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Plasma membrane provides a biophysical and biochemical platform for immune cells to
trigger signaling cascades and immune responses against attacks from foreign pathogens
or tumor cells. Mounting evidence suggests that the biophysical-chemical properties of
this platform, including complex compositions of lipids and cholesterols, membrane
tension, and electrical potential, could cooperatively regulate the immune receptor
functions. However, the molecular mechanism is still unclear because of the
tremendous compositional complexity and spatio-temporal dynamics of the plasma
membrane. Here, we review the recent significant progress of dynamical regulation of
plasma membrane on immune receptors, including T cell receptor, B cell receptor, Fc
receptor, and other important immune receptors, to proceed mechano-chemical sensing
and transmembrane signal transduction. We also discuss how biophysical-chemical cues
couple together to dynamically tune the receptor’s structural conformation or orientation,
distribution, and organization, thereby possibly impacting their in-situ ligand binding and
related signal transduction. Moreover, we propose that electrical potential could
potentially induce the biophysical-chemical coupling change, such as lipid distribution
and membrane tension, to inevitably regulate immune receptor activation.

Keywords: immune receptor, plasma membrane, biophysical-chemical coupling, electrical potential,
mechanical force
INTRODUCTION

The plasma membrane (PM) of cells, mainly consisting of lipid, cholesterol, and protein, is a lipid
bilayer structure. Its outer leaflet enriches phosphatidylcholine, sphingolipid, and cholesterol, and
the inner leaflet mainly contains cholesterol and acidic phospholipids (e.g. phosphatidylserine,
phosphatidylinositol, and phosphatidic acid) (1–3). The asymmetry mobility and dynamic
organization of lipid and membrane proteins have been proposed in the Fluid-Mosaic model
org February 2021 | Volume 12 | Article 6131851
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(4–7). In this model, the PM is a very dynamic structure, where
lipid-protein, lipid-lipid, and protein-protein interactions occur
at all times, and all of these interactions regulate membrane
receptor’s ligand recognition and triggering (6, 8). Moreover,
sphingolipid and cholesterol contribute to the formation of
nanodomains or lipid rafts, which are highly dynamic in many
receptor-activated cellular processes (9–12). It has been reported
that the biophysical-chemical properties of the PM, including the
asymmetry of lipid and protein distribution, the membrane
curvature and mechanical tension, and the membrane electrical
potential, could dynamically regulate diverse cellular processes
(13–16).

For immune cells, the PM tunes their essential physiological
processes. For example, the cholesterol accumulation could
increase T cell differentiation and proliferation, whereas it also
induces T cell exhaustion through T-cell receptor (TCR)
signaling (17–20). Phosphatidylserine directly tunes T cell
migration, adhesion, tissue infiltration, and rapid inflammatory
response (21, 22). Moreover, PM’s mechanical tension, driven by
the cytoskeleton and its associated molecular motors,
dynamically shapes PM morphology and regulates T cell
adhesion, migration, and activation cooperatively via many
immune receptors (e.g. TCR and integrin) (23–25). Also, PM
morphology (e.g. microvilli) facilitates the discrimination of
peptide major histocompatibility complex (pMHC) for TCR
(26–28). Membrane potential, another PM biophysical
property, might also regulate T cell proliferation and
cytotoxicity through TCR activation (29, 30).

Here, we review how PM couples with biophysical and
biochemical factors to regulate the functions of immune cells
(e.g. T cell, B cell, and natural killer cell) through the respective
immune receptor activation, such as TCR, B-cell receptor (BCR)
or Fc receptor (FcR), and further discuss and propose the
potential molecular mechanism.
DOUBLE-EDGED REGULATION
OF CHOLESTEROL

It has been reported thatmany receptors (e.g. acetylcholine receptor
and G protein-coupled receptor) contain the cholesterol
recognition/interaction amino acid consensus (CARC, mainly
containing Valine, Isoleucine, Alanine, Methionine, and Serine
amino acids) motif in the transmembrane domain (TMD) which
directly interacts with cholesterol (31, 32). This CARCmotif might
be conserved for many immune receptors. Based on previous
findings, we propose a double-edged model of cholesterol
regulation on receptor activation: 1) cholesterol directly binds
TMD to keep immune receptors in an inactive (close
conformation) state (33); 2) once the immune cell is stimulated,
cholesterol indirectly mediates the clustering of immune receptors
(34, 35), whichmight be in an activation (open conformation) state.
Cholesterol might finely tune the activation threshold to avoid
perturbations from non-specific noise signals. Once strong
stimulation activates the conformational change of receptor
TMD, cholesterol could facilitate immune receptors clustering to
Frontiers in Immunology | www.frontiersin.org 2
launch and amplify downstream signaling cascades. Therefore,
whether and which residues of receptor TMD mediate direct
interaction with cholesterol, and if so, how cholesterol keeps
immune receptors in the close conformation or resting state, and
how strong stimulation (e.g. ligand binding) could trigger the
conformational change of immune receptors to form the
cholesterol-mediated nano or micro clusters, need to be further
investigated with atomic resolutions.

As a major biochemical component of the PM, cholesterol can
bifunctionally regulate TCR dynamics and functions (Figure 1A).
On one hand, it associates with the TMD of the TCR b chain and
keeps TCR in a resting and inactive conformation, preventing CD3
phosphorylation and recruitment of downstream signaling
components, such as ZAP70 and ERK (33). On the other hand, it
can also enhance TCR nanoclustering to promote T cell activation
(36–38). Moreover, cholesterol can regulate TCR clustering and
signaling through dynamic lipid rafts (35, 39, 40). For example, the
increased cholesterol level in the PM by inhibiting cholesterol
esterification of CD8+ T cell in vivo can promote TCR clustering,
enhance immune synapse formation, and amplify the
phosphorylation of CD3, ZAP70, and ERK to produce more
cytokine, leading to T cell proliferation (41). Consistently,
cholesterol sulfate can inhibit CD3 immunoreceptor tyrosine-
based activation motif (ITAM) phosphorylation by replacing
cholesterol to disrupt the formation of TCR nano-clustering (42).
The depletionof cholesterol inT cells also drastically reduces in-situ
TCR/pMHC binding affinities and association rates, potentially
through regulating the conformation or orientation of TCR’s TMD
and ectodomains to impair TCR antigen recognition (43). In brief,
cholesterol possibly tunes TCR initial allosteric switch and
subsequent clustering, respectively. The detailed regulation
mechanism remains ambiguous, which requires further
investigation with atomic resolution to reveal how exactly
cholesterol dynamically associates with the TCR/CD3 complex.
The cryo-EM structure of TCR/CD3 complexwithmembrane lipid
and cholesterol will provide us more meaningful insights.

During the antigen recognition process of B cells, the micro-
cluster formation of the BCR complex is crucial to strengthen BCR
activation signaling (44, 45). Cholesterol has been reported to
regulate the distribution of BCRs in PM microdomains, and low
cholesterol level impairs BCRs aggregation further to affectVav and
Rac1phosphorylation (46, 47).Moreover, cholesterolmay affect the
formationofprotein islands,nanodomains,ormicrovilli on thePM,
which provides a platform for BCRs to form their unique signaling
complex with coreceptors (28, 48–50). Meanwhile, cholesterol
could also induce BCR endocytosis on anergic cells to inhibit
BCR signaling (51). Therefore, cholesterol also has double-edged
regulation (amplifying or attenuating) on BCR signaling. However,
the detailed molecular mechanism of these two regulatory effects
and their switching is still unclear.

The lipid raft, mainly consisting with cholesterol, can directly
tune activating receptor FcgRIIA signaling (e.g. phosphorylation
of CbI and NTAL) without ligand binding (52). The cholesterol
depletion can impair FcgRIIA association with CD55, GM1, and
Lyn kinase, and the related phosphorylation signaling (53).
Similar to FcgRIIA, FcgRIIIA activation could also be inhibited
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by cholesterol depletion to reduce ERK activation and prevent
IFN-g production (54). And the intracellular tyrosine
phosphorylation of inhibitory receptor, FcgRIIIB, can also be
significantly attenuated when the cholesterol level reduces (55,
56). Moreover, cholesterol can directly regulate the recognition
of FcgRI to IgG (57). These detailed regulation molecular
mechanisms still need to be further investigated.
SIGNALING MOTIFS PROTECTION BY
NEGATIVELY CHARGED LIPID/BASIC
MOTIF INTERACTION

The PM inner leaflet enriches negatively charged lipids (e.g.
phosphatidylserine, phosphatidylinositol, etc.) that can interact
with the polybasic regions of immune receptors to regulate their
Frontiers in Immunology | www.frontiersin.org 3
activation. Such interaction can embed the signaling motif of the
immune receptors in the PM hydrophobic core. The positively
charged Ca2+ ions flux, which is triggered by strong agonistic
ligand stimulation, can disrupt this interaction to uncover the
buried signaling site (58–61). The PM shields noise signal
interference through their selective association with critical
signaling motifs until strong stimulation is initiated. This
mechanism of signaling shielding and amplification by
regulating negatively charged lipid/basic motif interaction is
potentially shared by many other immune receptors.

The inner leaflet of T cell PM mainly consists of negatively
charged lipids, which associate with CD3ϵ/z cytoplasmic ITAM
motif through electrostatic interactions (Figure 1B). These lipid
and CD3 interactions protect CD3ϵ/z ITAMs from being
recognized and phosphorylated by downstream kinase
molecules, such as Lck (59, 60, 62, 63), thus keeping TCR/CD3
A

B

DC

FIGURE 1 | Schematic models of PM regulation on TCR complex signaling. (A) Double-edged regulation of cholesterol on TCR activation. Cholesterol could directly
bind with the TMD of the TCR b chain to keep TCR in an inactive state in the resting T cell. Cholesterol disassociation from the TCR b chain can switch the TCR
complex to the activation state. Meanwhile, cholesterol also indirectly mediates TCR clustering, following TCR initial activation. (B) The interaction between negatively
charged lipid and basic motif regulates CD3 ITAM motif exposure. TCR cytoplasmic domains contain polybasic regions, which directly interact with the negatively
charged lipid in the membrane inner leaflet to embed the ITAM motif in hydrophobic core of the PM in resting cell. The disruption of this interaction can expose the
signaling motif to amplify downstream signaling. (C) PM provides a platform to sense outside cues for immune receptors. On this platform, mechanical force
regulates TCR/pMHC recognition through conformation change. (D) Electrical potential might directly trigger TCR signaling. Since TCR TMD contains several
charged residues, PM potential depolarization might induce TMD titling conformation to further allosterically regulate dissociation of CD3 tails from inner leaflet and
activate intracellular downstream signaling.
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in the resting state and T cells in a quiescence state. As it has been
extensively reviewed before (60), we here just briefly discuss it.

For the mIgG-BCR, PM’s inner side could block non-specific
stimulation and keep mIgG-BCR in a resting state, providing the
critical activation thresholds for mIgG-BCRs (58). As the
cytoplasmic region of the mIgG (mIgG-tail) contains several
basic residues, it could electrostatically bind with negatively
charged acidic phospholipids of the PM’s inner leaflet to block
the interference from noise signals and keep mIgG-BCR in a
resting state in quiescent B cells (58). Ca2+ mobilization triggered
by suitable antigenic stimulation on the mIgG-BCR complex
could disrupt this protection, which further recruits pSyk,
pBLNK, and pPI3K into the immunological synapse to induce
a more potent Ca2+ mobilization response and B-cell
hyperproliferation. Moreover, phosphatidylinositol (4,5)-
bisphosphate (PIP2) triggers a signaling amplification loop to
induce the initial formation of BCR micro-clusters upon B cell
activation (64). PIP2 and phosphatidylinositol (3,4,5)-
trisphosphate (PIP3) together tune the growth of BCR micro-
clusters by recruiting Dock2 to remodel F-actin cytoskeleton
(65). Remarkably, this electrostatical interaction mechanism
might not be suitable for mIgG-associated Iga and Igb as they
contain polyacidic regions (58, 60).
MECHANICAL REGULATION AND ITS
COUPLING WITH CHOLESTEROL AND
NEGATIVELY CHARGED LIPID

In general, the PM provides a platform for immune receptors to
sense outside physical and biochemical cues. Unlike
biomolecules in solution that can freely rotate and adopt many
different possible orientations, immune receptors’ orientations
are significantly restricted by the PM. They only can adopt
limited protein topologies, which are essential for receptor-
ligand binding and downstream signaling transduction. The
membrane anchor pattern, extracellular length, and orientation
of immune receptors all could influence the recognition of their
ligands by affecting ligand accessibility and association kinetics.
Meanwhile, the physical platform also tightly restricts immune
receptors diffusion, which is distinct to that in solution, thereby
drastically affecting immune receptor-ligand binding affinity
(66). Moreover, the immune receptors also experience
mechanical force induced by membrane tension and
cytoskeleton contractions (23–25). The mechanical force has
been reported to induce conformational changes of immune
receptor and ligand to regulate their binding strength and
immune functions. It is very likely that these mechanically
regulated protein conformational changes could propagate
across the PM and transduce toward the inside of the cell to
allosterically regulate the conformation of the receptors’
cytoplasmic tails and potentially their associated kinases or
other adaptor molecules. Such propagation could provide a
rapid physical activation of receptor signal transduction, other
than traditionally accepted biochemical ways. This mechanical
Frontiers in Immunology | www.frontiersin.org 4
regulation might be universal in immune receptors. During
cross-membrane mechanical propagation, cholesterol could
inevitably be integrated with force to collectively regulate the
conformation of receptor’s TMD. For example, cholesterol can
regulate PM tension, which in turn tunes cholesterol
distribution, membrane stiffness and bending (67–69), thereby
inducing immune receptors ectodomain conformational changes
and TMD titling. Cholesterol could potentially prevent or
facilitate the TMD tilting, which may be dependent on how
cholesterol dynamically interacts with receptor’s TMD.
Collectively, the mechano-biochemical coupling could
contribute to the conformational changes, triggering and
clustering of immune receptors.

The PM provides a physical platform for TCR/CD3 complex
to sense antigens (66). On this platform, TCR inevitably
experiences external mechanical forces when T cells contact
the antigen-presenting cell (APC) or migrate on the APC and
the extracellular matrix (ECM), and the internal mechanical
force produced by dynamic cytoskeleton contraction during T-
cell searching for foreign antigens on the APC or membrane
bending tension upon T-cell/APC contact formation (23, 70–73).
For TCR recognition of pMHCs, the mechanical force can
prolong the bond lifetimes for agonistic antigens but not
antagonists by selectively inducing conformational changes
(Figure 1C) of the agonistic pMHC to initiate the formation of
new hydrogen bonds (electrostatic attraction between the
hydrogen atom and negatively charged nitrogen or oxygen
atom) (72, 73). This force induced by pMHC/TCR binding
inevitably increases local membrane tension and further
induces membrane bending, which might disrupt the
interactions between CD3 polybasic regions and negatively
charged lipids of the inner leaflet to expose ITAM motifs for
Lck to phosphorylate and further trigger downstream signaling.

PM stiffness can also regulate the antigen discrimination of
BCRs. BCR has stringent affinity discrimination when contacting
with rigid APC PM during the invagination of antigens (74).
Also, PM shape can regulate BCR stimulation by affecting the
formation of BCR microclusters (75). On the PM platform, the
mechanical force provides multiple effects on different isotyped
BCRs, which influences the activation sensitivity of BCR by
pathological antigens (antigens that can induce a specific
immune response to cause the infectious, allergic or
autoimmune diseases) (76). Low mechanical force (<12 pN) is
enough to trigger the activation (e.g. BCR, pSyk, pPLCg2, and
pTyr clusters) of IgG- or IgE-BCR on memory B cells, but not
IgM-BCR on mature naive B cells (76).

Besides, PM curvature causes the redistribution of FcϵRI (77,
78). FcϵRI bond with IgE always locates at the contact membrane
regions which are less curved (79). Similarly, FcgRIIA also can be
regulated by the mechanical force under the physiological flow
conditions, which facilitates the capture of neutrophils directly
by endothelial cells (80). Moreover, the recognition of FcgRII and
FcgRIII to IgG is influenced by the anchor patterns (e.g. GPI and
transmembrane domain) on the immune cell PM (81, 82).

It has been reported that high membrane tension or
mechanical force helps CD28 (another costimulatory receptor
February 2021 | Volume 12 | Article 613185
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of TCR complex) to facilitate TCR signaling on the PM platform
(83, 84). Also, LFA-1/ICAM-1 interaction is affected by the
mechanical force to regulate T cell migration (85–88). For
natural killer cells, PM stiffness can regulate the NKG2D/
MICA interaction to determine the cell cytotoxic activity (89).
ELECTRICAL POTENTIAL REGULATION
AND ITS COUPLING WITH MECHANICAL
AND BIOCHEMICAL CUES

The PM electrical potential, which is commonly overlooked in the
immunology field, is another essential biophysical factor that also
potentially regulates immune receptor functions. It is generally
defined as the electric potential difference between the
intracellular and extracellular solution. PM potential
depolarization can facilitate the opening of Ca2+ channels and
initiate the mitotic activity to regulate the activation and
proliferation of lymphocyte cells (90–92). The regulation of PM
potential on neural activity and the networks has been widely
reported. Its molecular regulationmechanismmainly divides into
threeways (93). First, TMDconformational change of the voltage-
dependent ion channels is triggered by PM potential
depolarization (94). Considering that the TCR complex TMD
contains several charged residues buried in the lipid bilayer, we
propose that PM potential depolarization, which is triggered by T
cell activation (95), might tilt the conformation of TCR TMD to
further allosterically regulate thedissociationofCD3 tails from the
inner leaflet of PM and activate intracellular downstream
signaling (Figure 1D). However, this depolarization-induced
TCR allosteric activation needs to be further investigated with
detailed biophysical investigation. Second, ion influx, an indirect
effect of depolarization, regulates transmembrane proteins. The
possible mechanism might be that ion influx regulates ligand
binding and tyrosine phosphorylation (96, 97). It has been
reported that Ca2+ influx disrupts the interactions between CD3
cytoplasmic polybasic regions and negatively charged lipids to
favor CD3 ITAMs phosphorylation. However, whether PM
potential might directly tune CD3 ITAMs phosphorylation is
still unknown. Third, the electro-osmosis or electrophoresis
induced by local electric fields, re-distributes transmembrane
protein on the PM (98). Like neural synapses, the immune
synapses might also exist this electromigration to regulate
immune receptor distribution pattern, which favors the
recognition of APCs by T cells.

Notably, PM surface usually exists a ~2 nm electrical double
layer (EDL, a layer formed by freely diffusing electrolyte ions in
the nanometer range of the charged surface), which is regulated
by lipid distribution and intracellular/extracellular ions
concentration (16). Key proximal regions of TMD, usually
containing acidic or basic amino acids and locating in the
EDL, might respond to the electrical potential change to
regulate immune receptor conformations. For example, Ca2+

influx of T cell activation indeed changes the ion distribution and
reduces the interaction between the cytoplasmic domain of CD3
or CD28 and EDL, activating downstream signal transduction.
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PM potential can also affect other chemical and biophysical
properties, such as lipid distribution, membrane fluidity, tension,
and curvature of PM (99, 100), dynamically changing the
mechanical and biochemical environment where immune
receptors reside (23). For example, PM potential depolarization
can induce changes in PM curvature and tension, which could
further regulate the mechano-dependent behavior of immune
receptors, such as the conformational changes and ligand binding
kinetics (23, 100, 101). Meanwhile, the depolarization also reduces
the lateral diffusion of membrane components (e.g. cholesterol,
phospholipids, and protein) to affect the formation of lipid rafts,
receptor microclusters, and microvilli (12, 99, 102, 103), all
of which are crucial for immune receptor activation (12, 26, 28).

Inversely, the compositions of lipids and cholesterols can
directly affect the charge distribution on the PM surface, which
further determines the PM potential (12, 16, 30). PM tension and
curvature might also tune immune cell PM potential through
mechanosensitive Piezo1 channel (104), causing a series of
related regulation on immune receptor activation. However,
the detailed mechanism still needs further investigation.

Based on the above elaboration, the PM platform provides
mechanical-electric-chemical coupling to synergistically regulate
immune receptor-ligand recognition, conformational changes,
and cross-membrane activation. This is also exciting to be
investigated in the future.
CONCLUSION

In recent decades, the regulation of immune cell PM chemical
properties on the receptor activation has been broadly
investigated, and some of them have been revealed. However,
many other PM biophysical effects (e.g. membrane tension and
electrical potential) have not been clearly examined. Especially,
whether and how biophysical-chemical cues couple together to
tune receptors, and their molecular mechanism of these
regulation patterns all need to be further investigated.
Answering all these above questions will improve our
understanding of immune receptor activation, especially TCR,
thus contributing to immunotherapies development [e.g.
chimeric antigen receptor (CAR) T-cell design].
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