammation) and on macrophages, which may contribute to the cardiometabolic syndrome, and increase CVD risk.

palmitate stimulates clusterin release in vitro, other potential
triggers for clusterin expression are possible. These include
AT hypoxia, which has previously been shown to increase
clusterin expression in other cell types outside of AT (142).
In addition, the effects of adipocyte-derived clusterin on the
AT immunoenvironment and the skewed balance of pro- and
anti-inflammatory cytokines observed in human obesity is
also unknown.

CONCLUSION

The cardiometabolic syndrome is a clustering of metabolic and
cardiovascular abnormalities that increase the risk of CVD,
T2D, and all-cause mortality. The rising prevalence of the
cardiometabolic syndrome, both in the U.S. and worldwide,
make a more thorough understanding of its pathophysiologic
underpinnings imperative. Although likely multifactorial, the
presence of obesity-related insulin resistance appears to be
a central, if not instigating factor. Systemic and tissue-
specific insulin resistance not only affect endothelial function
and leads to atherogenic dyslipidemia, but propagate a pro-
inflammatory environment that includes excess release of
detrimental FFAs into the circulation. Clusterin is a ubiquitous
protein secreted by many organs/tissues throughout the body.
Although studies have implicated circulating clusterin inmultiple

metabolic and cardio/cerebrovascular abnormalities, a unifying
mechanism remains elusive, and the current literature is
inconsistent and inconclusive. In particular, the importance of
AT derived clusterin, strongly associated with many metabolic
and CVD risk factors, requires further investigation. This
includes understanding the exact mechanistic processes by
which it acts locally within AT and systemically in the
liver, endothelial cells, and the vasculature. Isolating its
effects, potentially through the development of adipocyte-
specific clusterin knockout and overexpression models, will be
instrumental in determining if it is a viable target to attenuate
features of the cardiometabolic syndrome.
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