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Rattlesnakes are a diverse clade of pit vipers (snake family Viperidae, subfamily

Crotalinae) that consists of numerous medically significant species. We used validated

in vitro assays measuring venom-induced clotting time and strength of any clots

formed in human plasma and fibrinogen to assess the coagulotoxic activity of the four

medically relevant Mexican rattlesnake species Crotalus culminatus, C. mictlantecuhtli,

C. molossus, and C. tzabcan. We report the first evidence of true procoagulant activity

by Neotropical rattlesnake venom in Crotalus culminatus. This species presented a

strong ontogenetic coagulotoxicity dichotomy: neonates were strongly procoagulant via

Factor X activation, whereas adults were pseudo-procoagulant in that they converted

fibrinogen into weak, unstable fibrin clots that rapidly broke down, thereby likely

contributing to net anticoagulation through fibrinogen depletion. The other species

did not activate clotting factors or display an ontogenetic dichotomy, but depleted

fibrinogen levels by cleaving fibrinogen either in a destructive (non-clotting) manner or

via a pseudo-procoagulant mechanism. We also assessed the neutralization of these

venoms by available antivenom and enzyme-inhibitors to provide knowledge for the

design of evidence-based treatment strategies for envenomated patients. One of the

most frequently used Mexican antivenoms (Bioclon Antivipmyn®) failed to neutralize

the potent procoagulant toxic action of neonate C. culminatus venom, highlighting

limitations in snakebite treatment for this species. However, the metalloprotease

inhibitor Prinomastat substantially thwarted the procoagulant venom activity, while

2,3-dimercapto-1-propanesulfonic acid (DMPS) was much less effective. These results

confirm that venom-induced Factor X activation (a procoagulant action) is driven by

metalloproteases, while also suggesting Prinomastat as a more promising potential

adjunct treatment than DMPS for this species (with the caveat that in vivo studies

are necessary to confirm this potential clinical use). Conversely, the serine protease

inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) inhibited the

direct fibrinogen cleaving actions of C. mictlantecuhtli venom, thereby revealing that
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the pseudo-procoagulant action is driven by kallikrein-type serine proteases. Thus, this

differential ontogenetic variation in coagulotoxicity patterns poses intriguing questions.

Our results underscore the need for further research into Mexican rattlesnake venom

activity, and also highlights potential limitations of current antivenom treatments.

Keywords: rattlesnakes, venom, Mexico, blood, coagulotoxicity, snakebite

INTRODUCTION

Snakebite is a major global health crisis, with an estimated
total of 94,000–138,000 fatalities and at least 400,000 cases
of permanent disabilities per year. These numbers are well-
recognized as gross-underestimates due to poor or non-existent
epidemiological record keeping in the most affected regions
(1, 2). At the root of such dismal statistics is a combination of
factors such as rampant poverty, a lack of professional medical
assistance in snakebite hotspots—leading to the time-wasting use
of ineffective traditional “remedies”—and antivenoms whichmay
be ineffective, inaccessible, or unaffordable (2–7).

Antivenom has long been a neglected or “orphan” drug due
to the high costs of production, limited markets, and the fact
that it is needed the most by those who can afford it the
least (3, 5). The market limitations are due to venom being
an extremely dynamic trait with extensive variations occurring
between distantly related species, regional variations across the
range of a widely distributed species, or even variations during
the different life-stages of an individual snake. All these factors
may dramatically limit the efficacy of an antivenom, thereby
restricting the scope of its use (4, 8, 9).

Of particular concern for antivenom production and
efficacy are wide-ranging, taxonomically complex clades
such as rattlesnakes (genera Crotalus and Sistrurus), which
are responsible for most snakebite envenoming cases in the
United States (10–13) and a significant proportion throughout
Latin America (10, 14, 15). Rattlesnakes are a highly diverse
clade of pit vipers (Viperidae: Crotalinae) found throughout the
Americas from southern Canada to northern Argentina (10). It
is therefore unsurprising that they have received considerable
research attention, ranking among the most studied snake clade
worldwide for decades (16) and serving as model organisms for
numerous works in several fields such as biogeography (17, 18),
evolutionary biology (19, 20), and ethology (21). These snakes
have adapted to a variety of ecosystems, from tallgrass prairies
and deserts, through tropical and temperate forests, which
resulted in great phenotypic and ecological diversity within the
group (18, 22, 23).

Mexico harbors the highest diversity of rattlesnake species
in the world (22, 24). Among the most iconic and medically
significant rattlesnake species in Mexico are the Neotropical
rattlesnakes: Crotalus culminatus, C. ehecatl, C. mictlantecuhtli,
C. simus, and C. tzabcan. These species are part of the Crotalus
durissus complex, which also includes the eponymous species
C. durissus alongside C. vegrandis (22, 25, 26) and is in turn
included in the C. durissus group with a sister clade comprising
C. basiliscus, C. molossus, C. ornatus, and C. totonacus [(22,

27), Figure 1]. These medium- to large-bodied rattlesnakes
range from the southwestern United States (C. molossus) to
northern Argentina (C. durissus), where they are responsible for
a considerable number of serious envenoming cases (14, 15, 28–
32).

A large body of research has been conducted on venom
activity and composition in the C. durissus group. The
widespread presence of the neurotoxic phospholipase A2

crotoxin in several species (33–37) places most Neotropical
rattlesnakes (at least in early life stages) in the Type II
venom category described by Mackessy (38). This class includes
species possessing highly toxic venoms characterized by systemic
neurotoxicity inducing rapid paralysis due to respiratory
failure, rather than hemorrhagic symptoms (39–42). Conversely,
phenotypes that are dominated by hemorrhagic and tissue-
destroying snake venommetalloproteases (SVMPs) and generally
devoid of neurotoxins are classified into the Type I category
(38), which encompasses low-toxicity venoms inducing mostly
cytotoxic and/or hemotoxic symptoms. However, the broad
designation into Type I or Type II venoms does not fully account
for factors such as ontogeny, prey specificity, intraspecific
variation, and coagulotoxicity through differential biochemical
pathways, and thus it is not reflective of actual biological
diversity, which limits its categorical usefulness.

Neotropical rattlesnake venoms contain multiple toxins that
disrupt hemostasis by targeting the blood clotting cascade,
the concentration of which is often ontogenetic as well (35,
43–46). Research into coagulotoxicity produced by rattlesnake
venoms has been largely focused upon anticoagulant toxins
linked to the production of hemorrhagic shock through a
combination of platelet inhibition, inhibition of activated clotting
enzymes, depletion of fibrinogen levels, and degradation of
the basement membrane of blood vessel walls leading to
extravascular fluid loss (47–49). Fibrinogen depletion may occur
in two ways, either via direct degradation by kallikrein-type
serine proteases or metalloproteases, or through a pseudo-
procoagulant action by 0005 kallikrein-type serine proteases
where fibrinogen is converted to aberrant fibrin strands that form
weak, transient clots that rapidly break down (50–54). Pseudo-
procoagulant activity is distinguished from true procoagulant
activity, i.e., the activation of clotting factors such as Factor
X or prothrombin (55–59), by the nature of the fibrin clot
formed. In pseudo-procoagulant venoms the direct action upon
fibrinogen produces aberrant clots, while true procoagulant
venoms generate endogenous thrombin which in turn produces
well-ordered fibrin clots that contribute to the immobilization
of prey through induction of stroke. In human victims, either
scenario leads to venom-induced consumption coagulopathy
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FIGURE 1 | Phylogenetic tree of the Crotalus durissus group from a parallel study (timetree.org) showing the relationships between the C. durissus complex

(Neotropical rattlesnakes) and the C. molossus complex. Species analyzed in this study are shown in green. Not all members of the clade are represented in the tree.

(VICC), with extensive internal and external hemorrhage. Both
SVMPs and snake venom serine proteases (SVSPs) are virtually
ubiquitous across the rattlesnake clade, including Neotropical
rattlesnakes (38).

In contrast to the well-documented anticoagulant effects,
reports of true procoagulant activity in rattlesnake venom are
scant and often inconclusive (60, 61), with the notable exception
of C. helleri (62, 63). However, the paucity of data supporting
the presence of true procoagulant toxins might have been
influenced by intrinsic limitations in standard coagulotoxicity
assays such as the procedure devised by Reid and Theakston
(64), whereby Ca2+ and phospholipids are not added to citrated
plasma prior to incubation with venom. As citration inactivates
the clotting cascade by chelating ionized Ca2+, it is essential
to add Ca2+ back in to reproduce physiological conditions.
Furthermore, since plasma alone lacks both activated platelets
and activated/apoptotic endothelial cells (i.e., the physiological
source of phospholipids), its phospholipid concentration is likely
low (65). Therefore, while trace amounts of phospholipids
are present in citrated plasma, such small concentrations
are not reflective of normal physiological conditions and
would be rapidly depleted. Many studies have indeed clearly
documented that both cofactors significantly affect relative
coagulotoxicity (50–53, 56–59, 66–76). However, despite this
critical importance having been known for decades, assay
designs in many snake venom coagulotoxicity studies have
included Ca2+ but not phospholipids (77–93) or neither of
the clotting cofactors (32, 94–104). This may dramatically
skew the results, to the point that procoagulant activity
might be missed entirely for venoms that are inactive in the

absence of clotting cofactors or generate enzymes such as
FXa which are themselves obligately dependent upon Ca2+

for activity.
Since in vitro coagulotoxicity assays for the Mexican

members of the C. durissus complex have largely followed
methodologies that did not reproduce physiological conditions
(32, 44), true procoagulant venom phenotypes could have gone
undiscovered in this lineage. This could hamper antivenom
efficacy and symptomatic treatment alike, as both anticoagulant
and procoagulant venoms result in a net anticoagulant effect
in human victims and thus cannot be distinguished on
the basis of symptomatology. Therefore, in this study we
investigated the clinical implications and possible evolutionary
characteristics of coagulotoxicity in four species of the C.
durissus group from Mexico, with a particular focus upon
elucidating the type of coagulotoxicity (i.e., anticoagulant,
pseudo-procoagulant, or true procoagulant) caused by the
venoms. We assessed venom-induced clotting times and clot
strength on human plasma and fibrinogen, ensuring to include
Ca2+ and phospholipids in the assays to replicate physiological
conditions, and testing clotting factor dependency under
controlled conditions. We also tested the neutralization of
these venoms by Bioclon Antivipmyn R©, one of the main
antivenoms marketed in Mexico, which is produced using
Bothrops asper and Crotalus simus venom. We then repeated
the tests using the commercially available metalloprotease
inhibitors 2,3-dimercapto-1-propanesulfonic acid (DMPS) and
Prinomastat, which have been shown to neutralize SVMPs in
other venomous snake species (105, 106). Our findings provide
valuable information for clinicians and antivenom producers
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regarding effective diagnosis and treatment of Neotropical
rattlesnake envenoming in Mexico.

MATERIALS AND METHODS

Venom Selection and Preparation
All venom work was performed under University of Queensland
Approval #IBC134BSBS2015. Our study included 25 venom
samples from C. culminatus (n = 15), C. mictlantecuhtli (n = 2),
and C. tzabcan (n= 9), from the venom bank of the laboratory at
IBt, UNAM (Herpetario Cantil). The C. mictlantecuhtli samples
were obtained from pooling the venoms of juvenile (n = 5) and
adult (n = 7) individuals. Table 2 details the age category and
locality of origin of each snake. Three venom samples from C.
molossus (1 C. m. molossus and 2 C. m. oaxacus) were taken
from the Venom Evolution Lab long-term cryogenic collection.
One mg of each venom was transferred into a 1.5mL Eppendorf
tube under sterile conditions. Subsequently, ddH2O (double-
distilled water) was added to the sample before vortexing for
5 s and centrifuging (4◦C, 14,000 RCF; 10min). The supernatant
was then transferred to another 1.5mL Eppendorf tube and
the protein concentration determined in triplicate vortexing
between replicates on a Nanodrop 2000 spectrophotometer at
280 nm (ThermoFisher Scientific). The resulting concentration
values were used to obtain a final working stock of 1 mg/mL in
50% glycerol to prevent freezing at −20◦C. Lastly, the samples
were vortexed and aliquoted into 200 µL Eppendorf tubes for
storage at −80◦C until use. All venom samples were kept on ice
throughout the process to avoid degradation.

Plasma and Fibrinogen Coagulation
Assays
All human plasma work was performed under University of
Queensland Biosafety Approval #IBC134BSBS2015 and Human
Ethics Approval #2016000256. Healthy human plasma (3.2%,
citrated Lots# A540020142331 and # A5400201137021, which
were pooled together) was provided by the Australian Red
Cross (44 Musk Street, Kelvin Grove, Queensland 4059). Plasma
stocks were aliquoted into 1.5mL Eppendorf tubes under sterile
conditions before flash-freezing in liquid nitrogen and stored at
−80◦C until use. Human fibrinogen was purchased from Sigma
Aldrich (St. Louis, Missouri, United States, catalog #F3879) and
aliquoted into 1.5mL Eppendorf tubes after reconstitution into a
running buffer (150mM NaCl + 50mM TrisHCl in 1 L ddH2O,
pH 7.4) to a concentration of 4 mg/mL. The aliquots were flash-
frozen in liquid nitrogen for 10 s and stored at−80◦C until use.

Plasma and fibrinogen clotting times were measured on a
Stago STA-RMax coagulation analyzer (Stago, Asniéres sur Seine,
France) which determines clotting time via the time required
for an oscillating magnetic ball inside a cuvette containing 250
µL solution to cease moving due to blockage caused by a clot.
A detailed overview of the assays we performed is provided in
Table 1. Prior to experimentation, a positive control for plasma
was performed via an activated Partial Thromboplastin Time
(aPTT) test as described by Lister et al. (107). A custom positive
control assay was devised for fibrinogen whereby 50 µL 50%
ddH2O:glycerol, 25 µL of a 2:1 dilution of CaCl2 +OK buffer, 50

TABLE 1 | Overview of coagulation assays performed on STA-R Max hemostasis

analyzer.

Assay Methodology

Venom-induced

clotting time

Step 1: 50 µL venom (100µg/mL) + 50 µL 0.025M calcium

(Stago catalog #00367) + 25 µL Owren-Koller (OK) buffer

(Stago catalog #00360) + 50 µL phospholipids (Stago kit;

catalog #00597)

Step 2: 120 s incubation at 37◦C + 75 µL human

plasma/human fibrinogen

Calcium

dependence

Step 1: 50 µL venom (100µg/mL) + 75 µL OK buffer + 50 µL

phospholipids

Step 2: 120 s incubation at 37◦C + 75 µL human

plasma/human fibrinogen

Phospholipids

dependence

Step 1: 50 µL venom (100µg/mL) + 50 µL 0.025M calcium +

75 µL OK buffer

Step 2: 120 s incubation at 37◦C + 75 µL human

plasma/human fibrinogen

Antivenom Step 1: 50 µL venom (100µg/mL) + 50 µL 0.025M calcium +

25 µL 2.5% antivenom + 50 µL phospholipids

Step 2: 120 s incubation at 37◦C + 75 µL human

plasma/human fibrinogen

Prinomastat Step 1: 50 µL venom (100µg/mL) + 50 µL 0.025M calcium +

25 µL 2mM Prinomastat (Sigma-Aldrich, PZ0198-5MG) + 50

µL phospholipids

Step 2: 120 s incubation at 37◦C + 75 µL human plasma

DMPS Step 1: 50 µL venom (100µg/mL) + 50 µL 0.025M calcium +

25 µL 2 mM/20mM DMPS (ThermoFisher, U138044) + 50 µL

phospholipids

Step 2: 120 s/20min incubation at 37◦C + 75 µL human

plasma

AEBSF Step 1: 50 µL venom (100µg/mL) + 50 µL 0.025M calcium +

25 µL 2mM AEBSF (Sigma-Aldrich, A8456-25MG) + 50 µL

phospholipids

µL phospholipids, and 75 µL human fibrinogen were incubated
for 120 s before adding 50 µL thrombin (STA Liquid-FIB, Stago
catalog # 00673) for a total volume of 250 µL. Negative controls
for both plasma and fibrinogen were run by replacing the venom
dilution with 50 µL 50% ddH2O:glycerol.

3.2% citrated plasma from cane toad (Rhinella marina) was
aliquoted into 800 µL quantities, which were flash-frozen in
liquid nitrogen, and stored at −80◦C. This plasma was obtained
under University of Queensland Animal Ethics Committee
approval SBS/020/15/ARC.

Cofactor Dependence Assays
To test whether the (pseudo)procoagulant action of venoms
requires specific cofactors, dependence tests were performed
using the plasma protocols from 2.2 on six representative
Neotropical rattlesnake venoms (fastest- and slowest-clotting
samples on plasma per species, with the exception of second-
slowest adult C. culminatus) whereby the samples were incubated
with human plasma and fibrinogen in the absence of either Ca2+

or phospholipids. Additional tests were conducted in a non-
plasma assay which allowed for the strict control of either co-
factor (see section Blood Clotting Factor Activation Assay below).
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Antivenom Neutralization and Inhibition
Assays
One bottle of lyophilized Antivipmyn R© antivenom serum
[Instituto Bioclon, Calz. de Tlalpan 4691, Mexico City,
Mexico; batch: B-6F-16, expiry date October 2010 and protein
concentration of 13.7mg F(ab

′
)2/mL] was diluted in 10mL

ddH2O and centrifuged (3,900 RCF, 4◦C, 10min) to remove any
potential particulates. Expired antivenoms were not a concern,
as antivenoms have been shown to be stable over time, with
powdered antivenoms shown to be particularly resilient but
even liquid antivenoms have been shown to be active for at
least 60 years (107–109). Subsequently, the antivenom mixture
was filtered (0.45µm) and aliquoted into 2mL Eppendorf
tubes in sterile conditions, then stored at +4◦C until use.
For testing in STAR-Max, the antivenom was diluted in OK
buffer to a 2.5% concentration, as determined to be effective
during preliminary testing against C. mictlantecuhtli (formerly
C. simus from Veracruz, Mexico) due to the presence of
venom from this species in the immunizing mixture. Eight-
point dilution curves were run for six venoms incubated at eight
different concentrations (µg/mL: 20, 10, 4, 1.66, 0.66, 0.25, 0.125,
and 0.05).

To test for inhibition of venom metalloprotease activity
on plasma, eight-point curves were run on two representative
venoms whereby the metalloprotease inhibitors Prinomastat
hydrochloride (catalog #PZ0198, Sigma Aldrich, St. Louis,
Missouri, US) and 2,3-dimercapto-1-propanesulfonic acid
(DMPS, catalog #D8016 Sigma Aldrich, St. Louis, Missouri, US)
replaced OK buffer as reagents in separate assays. Prinomastat
was solubilized in DMSO, diluted to a 10mM concentration
using ddH2O, and subsequently stored at −80◦C until use in
STA-R Max. For this step, the inhibitor aliquots were thawed and
pooled to a 900 µL total volume diluted into 3,600 µL OK buffer
to dilute the concentration to 2mM. DMPS was solubilized in
DMSO and diluted in ddH2O to a 20mM concentration before
storage at −80◦C. Prinomastat and DMPS aliquots were covered
in aluminum foil to prevent exposure to light and degradation.
Antivenom and inhibitor testing were performed using pooled
plasma batch # A540020103540). We repeated the original
baseline values for all species to demonstrate congruence and the
plotting of dilution curves for the species upon which antivenom
and inhibitors were tested.

Inhibition of serine protease activity on fibrinogen
in a representative venom was assessed by running an
eight-point curve with the serine protease inhibitor 4-(2-
aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF,
catalog #A8456, Sigma Aldrich, St. Louis, Missouri, US) as a
reagent in place of OK buffer. AEBSF was diluted with ddH2O
into 20mM aliquots which were covered in aluminum foil and
stored at −80◦C until use. For testing in STA-R Max, a 20min
incubation step with AEBSF was included before addition of
fibrinogen as per (52).

Thromboelastography
To assess the strength of venom-induced clots in plasma
and fibrinogen, thromboelastography was performed on

nine representative venoms using a Thromboelastogram R©

5000 Hemostasis analyzer (Haemonetics R©, Haemonetics
Australia Pty Ltd., North Rdye, Sydney, Australia). The same
ratio of reagents for STA-R Max assays was maintained
for thromboestography. Briefly, 189 µL plasma (Label
# A540020142331/A5400201137021) or fibrinogen (#Lot
SLCC4502, #Lot SLBZ2294) were added to 72 µL CaCl2 (25mM
solution), 72 µL phospholipids diluted in OK buffer, 20 µL OK
buffer, and 7 µL venom (1 mg/mL). Thromboelastography for C.
molossus ssp. samples was performed using pooled plasma batch
# A540020103540 due to degradation of the original plasma
stock during a COVID-19 lockdown period, with the repeating
of the original baseline values to demonstrate congruence. For
plasma, a spontaneous (i.e., negative) clotting control was run
with 50% ddH2O:glycerol in place of the venom, whereas 7 µL
thrombin (STA Liquid FIB, Stago) or 7 µL bovine Factor Xa
(Liquid Anti-Xa FXa, Stago) were used to run two independent
positive controls. Only thrombin was used as a positive control
for fibrinogen. Thromboelastography data were visualized on
Adobe Photoshop.

Blood Clotting Factor Activation Assay
Venom-induced activation of coagulation Factor II
(prothrombin) and Factor X (FX) for nine representative
venoms was investigated using a FluoroskanTM microplate
fluorometer (ThermoFisher Scientific, 168 Third Avenue,
Waltham, MA 02451, USA). This machine measures activation
of clotting factors by monitoring cleavage of a specific substrate
(and corresponding fluorescence emitted) by an activated
enzyme. The following reagents were manually pipetted into
each experimental well in 384-well plates: 10 µL phospholipids
(STA CK Prest, Stago), 10 µL venom, 10 µL zymogen. To
determine the activity of the venom directly on the substrate, the
zymogen was replaced with 10 µL Fluoroskan running buffer
without Ca2+ (150mM NaCl + 50mM Tris, pH 7.4) in venom
control wells. Activated factors replaced zymogens in positive
control wells. A blank control without zymogen or venom was
also included. ES011 substrate (Boc-Val-Pro-Arg-AMC. Boc:
t-Butyloxycarbonyl; 7-Amino-4- methyl coumarin) was diluted
to a 2µg/mL concentration in Fluoroskan running buffer with
10mM Ca2+ (150mM NaCl + 50mM Tris in 1 L ddH2O,
+ 10mM Ca2+, pH 7.4). Seventy microliters of the dilution
were then dispensed into each well by the machine to enable
factor activation. All zymogens were diluted in Fluoroskan
running buffer without Ca2+ to a 10µg/mL concentration.
Venom concentration was 1µg/mL in running buffer without
Ca2+ for FX activation. The prothrombin assay required the
venom and zymogen concentrations to be lowered to 0.1 and
1µg/mL, respectively, for subsequent analysis purposes due to
the otherwise excessively high activity of the thrombin control.
Activation was measured as the percentage of activated factor for
each venom compared to the positive control (i.e., active enzyme
wells), which represented the 100% activation benchmark. To
test for cofactor dependence in FX activation, the assay was
repeated by incubating venom with both cofactors vs. without
phospholipids vs. without Ca2+.
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1D Polyacrylamide Gel Electrophoresis
(SDS-PAGE)
Non-reduced 1D 12% SDS-PAGE was run in triplicate to assess
the activity of selected venoms on prothrombin. Venom (0.2
µg) was reconstituted in ddH2O and incubated at 37◦C for
10min with 2 µg prothrombin in a total volume of 7.5 µL.
Negative (venom only; prothrombin only) and positive controls
(thrombin only) were included in each gel. Then, 7.5 µL
2x laemmli dye (Bio-Rad Hercules, CA, USA) was added to
each sample, resulting in a final volume of 15 µL. Lastly, the
samples were stored at −20◦C until use. Thirty milliliter of
12% resolving gel was prepared by pipetting 9.9mL ddH2O,
12.0mL 30% Acrylamide mix (Bio-Rad, Hercules, CA, USA),
7.5mL 1.5 Tris-glycine pH 8.8 (Tris- Sigma Aldrich, St. Louis,
MO, USA; glycine- Sigma Aldrich, St. Louis, MO, USA), 300
µL 10% SDS (SDS- Sigma-Aldrich, St. Louis, MO, USA), 300
µL 10% Ammoniun persulfate (APS- Bio-Rad, Hercules, CA,
USA), and 18 µL TEMED in a 50mL falcon tube. Six milliliter
5% stacking gel was prepared by pipetting 4.2mL ddH2O, 990
µL 30% Acrylamide mix (Bio-Rad, Hercules, CA, USA), 750
µL 0.5M Tris-glycine pH 6.8 (Tris- Sigma Aldrich, St. Louis,
MO, USA; glycine- Sigma Aldrich, St. Louis, MO, USA), 60
µL 10% SDS (SDS- Sigma-Aldrich, St. Louis, MO, USA), 60
µL 10% APS (APS- Bio-Rad, Hercules, CA, USA), and 6 µL
TEMED in a 15mL falcon tube. Both gels were rested for
15min to allow for polymerization before allocation into a
Mini-PROTEAN Tetra Vertical Electrophoresis Cell (Bio-Rad,
Hercules, CA, USA). 10x running buffer was prepared using
the following recipe: 30 g Tris (Sigma Aldrich, St. Louis, MO,
USA) + 144 g glycine (Sigma Aldrich, St. Louis, MO, USA)
+ 20 g SDS (Sigma Aldrich, St. Louis, MO, USA) diluted
in 1 L ddH2O. Subsequently, 100mL 10x running buffer was
diluted in 900mL ddH2O and poured into the electrophoresis
chamber before manual loading of samples into the wells. A
Dual Color protein standard (Bio-Rad, Hercules, CA, USA,
range = 10–250 kD) was used as a ladder for molecular
weight reference. Gels were run for 2.5 h at 120V, then stained
overnight with 1 g/L Coomassie colloidal brilliant blue G250
[34% methanol (VWR Chemicals, Tingalpa, QLD, Australia), 3%
orthophosphoric acid (Merck, Darmstadt, Germany), 170 g/L
ammonium sulfate (Bio-Rad, Hercules, CA, USA)] followed by
destaining in ddH2O.

Statistics
All tests were performed in quadruplicate (n = 4) bar the
antivenom and inhibitor efficacy curves, which were run in
triplicate (n = 3). Statistical analyses and graphing were
performed in GraphPad PRISM v. 8.4.2. Cofactor dependence
results were analyzed using repeated measures ANOVA via
Dunnett’s multiple comparisons test. This method allows for
comparisons of each treatment (in our case, Ca2+-devoid
and phospholipids-devoid conditions) to a control (normal
conditions with both cofactors present). A repeated-measures
approach was chosen because all clotting tests (i.e., control
vs. treatment conditions) were conducted on the same venom
sample for each species. Correlation tests were performed

using Spearman’s rank-order correlation due to age being
coded as an ordinal variable with four categories (1 =

neonate, 2 = juvenile, 3 = young adult, 4 = adult).
Normality was determined with four different tests (Shapiro-
Wilk, Kolmogorov-Smirnov, Anderson-Darling, D’Agostino and
Pearson) but only the Shapiro-Wilk results were used since n
= 4 was too small for the other tests. Significance was set at
p= 0.05.

RESULTS

Coagulotoxicity Assay
The venoms of neonate C. culminatus were strongly
procoagulant, whereas adults appeared to have largely lost
this trait (Table 2). Age of the animal and venom-induced
clotting time were significantly correlated in C. culminatus
for plasma (r = 0.8506, p < 0.0001) and fibrinogen (r =

0.7423, p < 0.0001). Both juvenile and adult C. mictlantecuhtli
pools displayed short clotting times on plasma and especially
fibrinogen, whereas greater individual variation was observed in
C. tzabcan (Table 2).

The cofactor dependence results confirm that coagulotoxins
in the venom of these rattlesnakes are strongly dependent
on cofactors, particularly Ca2+ (Tables 3, 4). Repeated-
measures ANOVA yielded highly significant results regarding
calcium dependence for all venoms on plasma, which was
however markedly less pronounced for fibrinogen. Absence of
phospholipids was not significant for one C. tzabcan sample and
either C. mictlantecuhtli representatives (Table 3). Interestingly,
all venoms clotted fibrinogen significantly faster in the absence
of phospholipids than in normal conditions (Table 4). Relative
co-factor dependence tests for zymogen activation by C.
culminatus neonate were further investigated using completely
controlled conditions in a non-plasma-based assay to eliminate
the background fibrinogen-clotting effect (see section Blood
Clotting Factor Activation Assay below).

Venom Neutralization by Antivenom and
Inhibitors
Eight-point dilution curves of antivenom efficacy indicate that
Antivipmyn R© effectively counteracts the pseudo-procoagulant
action of neonate C. culminatus, C. tzabcan (Solidaridad),
and both C. mictlantecuhtli pools, with a noticeable spike
in antivenom efficacy from a 1.66µg/mL venom dilution
onwards (Figure 2). Venoms from adult C. culminatus and
C. tzabcan (Oxkutzcab) only weakly affected fibrinogen
compared to the other four samples, facilitating nearly complete
neutralization of pseudo-procoagulant activity by the antivenom.
C. mictlantecuhtli venom was also markedly neutralized by the
serine protease inhibitor AEBSF (148 ± 5.62 s, n = 3, figure
not shown).

No detectable effect of Antivipmyn R© was observed against
neonate C. culminatus venom activity on plasma, and only
marginal neutralization occurred against venom from an adult
of the same species (Figure 2). Neonate C. culminatus venom-
induced plasma clotting was instead greatly delayed by the
metalloprotease inhibitor Prinomastat (particularly at low venom
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TABLE 2 | Clotting times of human plasma and fibrinogen incubated with venoms from C. culminatus, C. mictlantecuhtli, and C. tzabcan specimens.

Species Age Locality Mean clotting time

(s) ± SD (plasma)

Mean clotting time

(s) ± SD (fibrinogen)

C. culminatus Neonate Tlaltizapán, Morelos 11.625 ± 0.33 31.775 ± 0.45

C. culminatus Neonate Yautepec, Morelos 14.975 ± 0.20 59.25 ± 3.10

C. culminatus Neonate Puente de Ixtla, Morelos 15.175 ± 0.35 51.3 ± 4.95

C. culminatus Neonate Iguala, Guerrero 40.25 ± 0.19 58.1 ± 1.84

C. culminatus Juvenile Coahuayana, Michoacán 14.4 ± 0.21 190.3 ± 14.57

C. culminatus Juvenile Coahuayana, Michoacán 16.925 ± 0.20 233.3 ± 3.81

C. culminatus Juvenile Morelos 18.075 ± 0.41 30.35 ± 1.03

C. culminatus Juvenile Morelos 85.525 ± 2.13 106.625 ± 0.45

C. culminatus Juvenile Barranca Honda, Morelos 107.65 ± 8.68 144.9 ± 2.95

C. culminatus Young adult Coahuayana, Michoacán 19.6 ± 0.33 108.775 ± 1.46

C. culminatus Young adult Puebla, Puebla 90 ± 1.78 128.5 ± 0.93

C. culminatus Adult Barranca Honda, Morelos 120.175 ± 6.09 192.075 ± 1.53

C. culminatus Adult Tlaltizapán, Morelos 122.725 ± 4.27 189.575 ± 6.02

C. culminatus Adult Barranca Honda, Morelos 181.175 ± 7.99 260.825 ± 20.39

C. culminatus Adult Cruz Pintada, Tlaltitenango, Morelos 218.75 ± 0.73 801.675 ± 65.32

C. mictlantecuhtli Juvenile (pool N = 6) Veracruz 46.275 ± 1.11 37.1 ± 0.46

C. mictlantecuhtli Adult (poo N = 6l) Veracruz 48.825 ± 0.52 41.775 ± 1.30

C. tzabcan Neonate Dzibilchatún, Yucatán 161.3 ± 4.65 149.65 ± 9.26

C. tzabcan Juvenile Calakmul, Campeche 79.425 ± 1.26 77.975 ± 2.24

C. tzabcan Juvenile Mérida, Yucatán 242 ± 57.00 265.6 ± 21.35

C. tzabcan Juvenile Chetumal, Quintana Roo 230.525 ± 1.80 325.45 ± 4.95

C. tzabcan Adult Solidaridad, Quintana Roo 73.225 ± 2.53 83.675 ± 4.01

C. tzabcan Adult Chetuma, Quintana Roo 112.975 ± 2.17 109.875 ± 6.95

C. tzabcan Adult Mérida, Yucatán 211.525 ± 7.31 223.875 ± 5.39

C. tzabcan Adult Oxkutzcab, Yucatán 267.55 ± 1.75 902.175 ± 119.35

Plasma spontaneous control = 607 ± 23.39 s. Fibrinogen spontaneous control = 999 s.

TABLE 3 | Cofactor dependence tests for six representative venoms (C. culminatus, C. tzabcan, and C. mictlantecuhtli) incubated with human plasma.

Species Locality Normal Phospholipid dependence

(no phospholipids)

Ca2+ dependence

(no Ca2+)

C. culminatus neonate Tlaltizapán, Morelos 11.63 ± 0.33 22.10 ± 0.46*** 54.975 ± 0.80***

C. culminatus adult Barranca Honda, Morelos 181.20 ± 7.99 178.62 ± 4.77 404.32 ± 17.65**

C. tzabcan adult Solidaridad, Quintana Roo 73.23 ± 2.53 96.35 ± 3.16*** 164.77 ± 2.62***

C. tzabcan adult Oxkutzcab, Yucatán 267.6 ± 1.75 333.47 ± 21.88* 999 ± 0***

C. mictlantecuhtli juvenile (pool) Veracruz 46.29 ± 1.14 48.025 ± 3.36 79.325 ± 0.80***

C. mictlantecuhtli adult (pool) Veracruz 48.83 ± 0.52 53.8 ± 3.84 84.95 ± 1.25***

n = 4, values reported as mean ± SD. Statistical significance of cofactor-dependence tests compared to normal conditions (as inferred by Dunnett’s multiple comparisons test following

repeated-measures ANOVA) shown as follows: *p < 0.05, **p < 0.001, ***p < 0.0001. All values represent venom-induced clotting times (s).

concentrations), whereas the adult individual was affected to a
lesser degree. DMPS failed to neutralize either neonate or adult
C. culminatus venom using the same assay as with Prinomastat
(Figure 3). Furthermore, DMPS showed anticoagulant effects on
plasma even in the absence of venom. Importantly, a different
adult C. culminatus venom was used for antivenom + inhibitor
tests and factor activation analysis (section Blood Clotting Factor
Activation Assay) than the one used for clotting time assays and
thromboelastography due to running out of the original stock.
However, the results were congruent between the two venoms

samples, which was consistent with both being from adult snakes
from the same region.

Thromboelastography
Thromboelastography was conducted on plasma and
fibrinogen as follows: Figure 4 shows the human
plasma thromboelastography traces for C. culminatus,
C. mictlantecuhtli, and C. tzabcan. Figure 5 shows the
human plasma thromboelastography traces for the three C.
molossus localities; Figure 6 shows the human fibrinogen
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TABLE 4 | Cofactor dependence tests for six representative venoms (C. culminatus, C. tzabcan, and C. mictlantecuhtli) incubated with human fibrinogen.

Species Locality Normal Phospholipid dependence

(no phospholipids)

Ca2+ dependence

(no Ca2+)

C. culminatus neonate Tlaltizapán, Morelos 33.75 ± 1.70 27.85 ± 0.17* 45.65 ± 0.34*

C. culminatus adult Barranca Honda, Morelos 324.95 ± 15.73 190.20 ± 13.76* 764.60 ± 72.74*

C. tzabcan adult Solidaridad, Quintana Roo 76.05 ± 2.88 39.43 ± 0.94* 120.50 ± 2.31**

C. tzabcan adult Oxkutzcab, Yucatán 830.77 ± 52.91 333.47 ± 21.83* 999 ± 0*

C. mictlantecuhtli juvenile (pool) Veracruz 34.88 ± 1.04 28.40 ± 0.33* 45.25 ± 0.64*

C. mictlantecuhtli adult (pool) Veracruz 43.75 ± 1.60 33.25 ± 2.36* 61.75 ± 2.07*

n = 4, values reported as mean ± SD. Statistical significance of cofactor-dependence tests compared to normal conditions (as inferred by Dunnett’s multiple comparisons test following

repeated-measures ANOVA) shown as follows: *p < 0.05, **p < 0.001, ***p<0.0001. All values represent venom-induced clotting times (s).

thromboelastography traces results for C. culminatus, C.
mictlantecuhtli, and C. tzabcan; Figure 7 shows the human
fibrinogen thromboelastography traces for the three C. molossus
localities; Figure 8 shows the human fibrinogenolytic effects for
C. tzabcan and C. molossus oaxacus.

Thromboelastography on plasma (Figures 4, 5) confirmed the
marked procoagulant action of neonate C. culminatus venom on
plasma on the STA-R Max assay, whereby a quick and strong
clot was formed for the neonate, but not for the adult. The
acceleration of clotting time and a strong, stable clot by the C.
culminatus neonate venom is consistent with the activation of
a clotting factor, which was specifically tested for in subsequent
experiments (see section Blood Clotting Factor ActivationAssay).
None of the other venoms showed evidence of clotting factor
activation in the plasma experiments (Figures 4, 5).

Thromboelastography on fibrinogen to test for pseudo-
procoagulant fibrin-clot formation (Figures 6, 7) or destructive
(non-clotting) fibrinogenolysis (Figure 8) also revealed sharp
differences between age groups and species. The C. culminatus
neonate retained as a background activity the basal pseudo-
procoagulant activity widely present in rattlesnakes, but this
trait was absent in the adult venoms. Intraspecific variation
was evident in the C. tzabcan venoms, with one venom having
pseudo-procoagulant activity upon fibrinogen whereas the other
lacked this trait. Both neonate and adult C. mictlantecuhtli
venoms displayed pseudo-procoagulant activity upon fibrinogen.
This was not the case for C. m. oaxacus, while C. m. molossus
showed only very slight activity in this regard. Further tests to see
if C. tzabcan or C. m. oaxacus destructively cleaved fibrinogen
revealed that while C. tzabcan did so only to a limited extent, C.
m. oaxacus was extremely fibrinogenolytic, with the fibrinogen
levels almost entirely depleted. Venoms were also tested on
amphibian (cane toad) plasma, but none of them had any effect
(data not shown).

Blood Clotting Factor Activation Assay
As the prior results indicated that neonate C. culminatus venom
was activating a clotting factor, tests were undertaken to test
for activation of FII (prothrombin), FVII, FIX, FX, FXI, and
XII. Only Factor X returned a strong result (Figure 9A), with
prothrombin only being activated at a trace level (Figure 9B) and
none of the other factors affected (data not shown). Consistent
with the dichotomy observed on other clotting tests, the adult

C. culminatus was 20-fold less potent than the neonate in the
activation of FX and displayed no meaningful activity upon
prothrombin or any other clotting factor. FX activation by
neonate C. culminatus venom proved to be highly dependent
on both calcium and phospholipids (Figure 10), the absence
of which nearly abolished any action of the venom on the
zymogen. Thus, the cofactor dependence values on whole
plasma for this venom in Table 4 are artificially low due to
the back-ground direct clotting of fibrinogen in a pseudo-
procoagulant manner.

Intriguingly, C. m. oaxacus and C. mictlantecuhtli (juvenile
pool) showed negative values. The [venom + substrate] controls
were undertaken to provide the baseline activity of the venom
in cleaving the substrate, with this amount to be subtracted
from the results for the [venom + substrate + zymogen (FX
or prothrombin)] experimental conditions. A negative value,
whereby less fluorescence occurred for the [venom+ substrate+
zymogen] condition than for the [venom + substrate] indicates
that in the [venom + substrate + zymogen] condition, less
cleaving by the venom was observed than for the [venom +

substrate] condition. This suggests that the venom was cleaving
the substrate itself while simultaneously binding zymogen,
resulting in less venom available to directly cleave the substrate
when the zymogen was present. In addition, the interaction
with the zymogen did not produce an active product from the
cleaved zymogen. The ability to cleave the zymogen without
yielding an active product could therefore represent a novel
form of anticoagulation, as the zymogen would no longer be
available to participate in the normal clotting cascade. This
was evaluated experimentally with another fluorometric assay
whereby Pseudonaja textilis venom, a well-known prothrombin
activator (58), was incubated with intact zymogen and zymogen
previously exposed to C. m. oaxacus venom for 1 h at 37◦C.
Activation in the C. m. oaxacus-treated zymogen was only 15% of
that observed for the intact zymogen (Figure 11). Prothrombin
degradation was further explored via gel electrophoresis [section
1D Polyacrylamide Gel Electrophoresis (SDS-PAGE)].

1D Polyacrylamide Gel Electrophoresis
(SDS-PAGE)
1D SDS-PAGE of venoms incubated with prothrombin revealed
clear differences in action of toxins from different species on
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FIGURE 2 | Eight-point dilution curves for six representative venoms against Antivipmyn® antivenom (2.5%) on human fibrinogen, Red = venom only, blue = venom

+ antivenom. X-axis is displayed in log form. Negative control = 999+ / − 0 s.

this zymogen (Figure 12). In fact, C. m. oaxacus degraded
prothrombin into several aberrant by-products spanning the
region between the prothrombin and thrombin controls (72 and
36 kDa, respectively). On the other hand,C. culminatus (neonate)
and C. mictlantecuhtli (pool of juveniles) affected the zymogen
only weakly, with faint bands appearing in the 50–55 kDa region
of the gel. A different neonate C. culminatus sample was used
for this assay than in previous tests due to insufficient amount
of venom remaining.

DISCUSSION

Synopsis
This study aimed to shed light on the evolutionary history
and medical consequences of coagulotoxicity in a group of
Mexican rattlesnakes of high clinical concern and evolutionary
novelty. To this end, we assessed coagulotoxic venom activities
in these snake venoms via multiple different assays to produce
a robust set of results. We reproduced physiological conditions
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FIGURE 3 | Eight-point dilution curves for C. culminatus venom upon plasma (red lines for venom-only) against Antivipmyn® antivenom (blue lines), 2mM Prinomastat

hydrochloride with 2min incubation (green lines), 2mM DMPS with 2min incubation (pink lines). Spontaneous clotting control = 444.87 ± 26.73 s. Prinomastat

negative control = 450.02 ± 57.33 s. DMPS negative control = 626 ± 36.23 s.

FIGURE 4 | Thromboelastography traces showing the coagulation pattern of human plasma incubated with venoms of six Neotropical rattlesnake respresentatives for

neonates (N), juveniles (J), and adults (A). Venom traces are shown in red, spontaneous clotting control traces in blue, thrombin and Fxa control traces in green. SP,

split point (min); R, time (min) to minimum detectable clot (2mm): MA, maximum amplitude (mm); MRTGG, maximum rate of thrombus generation (dynes/cm2);

TMRTGG, time to maximum thrombus generation (min); TGG, total thrombus generation (dynes/cm2). Results shown as n = 4 mean ± SD.

as best as possible to accurately characterize the venom effects.
In doing so we revealed a previously unknown ontogenetic
variation in C. culminatus, whereby neonates are potently
procoagulant through the activation of Factor X, but adults

are pseudo-procoagulant in that they cleaved fibrinogen into
unstable, short-lived fibrin clots, thus contributing to a net
anticoagulant state by depleting fibrinogen levels. The C.
culminatus FX activation was shown to be biochemically
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FIGURE 5 | Thromboelastography traces showing the coagulation pattern of human plasma incubated with venoms of three C. molossus specimens of two

subspecies (C. m. molossus and C. m. oaxacus). Venom traces are shown in red, spontaneous clotting control traces in blue, thrombin and Fxa control traces in

green. SP, split point (min); R, time (min) to minimum detectable clot (2mm); MA, maximum amplitude (mm); MRTGG, maximum rate of thrombus generation

(dynes/cm2); TMRTGG, time to maximum thrombus generation (min); TGG, total thrombus generation (dynes/cm2). Results shown as n = 4 mean ± SD.

extremely reliant upon calcium and phospholipids. These
results reinforce what a dynamic trait venom is, as the
other species depleted fibrinogen levels either by pseudo-
procoagulant actions on fibrinogen or through destructive (non-
clotting) cleaving.

Variations in Venom Biochemistry
Strikingly, we observed that venom from neonate C. culminatus
clotted human plasma in our in vitro assay in 10–15 s, comparable
to potently procoagulant snakes such as several Australian elapids
(59, 76, 107, 110). We demonstrated that this activity was due
to the activation of Factor X. The metalloprotease inhibitors
Prinomastat and (to a much lesser degree) 2,3-dimercapto-
1-propanesulfonic acid (DMPS) were effective in neutralizing
the Factor X activation, revealing the activity to be driven
by SVMP.

The unmistakably true procoagulant activity of C. culminatus
venom was an unexpected finding in light of previous literature
unanimously reporting a lack of any such trait in this species
(32, 44). However, these studies did not include the clotting
cofactors calcium or phospholipids in the assay conditions, which
we show both clotting factors be critical through multiple assays
in this study, and such cofactor dependence has long been
documented in snake venoms (111). In addition to the venom

activation of FX into FXa being obligately calcium-dependent,
the bioactivity of the endogenous FXa which is produced by
the venom is also obligately dependent upon calcium so even
for venoms which are able to activate FX in the absence of
calcium, their activity would be missed in assays which relied
on protocol designs. The discrepancy between our results and
previous literature is almost certainly due to the omission of
clotting cofactors Ca2+ and phospholipids in prior research that
relied upon themethod developed in 1983 by Theakston and Reid
(64), which did not include either clotting cofactor and has been
largely followed with only minor modifications in toxicity studies
of Mexican Neotropical rattlesnakes (32, 44, 112). Thus, calcium-
obligate activities such as the Factor X activation discovered
in this study would not be observable in assays lacking the
clotting cofactors.

Such high levels of calcium dependence for procoagulant
zymogen activation (Factor X or prothrombin) have been
observed in other venomous snake lineages, including other
pit vipers such as Bothrops atrox (113), true vipers of the
genus Echis (56), Australian elapids (107) the genus Atractaspis
within the Lamprophiidae family (57), and the colubrid genera
Dispholidus and Thelotornis (74). In contrast, other genera
are known to activate zymogens with much lower levels of
calcium dependence, such as some species of Echis (56), and
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FIGURE 6 | Thromboelastography traces showing the coagulation pattern of human fibrinogen incubated with venoms of six Neotropical rattlesnake respresentatives

for neonates (N), juveniles (J), and adults (A). Venom traces are shown in red, thrombin control traces in blue. SP, split point (min); R, time (min) to minimum detectable

clot (2mm); MA, maximum amplitude (mm); MRTGG, maximum rate of thrombus generation (dynes/cm2); TMRTGG, time to maximum thrombus generation (min);

TGG, total thrombus generation (dynes/cm2). Results shown as n = 4 mean ± SD.

FIGURE 7 | Thromboelastography traces showing the coagulation pattern of human fibrinogen incubated with venoms of three C. molossus specimens of two

subspecies (C. m. molossus and C. m. oaxacus). Venom traces are shown in red, thrombin control traces in blue. SP, split point (min); R, time (min) to minimum

detectable clot (2mm); MA, maximum amplitude (mm); MRTGG, maximum rate of thrombus generation (dynes/cm2); TMRTGG, time to maximum thrombus

generation (min); TGG, total thrombus generation (dynes/cm2). Results shown as n = 4 mean ± SD.

the Australian elapid genera Oxyuranus and Pseudonaja (58, 59).
Venom-induced FX activation by neonate C. culminatus was also
highly dependent on phospholipids, which appear to be nearly as

crucial as Ca2+. This further highlights the importance for venom
coagulotoxicity assays in vitro to include both cofactors so as to
avoid skewing results.
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FIGURE 8 | Thromboelastography traces showing the fibrinogenolytic action of venoms from C. tzabcan (Oxkutzcab) and C. m. oaxacus (Sierra de Cuatro Venados).

Venom traces are shown in red, spontaneous and thrombin control traces in blue. SP, split point (min); R, time (min) to minimum detectable clot (2mm); MA, maximum

amplitude (mm); MRTGG, maximum rate of thrombus generation (dynes/cm2); TMRTGG, time to maximum thrombus generation (min); TGG, total thrombus

generation (dynes/cm2). Results shown as n = 4 mean ± SD.

FIGURE 9 | Fluorometry graphs showing activation of FX (A) and prothrombin (B) by selected rattlesnake venoms. Activation is expressed as the relative percentage

of zymogen converted to its active form against a benchmark positive control incubated with thrombin and FXa, respectively (i.e., 100% active enzyme). Note the

difference in Y-axis between FX activation and prothrombin activation, indicating considerably greater potency for the former. Values are n = 3 mean ± SD.

The SVMP toxin class has been previously shown to
be responsible for Factor X activation in a wide range of
snakes, including the related pit viper genus Bothrops (113)
and true vipers such as Bitis worthingtoni (76, 114). Thus,

this trait either represents a remarkable case of functional
convergence in the neofunctionalisation of an ancestral
tissue-destroying metalloprotease or indicates that FX
activation is an ancient trait that has been amplified on
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FIGURE 10 | Fluorometry graph showing activation of FX by venom from a neonate C. culminatus specimen with and without coagulation cofactors (Ca2+ and

phospholipids). Activation is expressed as the relative percentage of zymogen converted to its active form, with the normal condition (i.e., both Ca2+ and

phospholipidss present in the incubation) as the 100% benchmark. Values are n = 3 mean ± SD.

multiple convergent occasions but is only maintained at
trace levels in most species. The answer to this question
would require sequencing of the enzyme responsible for FX
activation and reconstructing its molecular evolutionary history
through the construction of a robustly supported molecular
phylogenetic tree.

From a phylogenetic point of view, C. culminatus is
consistently retrieved as an early divergence from the rest of the
C. durissus complex (18, 26). Therefore, the true procoagulant
venom phenotype observed in this species might have evolved
independently or represented the ancestral state for this clade.
The latter possibility was investigated by testing the venom
of C. molossus, part of the sister clade to the C. durissus
complex alongside C. basiliscus, C. ornatus, and C. totonacus (26,
27). However, our thromboelastography and factor activation
results revealed only a weakly pseudo-procoagulant venom
action for the nominate subspecies C. m. molossus and distinctly
anticoagulant patterns for a C. m. oaxacus representative,
which greatly degraded fibrinogen to a point where addition
of thrombin was unable to form a clot. This is consistent with

previous studies reporting high fibrin(ogen)olysis across the
three subspecies of C. molossus (95, 115, 116) and does not
support a procoagulant ancestral condition for the C. durissus
group. Thus, this trait likely stems either from convergent
amplifications of a basal FX-activating SVMP or convergent
evolutions of neofunctionalised SVMPs in Viperidae.

The ability of the serine-protease inhibitor AEBSF to
neutralize the pseudo-procoagulant activity of C. mictlantecuhtli
venom demonstrated that this venom activity is driven
by kallikrein-type serine proteases. The differential reliance
upon Ca2+ extended to the pseudo-procoagulant actions on
fibrinogen, with all the venoms acting notably more slowly (up to
half as fast) in the absence of Ca2 (Table 4). The relative reliance
upon phospholipids has also been shown to be a highly labile trait
(66–73, 117). While the effect is less pronounced than for Ca2+,
it is still a significant variable, showing extreme variation within
a genus or even within different geographic ranges of a single
species (50–53, 56–59, 107). Notably, our cofactor dependence
assay revealed a consistently significant acceleration of fibrinogen
clotting in the absence of phospholipids. This phenomenon
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FIGURE 11 | Fluorometry graph showing degradation of prothrombin (PRT) by

venom from C. m. oaxacus (Sierra de Cuatro Venados). Degradation is

expressed as the difference in Pseudonaja-activated zymogen levels between

intact zymogen (black) and zymogen previously incubated with C. m. oaxacus

venom (red). Values are n = 3 mean ± SD.

was already observed in several Asian pitvipers of the genus
Trimeresurus (52) and in the Australian elapid genus Pseudonaja
(58). The biochemical dynamics underlying this pattern are
unclear and warrant further research.

Another novel activity documented in this study was
degradation of prothrombin by C. m. oaxacus, a phenomenon
previously reported in several viper species (118, 119) but
rarely in rattlesnakes (120). Such an activity would create
a net anticoagulant state by depleting the amount of this
endogenous clotting factor available for participation in the
clotting cascade. This activity was first inferred from the
negative values obtained in prothrombin activation tests, and
then confirmed by two additional assays: first by incubating the
venom with prothrombin, then adding a known prothrombin
trigger, and comparing the results to the same trigger added
to prothrombin that had not been exposed to C. mo. oaxacus
venom; and secondly by an SDS-PAGE assay, whereby C. m.
oaxacus produced several aberrant degradation by-products of
higher molecular mass than thrombin. The net decrease in
activity in the FX zymogen activation studies for C. m oaxacus
is consistent with this species also degrading FX in addition

to prothrombin. However, Factor X degradation was unable to
be further examined due to running out of venom supplies.
The fact that the venom produced the same negative values
in the Flouroskan tests as was the case for prothrombin and
with these negative values for prothrombin being confirmed by
additional tests as indeed being reflective of degradation events,
this is strongly suggestive of Factor X also being degraded by this
venom. Future work to confirm this would involve assays such as
were undertaken for prothrombin degradation in this study: (a)
incubating the venomwith Factor X, then adding a known Factor
X trigger, and comparing the results to the same trigger added to
Factor X that had not been exposed to C. mo. oaxacus venom;
and (b) SDS-PAGE gels to ascertain relative cleavage products to
determine if aberrant cleavage products were formed.

As discussed earlier, such stark individual variations
are commonplace among rattlesnakes. C. molossus occurs
throughout a vast range spanning from the southwestern
US to southern Mexico, with blurred geographic and genetic
boundaries among subspecies (10, 27). Our small sample size
does not allow for documentation of subspecies- and population-
level venom variability in this species, which therefore should be
the subject of future research in order to elucidate to what extent
venom variation reflects biogeographical and/or ecological
drivers in the C. molossus complex.

Prey-Capture Evolutionary Implications
The procoagulant activation of zymogens into their active
forms (e.g., FX into FXa; prothrombin into thrombin) in prey
animals would result in rapid incapacitation due to stroke,
induced by large blood clots. Interestingly, procoagulant venom
activity via FX activation in C. culminatus appears to be an
ontogenetic trait, with the shortest and longest clotting times for
both plasma and fibrinogen observed in neonates and adults,
respectively. This is corroborated by our thromboelastography
and fluorometry results in terms of time to clot formation and FX
zymogen activation. Ontogenetic shifts in venom composition
and/or activity have been extensively documented in a variety of
rattlesnake species and lineages (60, 112, 121–124), particularly
with respect to a pattern of loss of crotoxin-like neurotoxic PLA2s
(Type II phenotype) in favor of hemorrhagic SVMPs (Type I
phenotype) as the snake ages (38, 45, 46). This phenomenon
is recurrent in the C. durissus complex (35, 43, 45). Such age-
driven changes in venom composition are generally thought to
stem from shifts in prey preference between juvenile and adult
snakes (10, 121, 122), as seen in a variety of snakes ranging from
Australian elapids (110) to lancehead pit vipers of the genus
Bothrops (113, 125). However, our current knowledge—albeit
fragmentary—points to C. durissus, C. simus, and C. tzabcan
being rodent specialists throughout their life (10, 24, 126–129).
While only scarce information is available for C. culminatus,
reports indicate a rodent-centered diet as well (10, 23, 24, 130).
This is supported by our thromboelastography results showing
a strikingly potent procoagulant effect of C. culminatus venom
on human plasma as opposed to no apparent activity at all on
amphibian plasma, suggesting specialization for an endotherm-
based diet. By contrast, the venoms of other vipers such as Bitis
worthingtoni and several Bothrops representatives are known to

Frontiers in Immunology | www.frontiersin.org 15 March 2021 | Volume 12 | Article 612846

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Seneci et al. A Clot Twist

FIGURE 12 | Representative ID gel of selected rattlesnake venoms incubated with prothrombin to illustrate prothrombin products. The ladder on the far left shows

molecular weights (kDA = kilodaltons). Thr, thrombin (positive control, i.e., typical final product of prothrombin cleavage); Prt, prothrombin; Cmo, C. m oaxacus; Ccu,

C. culminatus; Cmi, C. mictlantecuhtli.

activate both mammalian and amphibian plasma, with potency
showing a clear correlation with degree of specialization on
amphibian prey (113, 114). The Factor X zymogen differs
significantly in mammals compared to amphibians and diapsids
(i.e., reptiles and birds). Future work should investigate the
lineage-specific motifs that guide such differential activation.
Testing of C. culminatus venom on reptile plasma (e.g., lizard)
would be a logical follow-up to corroborate our findings, since
this snake occurs in dry habitats at mid- to high elevations in
southwestern Mexico where other reptiles abound (23, 130, 131).

It has been suggested that potent, fast-acting toxins possibly
serve as a means for small-sized snakes to rapidly incapacitate
prey using a substantially lower amount of venom than adults
are able to inject (122, 126) and/or to quickly immobilize prey
items (113, 122, 126). Intriguingly, while nearly all members of
the C. durissus complex present variable quantities of crotoxin
in their venom, C. culminatus lacks this neurotoxin entirely
(35, 45). By contrast, this species possesses a significantly higher

percentage of SVMPs thanC. tzabcan andC. simus, with neonates
and juveniles possessing metalloproteases not found in adults
and vice versa (44, 45). It is therefore possible that highly
procoagulant SVMPs in early-stage C. culminatus play a role
akin to that of crotoxin-like neurotoxins in other members of
the C. durissus complex and other rattlesnake lineages, as factor-
activating SVMPs are known to induce rapid death by stroke
in small-sized animals (132). Neonate and juvenile rattlesnakes
require meals as early as possible to avoid starvation and support
high rates of growth (10, 133). Thus, a highly potent toxic
component in neonate rattlesnake venom may greatly improve
prey-capture and survival into adulthood. Our results align with
the observations of Margres et al. (134) in the equally non-
neurotoxic species C. adamanteus, with higher venom toxicity in
juveniles compared to adults. This indicates that such a pattern
may be widespread among rattlesnakes beyond the simplistic
Type I vs. Type II categorization, an intriguing possibility that
invites further research.
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While C. culminatus possesses a distinctly Type I venom
phenotype (44, 45), the SVMP-driven procoagulant activity
observed in this study might serve a functional role analogous
to that of neurotoxic PLA2 components in Type II venoms
from juveniles of other species. Hence, a general classification
such as the Type I vs. Type II dichotomy devised by Mackessy
(38) might overlook peculiar toxic activities of venom in certain
species and is therefore not reflective of the greater complexity
present in biological reality. It must be noted, however, that
SVMPs are considerably larger than crotoxin isoforms in terms
of molecular weight, which might delay absorption via the
bloodstream and/or lymphatic system, as documented for C.
simus venom (135). Thus, further research on the ecology and
natural history of this species alongside the pharmacokinetics of
its venom is necessary in order to understand how procoagulant
venom activity translates to a functional role for the animal.

The pseudo-procoagulant activity of the venoms also showed
extreme taxon-specificity, being active on mammalian plasma
but not amphibian plasma. The fibrinopeptide domain at which
thrombin cleaves fibrinogen to form fibrin clots differs sharply
in mammals vs. the homologous region of amphibians/diapsids
(Figure 13). While the precise region at which the venoms cleave
fibrinogen to form the unnatural fibrin clots has not been yet
elucidated for these species, we observed a clear difference in
clot strength between the thrombin-activated fibrinogen and
that of the venom-activated fibrinogen (Figure 3). Much has
been said in the literature about the inability of snake venom
fibrionogenolytic enzymes to stabilize fibrin clots through the
activation of Factor XIII, leading to weaker clots (136–142).
However, this study (Figure 3) and previous research alike
reported that venom-induced fibrin clots were still considerably
weaker than thrombin-induced ones, even in the absence of
FXIII, which is indicative of the venoms cleaving the fibrinogen
differently relative to thrombin. Thus, snake venoms either
cleave at a different region of the fibrinopeptide domain or at
additional sites in the full-length fibrinogen chains to disrupt
the latticework. Previous work on some species has revealed
that some cleave only fibrinopeptide A, while others cleave
only fibrinopeptide B, but with both at the same cleavage site
as thrombin (143). However, cleaving at these sites should
produce the same clot strengths as thrombin, yet they yield
weaker clots. This suggests that if both fibrinopeptides are
being cleaved at sites identical to those targeted by thrombin,
yet produce weak, unstable, and short-lived clots, then the
venoms are cleaving at additional sites, as would be the case
for destructive (non-clotting) venoms. Such sites have been
identified for some venoms (143, 144). Overall, however, this
aspect of venom biochemistry is poorly researched. Future
work should investigate whether the pseudo-procoagulant
activity is mammal-specific by testing additional venoms on
non-mammalian plasma. In addition, it is recommended to
investigate the specific cleavage site to ascertain the differential
nature of the cleavage between thrombin and the venoms.

Clinical Implications
As previously discussed, procoagulant activation of zymogens
would rapidly incapacitate prey animals via thrombosis.

Conversely, the venom is diluted into a much larger blood
volume in human bite victims, which typically does not result
in stroke, although this has been noted on occasion (145, 146).
Instead, when venom is diluted throughout a large blood volume,
venom-induced consumption coagulopathy (VICC) occurs via
depletion of clotting factors following excessive activity of the
coagulation cascade (147, 148). This net anticoagulant state can
result in death via internal bleeding.

Our findings demonstrate that the FX-activating procoagulant
action of neonate C. culminatus venom is not neutralized by
Antivipmyn R©, one of the most frequently used antivenom
products in Mexico. A logical explanation is that Antivipmyn R©

does not includeC. culminatus venom in its immunizingmixture,
relying on venom from adultC. simus specimens instead (112).C.
simus has been recently split into C. ehecatl and C. mictlantecuhtli
throughout most of its Mexican range (26), which is likely to
affect antivenom manufacturing in turn. To our knowledge,
no snake antivenom is produced using venom from juvenile
individuals, and this is due to practical constraints of lower
venom yields from smaller snakes. Venom from this species
complex lacks themetalloprotease-driven true procoagulant trait,
being instead pseudo-procoagulant via kallikrein-type serine
proteases as shown in this work and previous studies (32, 44,
149). The clinical effects of this toxic activity would be VICC
via depletion of fibrinogen following formation of unstable fibrin
clots by serine proteases, as reported for multiple other species
(51, 52). This SVSP-based pseudo-procoagulant activity was
drastically reduced by Antivipmyn R© in our assay for all venoms
possessing this activity (and by AEBSF as well in the case of C.
mictlantecuhtli). Our results therefore confirm extensive cross-
reactivity for Antivipmyn R© against pseudo-procoagulant SVSPs
in contrast to the failure against the neonate C. culminatus Factor
X activation.

The BIRMEX R© (Faboterápico polivalente antiviperino
precio), antivenom, widely marketed in Mexico alongside
Antivipmyn R© to treat rattlesnake envenoming, has C.
basiliscus and Bothrops asper as its main immunizing species
(112, 150). Although this product displays a high degree of
cross-reactivity across multiple rattlesnake species (32, 150),
further testing is recommended to determine whether it is
able to neutralize the true procoagulant activity found in C.
culminatus. However, as the immunizing venom composition
does not include this species, it is unlikely to produce a more
promising result.

Our findings draw attention to the pivotal importance
of which immunizing venoms are chosen for antivenom
production, including the critical need to ascertain ontogenetic
changes. Such antivenom issues have been noted for other genera
such as Pseudonaja (Australian brown snakes), with juvenile
venoms rich in neurotoxic three-finger peptides to specialize on
lizard prey, and adult venom rich in the FactorXa:FactorVa toxin
complex to prey upon mammals as well at later life stages (58,
59, 110, 151). Thus, the antivenom raised against adults performs
poorly against neonates due to the pronounced differences in
venom biochemistry.

Unlike antivenom, the commercially availablemetalloprotease
inhibitor Prinomastat was able to suppress the procoagulant
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FIGURE 13 | Sequence alignment of the activation cleavage sites. Cleavage site of normal thrombin is shown in green, however the venom induced cleavage sites

remain to be elucidated for these venoms. There are however clear sequence differences downstream of the known thrombin cleavage site that are distinct between

mammals and amphibians/diapsids.

action of neonate C. culminatus venom. However, the inhibitor
DMPS performed poorly compared to Prinomastat, indicating
that Prinomastat has greater potential as a field-deployable,
temperature-stable, first-aid measure. Further problematic for
DMPS is its intrinsic anticoagulant action upon plasma (elevating
spontaneous clotting times) that might exacerbate disruption
of blood coagulation in a real-life VICC scenario. Such a
marked divergence may be ascribed to the different action
of the two molecules. DMPS is a metal chelator, commonly
used to treat heavy metal poisoning (152, 153), that binds the
Zn2+ ions required for SVMPs to function (106). In contrast,
peptidomimetic hydroxamate-based inhibitors like Prinomastat
directly inactivate the activity of metalloproteases by binding
to their catalytic site in combination with chelation of Zn2+

(105, 154). Thus, it is possible that DMPS is slower acting and/or
requires a higher concentration to effectively hamper SVMP
activity compared to Prinomastat. This was corroborated by
preliminary tests showing that DMPS at a 20mM concentration
incubated with venom for 20min was more efficient in
neutralizing venom effects than at 2mM for 2min. Such a
prolonged venom-inhibitor proximity would be unlikely to occur
in a dynamic system like the bloodstream. Thus, investigations
into the efficacy of inhibitors should prioritize those which are
fast acting. It should also be noted that SVMPs are a highly
diverse toxin family consisting of three classes, each of which
is characterized by different structures and active domains with
important consequences for their toxic activity (132). Thus, it is
possible that the metalloproteases found in Echis venom, which
were shown to be neutralized byDMPS (106) and by ion chelators
in general better than by peptidomimetic inhibitors (105) differ
from those present in C. culminatus to an extent where cross-
reactivity is poor for DMPS. However, the study that examined
the suitability of DMPS for neutralizing Echis venoms (106)
used different methodologies (e.g., a kinetic fluorogenic assay
to assess the effect of DMPS and other chelators on plasma
clotting and SVMP activity) and thus comparing the relative

potency with the poor neutralization results obtained in this
study is impossible. Future work should undertake head-to-
head comparisons between Prinomastat and DMPS using the
presently used methodology and with a larger species pool
(including Echis) to ascertain if DMPS consistently performs less
efficiently than Prinomastat. However, in another study DMPS
was conspicuously unable to neutralize Daboia russelii venom
(155), which exerts its powerfully procoagulant effect via SVMP-
induced Factor X activation like the neonate C. culminatus
venom in this study. This suggests two future hypotheses to test.
First, that the SVMPs in the two venoms, and thus presumably
the FX activators in other viper venoms such as Bothrops,
share a common molecular ancestry, putatively all being P-IIId
SVMPs, whereby two lectin peptides are covalently linked to
the SVMP enzyme. This would in turn suggest that DMPS is
unable to neutralize P-IIId SVMPs in general. The prior work
on DMPS examined only E. carinatus and E. ocellatus, which
are both PIIIa rich venoms but not P-IIId rich like E. coloratus
and putatively E. leucogaster and E. pyramidum leakeyi (56).
Thus, future work should test a broader diversity of Echis to
determine the efficacy of DMPS in neutralizing venoms rich in
P-IIId SVMPs.

In recent years, several studies have proposed the use
of small molecule inhibitors as an adjunct treatment for
snakebite envenoming, to be administered before or alongside
antivenom (105, 106, 156, 157). Both Prinomastat and DMPS
are already licensed and widely marketed worldwide and can be
administered outside a hospital setting (even via oral ingestion
for DMPS), facilitating their use in real-life envenoming
situations. Taken together, our observations indicate that C.
culminatus possesses a peculiar venom phenotype that hampers
antivenom cross-reactivity with its closest relatives inMexico and
encourages the use of metalloprotease inhibitors as an adjunct
treatment. However, it should be noted that, while small molecule
inhibitors have shown considerable potential in countering
symptoms of snakebite, their repurposing for use as an adjunct
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treatment for envenomation will require in vivo investigations
and clinical trials before regulatory authority approval.

From an epidemiological perspective, C. culminatus
envenoming in humans is likely to occur regularly in the
rural environments but is seldom documented due to poor
epidemiology being a broad medical issue in such remote
communities (Rebolledo, personal communication, January
2020), whereas C. simus (i.e., C. mictlantecuhtli + C. ehecatl
+ C. simus) is responsible for the majority of rattlesnake
bite episodes in several Mexican states and Central American
countries (14, 158). As populations centers spread into the
remote areas occupied by C. culminatus, envenomations may
increase in frequency. In addition, this species is sought after in
the exotic pet trade and thus bites from captive C. culminatus
individuals in the private reptile keeping sector may result in
significant medical complications not neutralizable by available
antivenoms, especially in countries where the species is not
native. This species is therefore of potential clinical concern
and we recommend further research on optimal treatments for
its envenoming.

Conclusion
This study reports the first occurrence of true procoagulant
venom activity in Mexican Neotropical rattlesnakes for the
species Crotalus culminatus, especially in early life stages.
This went largely undetected in previous studies due to the
lack of Ca2+ and phospholipids in plasma clotting assays
resulting in experimental conditions lacking physiological
venom requirements for functional activity. The poor efficiency
of one of the main Mexican antivenom products against this
action highlights the need to include a wide array of snake
species and life-stages in antivenom immunizing mixtures.
The metalloprotease inhibitor Prinomastat however was
highly effective in neutralizing the procoagulant venom
activity in C. culminatus, further validating the use of small
molecule inhibitors as adjunct treatment for snakebite
despite DMPS performing poorly in comparison. Overall,
we hope our results will contribute to the evidence-based
design of clinical management strategies for rattlesnake
envenoming in Mexico and emphasize the importance of
natural history and evolutionary research on rattlesnakes and
their venom.
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