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Allergy is an IgE-dependent type-I hypersensitivity reaction that can lead to life-threatening
systemic symptoms such as anaphylaxis. In the pathogenesis of the allergic response, the
common upstream event is the binding of allergens to specific IgE, inducing cross-linking
of the high-affinity FceRI on mast cells, triggering cellular degranulation and the release of
histamine, proteases, lipids mediators, cytokines and chemokines with inflammatory
activity. A number of novel therapeutic options to curb mast cell activation are in the
pipeline for the treatment of severe allergies. In addition to anti-IgE therapy and allergen-
specific immunotherapy, monoclonal antibodies targeted against several key Th2/alarmin
cytokines (i.e. IL-4Ra, IL-33, TSLP), active modification of allergen-specific IgE (i.e.
inhibitory compounds, monoclonal antibodies, de-sialylation), engagement of inhibitory
receptors on mast cells and allergen-specific adjuvant vaccines, are new promising
options to inhibit the uncontrolled release of mast cell mediators upon allergen
exposure. In this review, we critically discuss the novel approaches targeting mast cells
limiting allergic responses and the immunological mechanisms involved, with special
interest on food allergy treatment.
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INTRODUCTION

Nowadays, over 20% of the world population actively suffers from one or more allergies, among
which approximately 10% is living with food allergy (1, 2). Food allergies carry a high risk of
developing systemic reactions upon allergen exposure, with 0.4–39.9% of allergic subjects
experiencing at least one severe episode in their lifetime (3).
Abbreviations: AIT, allergen immunotherapy; Akt, protein kinase B; BTK, Bruton Tyrosine Kinase; ERK, extracellular signal-
regulated kinase; FcϵRI, high-affinity IgE receptor; FcϵRII, low affinity IgE receptor; FcgRII, low affinity IgG receptor; IgE,
immunoglobulin E; IgG, immunoglobulin G; IL, interleukin; IL-4Ra, interleukin 4 receptor alpha chain; ITAM,
immunoreceptor tyrosine-based activation motif; ITIM, immunoreceptor tyrosine-based inhibition motif; Kd, dissociation
constant; LARI, low affinity allergic response inhibitors; MCs, mast cells; NF-k, B, Nuclear Factor kappa-light-chain-enhancer
of activated B cells; PI3K, phosphatidylinositol 3-OH kinase; SCF, stem cell factor; Siglec, Sialic acid-binding immunoglobulin-
type lectins; sIgE, allergen-specific immunoglobulin E; STAT6, signal transducer and activator of transcription 6; Syk, Spleen
Tyrosine Kinase; TSLP, Thymic stromal lymphopoietin; Tregs, T regulatory cells.
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Anaphylaxis is a systemic reaction involving two or more
organ systems, occurring shortly after the exposure to the culprit
allergen. It manifests with a plethora of symptoms, including
hives, angioedema, shortness of breath, vomiting, hypotension
and cardiovascular collapse, which is potentially life-threatening
and requires emergency treatment (4). The complex allergic
reaction starts with the cross-linking of high-affinity
immunoglobulin E (IgE) receptors (FcϵRI) expressed on
effector cells such as mast cells (MCs) and basophils by IgE–
allergen complexes. FcϵRI engagement causes cell degranulation
and release of preformed mediators, such as amines (histamine,
polyamines), proteoglycans (heparin, chondroitin sulphates,
serglycin), proteases (tryptase, chymase-1, cathepsin G,
granzyme B, carboxypeptidase A3), lysosomal enzymes (b-
glucuronidase, b-hexosaminidase, arylsulfatase), newly formed
lipid mediators (leukotrienes B4-C4, prostaglandin D2-E2),
cytokines and chemokines (GM-CSF, IL-1b, IL-8, IL-13, MCP-1)
(5, 6).

MC activation is also the cause of the delayed release of newly
synthesized cytokines and chemokines (5, 6), that promote
dendritic cell recruitment and activation (7, 8), T helper 2
(Th2) skewing (9–11), affinity maturation and epitope
spreading on B and T cells (12, 13), additional IgE synthesis
(14), and altogether the amplification of allergic responses (15).
The release of vasoactive products, such as histamine, cysteinyl
leukotrienes and platelet activating factor (16), serves as the main
pathogenetic mechanism of anaphylaxis, which can lead to
generalized cardiovascular involvement and collapse, the latter
burdened with high mortality and morbidity (4).

In addition to their prominent role in the genesis of allergic
and anaphylaxis symptoms, MCs actively participate to the
complex interplay of innate and adaptive immunity in the
defense against pathogens, wound healing and tumor
surveillance (17–19). Due to the conspicuous array of surface
receptors expressed, capable of sensing the surrounding
environment and participate to immune recognition, MCs act
as both initiators and suppressors of local immune responses (17,
20, 21). MCs engage in a bidirectional cross-talk with various
immune cells, such as dendritic cells (10, 22–24), T cells (25)
including T regulatory (Treg) cells (26–28), eosinophils (29, 30),
B cells (31) and other cell types (17). Being capable of secreting
both pro- and anti-inflammatory cytokines, like TNFa (7) and
IL-10 (32), and several chemokines (6), MCs also contribute to
the prevention and resolution of food allergy (33). Along with
MCs, the above cell populations are considered equally
important targets in food allergy treatment, however outside
the main scope of the review and discussed elsewhere (34–36).

Strategies to pre-emptively curb MC activation are currently
being explored for therapeutic purposes. Allergen-specific
immunotherapy, recently developed biologics, a combination
of both, and the discovery of new druggable targets are the
most promising options available to treat food allergy.

The purpose of this review is to highlight the different
immunological mechanisms targeting IgE-mediated MC
activation as a therapeutic option for the treatment of food
allergy, with particular focus on peanut allergy. However, two
Frontiers in Immunology | www.frontiersin.org 2
crucial preliminary considerations should be made. First, no
treatment option currently available is uniquely targeting MCs.
In fact, receptors inhibiting MC activation are shared among
different cell types, and cytokines and other soluble mediators
have pleiotropic effects affecting multiple cell populations at
once. Second, any treatment inhibiting IgE-mediated MC
activation should also take into consideration the broader
implications and the potential loss of MC protective functions.
Hence a benefit/risk assessment should be made, especially when
considering highly disruptive interventions, like active MC
depletion, not covered by the present manuscript (37).
ALLERGEN-INDEPENDENT APPROACHES

IgE-Mediated Mast Cell Activation
IgE antibodies are the mainstay of allergic responses. They are
monomeric glycoproteins composed of two light and heavy
chains, the latter showing four constant Ig-like domains (Cϵ1–
4), bound via disulfide bridges (38). Several factors are involved
in the development of functional IgE antibodies, including
specific affinity maturation, conformational/allosteric
properties, and glycosylation patterns (38–40). IgE blood
concentration in healthy individuals is very low (below 210
IU/ml) compared to normal levels of IgG (5.65–17.65 mg/ml)
(41, 42). IgE are mostly sequestered in peripheral tissues, with an
average half-life estimated of 16–20 days in the skin versus 2–4
days in blood (43). Given the high affinity of FcϵRI to IgE (Kd =
1010–1011 M−1) and the slow dissociation rate (44, 45), the
majority of IgE are cell-bound to either FcϵRI or the low-
affinity receptor FcϵRII (CD23) via the Cϵ3-4 Fc domains (46).
FcϵRI is the high-affinity IgE receptor constitutively expressed on
MCs and basophils, while inducible on monocytes, dendritic
cells, eosinophils and neutrophils (47–50). A tight correlation
between atopic status, circulating IgE levels and surface
expression of FcϵRI on MCs, basophils and other cell types has
been proven (45, 47, 51, 52). While peripheral blood-resident
cells acquire IgE directly from the circulation, perivascular
tissue-resident MCs, sensing changes in total IgE levels, probe
IgE from blood vessels using endoluminal cell processes (53).

Furthermore, occupancy of the FcϵRI receptor is crucial to
ensure its expression on the cell membrane by MCs and
basophils, as shown by mechanistic studies demonstrating
increased FcϵRI expression upon IgE binding due to decreased
FcϵRI endocytosis and degradation (44, 54–56). IgE bound to
FcϵRI persists as long as MCs are alive, thus indicating that MCs
preferentially display rather than catabolize IgE. FcϵRI-mediated
constitutive internalization of IgE by dendritic cells and
monocytes promotes serum IgE clearance instead (57).

FcϵRI is constituted by one alpha and one beta chain on MCs
and basophils, or a single alpha chain on monocytes and
dendritic cells (45, 58, 59), complexed with two additional
gamma chains with immunoreceptor tyrosine-based activation
motif (ITAM) domains acting as docking and activation sites for
the Spleen tyrosine kinase (Syk) pathway (60, 61). The activation
of the Syk, phosphatidylinositol 3-OH kinase/protein kinase B
August 2021 | Volume 12 | Article 613461
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(PI3K/Akt) and extracellular signal-regulated kinase (ERK)
pathways leads to increased intracellular calcium flux, calcium-
dependent release of preformed mediators stored in intracellular
granules and activation of transcription factors for eicosanoids,
cytokines and chemokines production (62).

MCs and basophils express the highest density of FcϵRI
receptor [estimated 0.7 × 105 molecules per cell measured on
LAD2 MCs (63)], with a bell-shaped dose–response when
exposed to increasing allergen concentrations (64).
Degranulation is tightly regulated via mechanisms modulating
the MC activation threshold, not limited to IgE–FcϵRI complex
expression. In fact, the nature and dose of the eliciting allergen
also play a modulatory role. For instance, simultaneous
stimulation using multiple allergens shows an additive effect on
MC activation when suboptimal allergen concentrations are
used. Conversely, stimulation with supra-optimal allergen
concentrations inhibits MC degranulation (64, 65).

Anti-IgE/FcϵRI Strategies
Given the pivotal role of IgE in the initiation and maintenance of
allergic responses, increasing evidence supports the use of anti-
IgE molecules as therapeutic strategy to treat allergic diseases,
including food allergy (Tables 1 and 2). Anti-IgE therapy
disrupts the IgE–FcϵRI axis via the active removal of
circulating IgE and the downregulation of FcϵRI on MCs,
basophils and dendritic cells (136–138). By removing
circulating IgE, the turnover between circulating and cell-
bound allergen-specific IgE (sIgE) slowly declines, ultimately
reducing the amount of sIgE bound on the cell surface and
decreasing the likelihood of allergen-IgE cross-linking and
allergen-specific effector cell responses (139–141) (Figure 1A).

Furthermore, anti-IgE treatment induces FcϵRI down-
regulation by interfering with the accumulation of IgE–FcϵRI
complexes occurring at the cell surface due to reduced receptor
occupancy by IgE (54–56, 136). The reduced availability of sIgE–
FcϵRI complexes further inhibits the release of Th2 cytokines
and allergic mediators upon allergen challenge by MCs,
basophils and dendritic cells (136, 137, 141–144).

Some anti-IgE treatments also inhibit IgE binding to the CD23
receptor, the low affinity IgE receptor constitutively expressed on
naïve B cells, exerting an inhibitory effect on IgE-mediated antigen
presentation (145, 146), inducing anergy or apoptosis ofmembrane
IgE-bearing B cells (147, 148) and in some cases modulating IgE
production (146, 149). However, treatment discontinuation is
followed by the quick restoration of pre-treatment IgE levels (150).

Omalizumab, a humanized anti-IgE monoclonal antibody, is
the first and most studied biologic, currently used to treat severe
asthma and chronic spontaneous urticaria (Table 2). It binds to
IgE Ce3 domains, outside of the FceRI-binding site, and sterically
disrupts binding to both FcϵRI and CD23 (151). Omalizumab
does not affect pre-bound IgE-receptor interactions, due to
conformational changes of receptor-bound IgE masking
omalizumab binding sites, and does not induce IgE cross-
linking on the cell surface (151, 152).

Omalizumab downregulates the surface expression of FcϵRI
in both basophils and MCs (153). However, while FcϵRI
Frontiers in Immunology | www.frontiersin.org 3
expression declines rapidly in circulating basophils (less than
24 h), this process requires longer time in tissue resident MCs
(estimated 10–20 days) (136, 154, 155).

The effects exerted by omalizumab on MCs are of clinical
relevance also in non-IgE-mediated diseases such as inducible
urticarias (156) and MC activation syndrome (105), thus
suggesting a broad MC stabilizing function. In food allergy,
several clinical trials and real-life evidence showed the safety
and usefulness in inhibiting allergic responses of omalizumab as
monotherapy (157–160) (Table 1), or in association with
allergen-specific immunotherapy, further discussed in
Combination Treatments With Biologics section.

Designed Ankyrin Repeat Proteins (DARPins), genetically
engineered antibody mimetic proteins, recognize IgE Cϵ3
domains with high specificity and affinity, and have been
shown to be 10,000-fold more efficient than omalizumab in
dissociating IgE complexes in vitro and in both ex vivo
transgenic mouse models and human tissues. Thus, their rapid
onset of action makes them of particular interest as treatment
option to thwart pre-initiated anaphylaxis episodes (161–165)
(Table 3). Along with DARPins, other new generation high-
affinity anti-IgE monoclonal antibodies like ligelizumab can
actively bind IgE Ce3–4 fragments and efficiently disrupt IgE-
FceRI complexes without, however, interfering with CD23
binding, differently than omalizumab (146) (Table 3). Thus,
DARPins and ligelizumab might improve treatment efficacy in
food allergy, albeit to date no trials on food allergy are
ongoing (Table 2).

New anti-IgE strategies involve self-assembled mRNA
vaccines, that provide epitopes mimicking IgE Ce3 domains
and stimulate the production of endogenous anti-IgE IgG
antibodies, eventually modulating circulating IgE levels via the
same mechanisms of omalizumab and other anti-IgE molecules
(166, 167). These new treatments inhibited IgE-mediated
anaphylaxis in animal models (Table 3) and were tested in a
Phase I trial conducted on allergic rhinitis patients
(NCT01723254, Table 2); however their application in food
allergy is still unclear.

Concerns over the long-lasting implications of irreversible
IgE suppression might also arise, considering that, along with
omalizumab and other high affinity molecules, broad anti-IgE
agents bind also to IgE antibodies serving housekeeping
functions, like protection against parasitic infections and
tumor surveillance (185–187). Therefore, alternative strategies
have been developed to specifically target IgE of interest. The use
of covalent heterobivalent low affinity allergic response inhibitors
(LARI) has been promising and showed to reduce the risk of
anaphylaxis in experimental mouse models of peanut allergy
(168) (Table 3).

Alternatively to anti-IgE molecules, a recent approach using
anti-FcϵRIa monoclonal antibodies strongly suppressed IgE-
mediated MC activation in a humanized mouse model of food
allergy and anaphylaxis, revealing another promising therapeutic
option (169) (Table 3).

Furthermore, inhibition of FcϵRI-mediated signaling using
Bruton Tyrosin Kinase (BTK) inhibitors, significantly reduced
August 2021 | Volume 12 | Article 613461
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TABLE 1 | List of clinical trials on allergen-dependent and -independent investigational treatments for peanut allergy.

Strategy Reference Trial identifier Study acronym Investigational
product

Phase Placebo
controlled

Age
range

Tested
peanut dose

Study
status
(as of

12/2020)

Allergen-
dependent
treatments

EPI (66) NCT01170286 PEP01.09 Epidermal Patch
(peanut DBV712)

1 yes 6-50 20-100-250-
500 mcg

(67, 68) NCT01904604 DAIT CoFAR6 Epidermal Patch
(peanut DBV712)

2 yes 4-25 100-250 mcg

(69) NCT01675882 VIPES Epidermal Patch
(peanut DBV712)

2 yes 6-55 50 mcg

(70) NCT01955109 OLFUS-VIPES Epidermal Patch
(peanut DBV712)

2 no 7-56 250 mcg

(71, 72) NCT02636699 PEPITES Epidermal Patch
(peanut DBV712)

3 yes 4-11 250 mcg

NCT02916446 REALISE Epidermal Patch
(peanut DBV712)

3 yes 4-11 250 mcg

NCT03211247 EPITOPE Epidermal Patch
(peanut DBV712)

3 yes 1-3 250 mcg

OIT (73) NCT01259804 STOP-I Peanut Flour 1 no 7-17 800 mg

NCT02203799 PeanutFlour Peanut Flour 1 no 5-16 6-10 gr

NCT01601522 REB 07-348 Peanut Protein 1 yes 5-10 500 mg

NCT04163562 INP20-01 Peanut Oral
Formulation (INP20)

1-2 yes 12-65 n/d

(74, 75) NCT00815035 PnOIT3 Peanut Flour 2 yes 1-6 4-5-6 gr

(76) NCT00932828 DEVIL Peanut Flour 2 no 9-36 5 gr

(77–79) NCT02103270 POISED Peanut Protein 2 yes 7-55 300-4000 mg

NCT01867671 IMPACT Liquid Extract,
Peanut Flour

2 yes 12-48 5 gr

NCT00597675 PMIT Peanut Flour 2 yes 1-18 4710 mg

NCT03907397 CAFETERIA Peanut Protein 2 no 4-14 9043 mg

(80) NCT02046083 PITA 3 Whole Peanuts
(crushed)

2-3 yes 12-18 2 gr

(81) NCT02635776 PALISADE Peanut protein
capsule (AR101)

3* yes 4-55 1043 mg

(82) NCT03201003 ARTEMIS Peanut protein
capsule (AR101)

3* yes 4-17 2043 mg

NCT03736447 POSEIDON Peanut protein
capsule (AR101)

3* yes 1-3 600-1000 mg

(83) n/d n/d Whole Peanuts
(crushed)

Other no 3-14 500 mg

(84) n/d n/d Peanut Flour Other yes 1-16 6 mg

(85) ISRCTN62416244 STOP-II Peanut Flour Other yes 7-16 1400 mg

(86) NCT02350660 15098 Peanut Flour Other no 4-80 306 mg

(87) DRKS00004553 Peanut OIT Peanut Protein Other yes 3-17 300 mg

(88) NCT02457416 TAKE-AWAY Peanut Protein Other no 5-15 250-4000 mg

NCT02149719 BOPI-1 Boiled Peanut Other no 8-16 1400 mg

NCT03937726 BOPI-2 Boiled Peanut Other no 7-18 1440 mg

NCT03532360 2017-3204 Whole Peanuts
(crushed)

Other no 2-40 30-300-4172
mg

NCT03648320 GUPI Peanut Protein Other no 18-40 1400 mg

NCT04511494 SmaChO Peanut Protein Other no 1-3 775 mg

OIT/SLIT (89) NCT01084174 NA_00032256 Peanut Flour,
Peanut Extract

1-2 yes 6-21 3.7 mg (SLIT),
2 gr (OIT)

(Continued)
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TABLE 1 | Continued

Strategy Reference Trial identifier Study acronym Investigational
product

Phase Placebo
controlled

Age
range

Tested
peanut dose

Study
status
(as of

12/2020)

SLIT NCT03070561 JHU
NA_00072576

Major Peanut
Allergen Ara h 2 in
Dissolving Film

Early 1 no 3-30 60 mcg

NCT04603300 INT301-101 Peanut Extract
Toothpaste
Formulation (INT301)

1 yes 18-55 n/d

NCT03463135 TDR14287 Glucopyranosyl
Lipid A Peanut
Extract

1 yes 12-55 n/d

(90, 91) NCT00580606 DAIT CoFAR4 Glycerinated
Allergenic Peanut
Extract

1-2 yes 12-40 5 gr

(92) NCT01373242 SLIT-TLC Liquid Peanut
Protein Extract

1-2 no 1-12 5 gr

(93–95) NCT00597727 SLB Liquid Peanut
Protein Extract

2 yes 1-11 5 gr

NCT02304991 FARE/SLIT Liquid Peanut
Protein Extract

2 yes 12-48 5 mg

NCT00429429 1R21AT002557-
02

Liquid Peanut
Protein Extract

Other no 6-35 8 gr

SCIT/
Vaccine

(96) NCT00850668 DAIT CoFAR1 E. Coli-
Encapsulated,
Recombinant
Modified Peanut
Proteins Ara h 1,
Ara h 2, and Ara h 2
(EMP-123)

1 no 18-50 n/d

NCT02163018 HAL-MPE1/0043 Aluminium
hydroxide adsorbed
peanut extract
(HAL-MPE1)

1 yes 18-65 n/d

NCT02991885 HAL-MPE1/0049 Aluminium
hydroxide adsorbed
peanut extract
(HAL-MPE1)

1 yes 5-50 n/d

NCT02851277 0892-CL-1001 ARA-LAMP-vax
(ASP0892),
Multivalent Peanut
(Ara h1, h2, h3)
Lysosomal
Associated
Membrane Protein
DNA Plasmid
Vaccine

1 yes 18-55 n/d

NCT03755713 0892-CL-1002 ARA-LAMP-vax
(ASP0892),
Multivalent Peanut
(Ara h1, h2, h3)
Lysosomal
Associated
Membrane Protein
DNA Plasmid
Vaccine

1 yes 12-17 n/d

NCT04200989 IRB-19-7380 Intralymphatic
Immunotherapy with
Peanut Allergen

1-2 no 15-80 n/d

(Continued)
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degranulation and cytokine production in human MCs and
basophils, decreased bronchoconstriction in isolated human
bronchi, and proved effective in preventing anaphylaxis in a
passive systemic anaphylaxis model using humanized mice (170,
188) (Table 3). Although ibrutinib is well known for its
gastrointestinal, cardiovascular and hematological side effects,
newer generation molecules, like acalabrutinib, show better
safety profile and could become effective, fast-acting oral
treatments (189). To this date, however, no clinical trials using
BTK inhibitors in food allergy are on-going.

Current evidence suggests that IgE from atopic individuals
show an increased sialic acid content, contrary to subjects with
no atopy, thus pointing at an important role of sialylation to
determine IgE allergenicity (40). Neuraminidase-induced de-
sialylation of IgE in a non-FcϵRI dependent manner also
diminished downstream signaling in MCs (40). Therefore, de-
sialylation of IgE promises to decrease IgE allergenicity, without
disrupting non-allergenic IgE activity (Table 3). However,
sialidases are ubiquitously expressed in human tissues and play
Frontiers in Immunology | www.frontiersin.org 6
an important role in a variety of physiological and pathological
processes, including tumor, infection and inflammation (190),
hence the manipulation of the sialylation axis remains an
ambitious goal. Notwithstanding, selective small molecule
inhibitors of human sialidases hold a great potential for
therapeutic development and warrants further investigation (191).

Cytokines Modulating Mast Cell
Activity in Allergy
Cytokines involved in Th2 responses, such as IL-4 and IL-13,
promote MC proliferation, FcϵRI expression, IgE-mediated
degranulation and cytokine production, adhesion and
chemotaxis (171, 192, 193). IL-4 and IL-13 receptors share a
common alpha chain (IL-4Ra), broadly expressed on
lymphocytes, granulocytes and MCs, forming different
functional heterodimers according to the associated beta chain
(i.e. IL-4R Type I and II, IL-13R), which ultimately activate the
intracellular signal transducer and activator of transcription 6
(STAT6) via the phosphorylation of Janus Kinases (Jak1-3,
TABLE 1 | Continued

Strategy Reference Trial identifier Study acronym Investigational
product

Phase Placebo
controlled

Age
range

Tested
peanut dose

Study
status
(as of

12/2020)

Biologics
+ OIT

(97–99) NCT01290913 Xolair and
Peanut Allergy

Omalizumab,
Peanut Flour

1-2 no 7-25 1 gr

(100, 101) NCT02402231 FASTXP201 Omalizumab,
Peanut Flour

2 no 12-22 2800 mg

NCT00932282 PAIE/Xolair Omalizumab,
Peanut Flour

1-2 no 12+ 950 mg - 20
gr

NCT01781637 PRROTECT Omalizumab,
Peanut Flour

1-2 yes 7-25 4 gr

(102) NCT01510626 22872 Omalizumab, Multi-
Allergen OIT

1 no 4-55 2 gr

(103) NCT02626611 M-TAX Omalizumab, Multi-
Allergen OIT

2 yes 4-55 2 gr

(104) NCT04045301 BOOM Omalizumab, Multi-
Allergen OIT

2 yes 6-25 1.5 gr

NCT03881696 OUtMATCH Omalizumab, Multi-
Allergen OIT

3 yes 1-55 600 mg

NCT03682770 R668-ALG-
16114

Dupilumab, Peanut
protein capsule
(AR101)

2 yes 6-17 2044 mg

Allergen-
independent
treatments

Biologics (105) NCT00949078 NA_00026397 Omalizumab 2 no 18-50 n/d

(106) NCT02643862 MAP-X Omalizumab 1-2 yes 4-55 2 gr

NCT00382148 Q3623g Omalizumab 2 no 6-75 n/d

NCT00086606 Q2788g Omalizumab 2 no 6-75 n/d

NCT03679676 IRB-47935 Omalizumab,
Dupilumab

2 yes 6-25 1043 mg

NCT03793608 R668-ALG-1702 Dupilumab 2 no 6-17 n/d

(107) NCT02920021 ANB020-003 ANB020 (Etokimab) 2 yes 18+ n/d
Augus
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TABLE 2 | List of clinical trials on biologics targeting key mechanisms of MC activation for conditions other than peanut allergy.

Biological
target

Reference Trial identifier Study acronym Investigational
product

Condition(s) Phase Placebo
controlled

Age
range

Study
status
(as 12/
2020)

IgE (108) n/d n/d Omalizumab Asthma 3* yes 12-75

(109) n/d n/d Omalizumab Asthma 3* yes 12-76

(110) n/d n/d Omalizumab Asthma 3* yes 12-75

(111) NCT00046748 INNOVATE Omalizumab Asthma 3* yes 12-75

(112) n/d SOLAR Omalizumab Asthma, Allergic Rhinitis 3* yes 12-74

(113) NCT00314574 EXTRA Omalizumab Asthma 3* yes 12-75

(114) NCT00079937 CIGE025AIA05 Omalizumab Asthma 3* yes 6-12

(115) NCT01287117 ASTERIA I Omalizumab Chronic Spontaneous Urticaria 3* yes 12-75

(116) NCT01292473 ASTERIA II Omalizumab Chronic Spontaneous Urticaria 3* yes 12-75

(117) NCT01264939 GLACIAL Omalizumab Chronic Spontaneous Urticaria 3* yes 12-75

(118) NCT03280550 POLYP1 Omalizumab Chronic Rhinosinusitis with Nasal
Polyps

3* yes 18-75

(118) NCT03280537 POLYP2 Omalizumab Chronic Rhinosinusitis with Nasal
Polyps

3* yes 18-75

(119–121) NCT00078195 DAIT ITN019AD Omalizumab,
Ragweed AIT

Allergic Rhino-conjunctivitis,
Grass Pollen Allergy

3 yes 18-50

(122) UMIN000015545 n/d Omalizumab, Cow's
milk AIT

Cow's milk allergy 2 no 6-14

(84) NCT01157117 DAIT AADCRC-
MSSM-01

Omalizumab, Cow's
milk AIT

Cow's milk allergy 2 yes 7-35

NCT01703312 CQGE031B2203 QGE031
(Ligelizumab)

Allergic Asthma 1-2 yes 18-65

NCT01716754 CQGE031B2201 QGE031
(Ligelizumab)

Asthma 2 yes 18-75

NCT02336425 CQGE031B2204 QGE031
(Ligelizumab)

Asthma 2 yes 18-75

NCT01552629 CQGE031X2201 QGE031
(Ligelizumab)

Atopic Dermatitis 2 yes 18-65

NCT04513548 CQGE031C2203 QGE031
(Ligelizumab)

Chronic Spontaneous Urticaria,
Cholinergic Urticaria, Cold
Urticaria

1 yes 18-79

(123) NCT02477332 CQGE031C2201 QGE031
(Ligelizumab)

Chronic Spontaneous Urticaria 2 yes 18-75

NCT03437278 CQGE031C2202 QGE031
(Ligelizumab)

Chronic Spontaneous Urticaria 2 yes 12-18

NCT03580369 CQGE031C2302 QGE031
(Ligelizumab)

Chronic Spontaneous Urticaria 3 yes 12+

NCT03580356 CQGE031C2303 QGE031
(Ligelizumab)

Chronic Spontaneous Urticaria 3 yes 12+

NCT01723254 ANTI-IGE
VACCINE

Anti-IgE Vaccine
(PF-06444753, PF-
06444752)

Allergic Rhinits 1 yes 18-55

IL-4Ra NCT04442269 R668-ABPA-
1923

Dupilumab Allergic Bronchopulmonary
Aspergillosis

3 yes 12+

NCT03935971 2018P002882 Dupilumab Allergic Contact Dermatitis 4 no 18+

NCT03558997 R668-ALG-16115 Dupilumab Allergic Rhinoconjunctivitis, Grass
Pollen Allergy

2 yes 18-55

NCT04502966 GRADUATE Dupilumab Allergic Rhinoconjunctivitis, Grass
Pollen Allergy

2 yes 18-65

NCT03595488 1828-A-18 Dupilumab Aspirin-exacerbated Respiratory
Disease

2 no 18+

NCT04442256 2019-004889-18 Dupilumab 4 no 18-70
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TABLE 2 | Continued

Biological
target

Reference Trial identifier Study acronym Investigational
product

Condition(s) Phase Placebo
controlled

Age
range

Study
status
(as 12/
2020)

Aspirin-exacerbated Respiratory
Disease

(124) NCT02528214 VENTURE Dupilumab Asthma 3* yes 12+

(125, 126) NCT02414854 Liberty Asthma
Quest

Dupilumab Asthma 3* yes 12+

NCT03560466 Liberty Asthma
Excursion

Dupilumab Asthma 3* no 7-12

NCT02948959 VOYAGE Dupilumab Asthma 3* yes 6-11

NCT03782532 EFC13995 Dupilumab Asthma 3* yes 12+

(127) NCT02260986 CHRONOS Dupilumab Atopic Dermatitis 3* yes 18+

(128) NCT02277743 SOLO 1 Dupilumab Atopic Dermatitis 3* yes 18+

(128) NCT02277769 SOLO 2 Dupilumab Atopic Dermatitis 3* yes 18+

(129) NCT02395133 SOLO-
CONTINUE

Dupilumab Atopic Dermatitis 3* yes 18+

(130, 131) NCT03054428 R668-AD-1526 Dupilumab Atopic Dermatitis 3* yes 12-17

NCT03346434 Liberty AD Dupilumab Atopic Dermatitis 2-3 yes 6 mo-5

NCT04296864 18-290-0002 Dupilumab Atopic Keratoconjunctivitis 2 no 18+

NCT03749148 CHED Dupilumab Cholinergic Urticaria 2 yes 18-75

(132) NCT02912468 SINUS-24 Dupilumab Chronic Rhinosinusitis with Nasal
Polyps

3* yes 18+

(132) NCT02898454 SINUS-52 Dupilumab Chronic Rhinosinusitis with Nasal
Polyps

3* yes 18+

NCT04362501 IRB00229130 Dupilumab Chronic Rhinosinusitis without
Nasal Polyps

2 yes 18-75

NCT04180488 CUPID Dupilumab Chronic Spontaneous Urticaria 3 yes 6-80

NCT03749135 DUPICSU Dupilumab Chronic Spontaneous Urticaria 2 yes 18-75

(133) NCT02379052 R668-EE-1324 Dupilumab Eosinophilic Esophagitis 2 yes 18-65

NCT03633617 R668-EE-1774 Dupilumab Eosinophilic Esophagitis 3 yes 12+

NCT04394351 EoE KIDS Dupilumab Eosinophilic Esophagitis 3 yes 1-11

NCT03678545 IRB 2018-4246 Dupilumab Eosinophilic Gastroenteritis 2 yes 12-70

NCT04148352 IRB-52976 Dupilumab Milk Allergy 2 yes 4-50

NCT04430179 STUDY000808 Dupilumab Severe Eosinophilic Chronic
Sinusitis

2 yes 18-65

IL-33 NCT03533751 ATLAS ANB020 (Etokimab) Atopic Dermatitis 2 yes 18-75

NCT03614923 ANB020-006 ANB020 (Etokimab) Chronic Rhinosinusitis 2 yes 18-70

NCT03469934 ANB020-004 ANB020 (Etokimab) Eosinophilic Asthma 2 yes 18-65

ST2/IL-33R NCT03615040 COPD-ST2OP MSTT1041A Chronic Obstructive Pulmonary
Disease

2 yes 40+

TSLP (134) NCT01405963 20101183 AMG 157
(Tezepelumab)

Asthma 1 yes 18-60

NCT02698501 UPSTREAM MEDI9929
(Tezepelumab)

Asthma 2 yes 18-75

NCT02237196 CATNIP AMG 157
(Tezepelumab),
Cat AIT

Cat Allergy, Cat Hypersensitivity 1-2 yes 18-65

Siglec 8 NCT03379311 KRONOS AK002 (Lirentelimab) Atopic Keratoconjunctivitis 1 no 18-80

NCT03436797 CURSIG AK002 (Lirentelimab) Chronic Spontaneous Urticaria 2 no 18-85

(135) NCT03496571 ENIGMA AK002 (Lirentelimab) Eosinophilic Gastroenteritis 2 yes 18-80

NCT03664960 AK002-003X AK002 (Lirentelimab) Eosinophilic Gastroenteritis 2 no 18-80
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Tyk2) (194, 195). In particular, the proliferation and chemotaxis
of MCs induced by IL-4/IL-4R engagement in mucosal interfaces
are crucial for the amplification of local allergen responses and
responsible for augmented permeability in the intestines and
enhanced sensitivity to food allergens and anaphylaxis in
experimental mouse models (196–198).

Alongside classical Th2 cytokines, MCs respond rapidly to
tissue damage signals such as IL-33 and thymic stromal
lymphopoietin (TSLP), alarmins produced mostly by epithelia,
innate lymphoid cells and, in some conditions, by MCs
themselves (199, 200). IL-33 is known to promote maturation
and survival of MCs, enhance the production of pre-formed
mediators (e.g. tryptase, serotonin) (201), cytokines (e.g. IL-4, IL-
6, IL-13, GM-CSF), and chemokines (e.g. CCL2, CCL17) (201–
203), while inhibiting the expression of regulatory cytokines,
such as IL-10 (204). Furthermore, IL-33 potentiates IgE-
mediated degranulation (202). However, a long-lasting IL-33
stimulation downregulates FcϵRI expression in human MCs,
thus inhibiting IgE-dependent MC activation (201), and
generating a hyporesponsive phenotype in both mouse and
human MCs (205).

TSLP shares common properties with IL-33. They both
promote the proliferation and differentiation of MC
progenitors (206), and the production of pro-inflammatory
cytokines (IL-5, IL-6, IL-13, GM-CSF) and chemokines
(CXCL8, CCL1) without inducing the release of pre-formed
granule mediators (207). In a food allergy mouse model, TSLP
participates in the skin sensitization to food antigens, promoting
basophil recruitment and initiating Th2 responses, whereas
IL-33 is essential for gut-mediated sensitization and effector
responses, including anaphylaxis (208).

Anti-Cytokine Treatments (IL-4/13,
IL-33, TSLP)
Several anti-cytokine treatments have shown promising results
in food allergy. The monoclonal antibody dupilumab, blocking
IL-4 and IL-13 from binding to the IL-4Ra chain, is currently
approved for treatment of severe atopic dermatitis and asthma
(Table 2). IL4Ra blockade broadly reduces Th2-responses (171)
while increasing Treg suppressive responses (98), reduces
eosinophil infiltration (171) and MC proliferation in mucosal
tissues of IL4Ra−/− mice (198). Dupilumab potentially inhibits
MC priming and enhancement of IgE-mediated responses by
IL-4 (171) (Table 3), while hampering B cell activation and IgE
Frontiers in Immunology | www.frontiersin.org 9
synthesis in mice (171, 209). In fact, recent evidence shows an
important role of dupilumab in modulating B cell recall
responses, as demonstrated by the reduction of peanut-specific
IgE production by human B cells in vitro, and sustained
inhibition after in vivo re-exposure in a peanut anaphylaxis
mouse model (210) (Figure 1B). Albeit limited to a single case
report, dupilumab is an efficient therapeutic option for multiple
co-occurring food allergies (211), and under clinical trial as
treatment for peanut allergy (Table 1).

The upstream role of IL-33 and TSLP in promoting Th2
responses makes them interesting targets for the treatment of
atopic conditions, including food allergy (36) (Figure 1C). In a
Phase II study 73% of peanut allergic patients treated with the
anti-IL-33 antibody etokimab achieved tolerance to target peanut
dose, showing reduced IL-4, IL-5, IL-13 and IL-9 production after
an in vitro T cell challenge with peanut extract, along with reduced
peanut-specific IgE levels compared to the placebo arm (107)
(NCT02920021, Table 1). As for TSLP blockade, mouse models
suggest some efficacy, in combination with either IL-25 or IL-33
receptor monoclonal antibodies, in preventing sensitization to
food allergens, and promoting tolerance in association with oral
immunotherapy (172) (Table 3). Anti-TSLP (tezepelumab, AMG
157, MEDI9929) has been successfully used in reducing allergen-
induced bronchoconstriction and indexes of airway inflammation
in patients with allergic asthma (NCT01405963) (134, 212) and is
currently under investigation in a study combining tezepelumab
with allergen-specific immunotherapy for the induction of
tolerance in subjects with cat allergy (NCT02237196, Table 2).
However, no clinical studies assessing the efficacy of anti-TSLP
treatment in food allergy are currently on-going.
EXPLOITING MAST CELL INHIBITORY
RECEPTORS

Known inhibitory receptors of IgE-mediated MC activation are
the Fc gamma receptor FcgRIIb, CD200R, Sialic acid-binding
immunoglobulin-type lectins (Siglec) of the CD33 family and
CD300a. Most inhibitory receptors exert broad suppressive
functions on MC activation, with the exception of FcgRIIb and
CD200R, producing allergen-specific inhibition.

Excluding CD200R, all inhibitory receptors expressed on
MCs show intracellular immunoreceptor tyrosine-based
inhibition motif (ITIM) domains that actively inhibit the
TABLE 2 | Continued

Biological
target

Reference Trial identifier Study acronym Investigational
product

Condition(s) Phase Placebo
controlled

Age
range

Study
status
(as 12/
2020)

NCT04322708 KRYPTOS AK002 (Lirentelimab) Eosinophilic Esophagitis 2-3 yes 12-80

NCT04322604 ENIGMA 2 AK002 (Lirentelimab) Eosinophilic Gastroenteritis 3 yes 18-80

NCT02808793 AK002-001 AK002 (Lirentelimab) Indolent Systemic Mastocytosis 1 no 18-65
Au
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phosphorylation of the Syk pathway via the recruitment of
tyrosine phosphatases with Src homology 2 domains (e.g. SHP,
Grb2 and SHIP), or PI3K binding-motifs (213, 214), disrupting
intracellular calcium flux and IgE-dependent intracellular
activation (Figure 1D).

FcgRII/CD32 receptors are immunoglobul in- l ike
transmembrane proteins binding to the hinge region of IgG
and IgG immune complexes. Of the three different subtypes,
namely, FcgRIIa (CD32a), FcgRIIb (CD32b), and FcgRIIc
(CD32c), only FcgRIIb is inhibitory. In mice, IgG binding to
FcgRIIb inhibits antigen-specific IgE-mediated activation and
Th2 cytokine production by MCs, IgE antibody production by B
cells (215–218), while promoting dendritic cell-mediated
mucosal tolerance by inducing Treg recruitment in the gut
(215, 217, 218). In humans, while FcgRIIb is widely expressed
Frontiers in Immunology | www.frontiersin.org 10
on B cells, dendritic cells, monocytes and basophils (219),
FcgRIIb transcripts are detectable in gastrointestinal MCs (220),
but not skinMCs (221). Although the expression of FcgRIIb by gut
MCs could correlate with increased pro-tolerogenic functions, the
lack of FcgRIIb-mediated inhibition on skin MCs could be a
reason for the increased risk of allergic sensitization via the skin
compared to the gut route, as currently suggested by the dual
exposure hypothesis (222), and diverging clinical responses
observed in the skin versus gut after allergen immunotherapy (220).

Given the antigen-specific nature of FcgRIIb-mediated
tolerance, its engagement could be especially useful to
selectively inhibit food allergic reactions. Promising results
have been achieved in in vitro studies using human basophils,
bone marrow-derived MCs of human FcϵRIa-transgenic mice,
FcϵRIa-transfected human cell lines and the HMC-1 mast cell
FIGURE 1 | Approaches to target mast cell-dependent allergic responses. Summary of mechanisms controlling MC activation and degranulation and targeted
inhibitory approaches, namely suppression of the IgE/FcϵRI axis (A), modulation of IL-4/IL-13 (B) and IL-33/TSLP (C) cytokines, engagement of MC inhibitory
receptors (D) and allergen immunotherapy (E). DCs, dendritic cells; FcϵRI, high-affinity IgE receptor; FcgRIIb, low affinity IgG receptor b; IgE, immunoglobulin E; IgG,
immunoglobulin G; IgG4, immunoglobulin G 4; IL-4Ra, interleukin 4 receptor alpha chain; LARI, low affinity allergic response inhibitors; MC, mast cell; Siglec, Sialic
acid-binding immunoglobulin-type lectins; Tregs, T regulatory cells; TSLP, Thymic stromal lymphopoietin. Created with BioRender.com.
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TABLE 3 | Interventions aimed at reducing IgE-mediated mast cell activation currently at pre-clinical/early clinical stage.

Experimental setup

Selection of DARPins and surface plasmon
resonance, fluorescence and ELISA binding assays
in vitro
Selection of DARPins, analysis of recombinant
proteins in ELISA and surface plasmon resonance
Human primary basophils FcϵRI expression and
degranulation assays
FcϵRIa-chain transgenic mice for passive cutaneous
anaphylaxis test
Culture of human PCLS sensitized with plasma of
HDM-allergic donors
Lung mast cell histamine release and
bronchoconstriction after challenge with HDM
Isolated human basophils sensitized to grass pollen
mix
huIgE/huFcϵRIadtg transgenic mice sensitized to
Vitamin D analogue MC903 plus OVA for PCA, NIP20

for PSA
De-sialylation of IgE using neuroaminidase fusion
protein (NEUFcϵ)
Human BAT and LAD2 MC degranulation assay
using peanut, birch tree pollen, HDM, cat allergic and
non-allergic sera before and after de-sialylation
BALB/c OVA PCA mouse model
Quantification of serum IgE levels pre and post
treatment in Cynomolgus monkeys, competition
ELISA for anti-IgE antibody avidity testing with human
sera
CD-1 mice DNP anaphylaxis model, quantification of
mouse free IgE levels via competition ELISA

Human BAT using Ara h 2 - Ara h 6 sera from
peanut allergic patients with or without cHBIs
huFcϵRIa/F709 expressing huFcϵRIa and huIL-4Ra
anaphylaxis and desensitization model
Immunodeficient reNSGS mice reconstituted with
T cell-depleted human cord blood for the analysis of
human basophils and MCs
Skin-derived human MCs, bronchial constriction
assay using isolated human bronchi. PSA model
using NSG-SGM3 humanized mice sensitized to NP
Il4rahu/hu Il4hu/hu mice lung inflammation model using
intranasally administered IL-4 and IL-13
In vitro-generated human MCs cultured with or
without IL-4, IL-13 and stimulated with Fel d 1- Fel d
1 IgE
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Biological
target

Reference Intervention Observed results Food
allergens
tested

Human
tested*

IgE (162) DARPin E2_79 (E001) E001 binds to IgE-Cϵ3 domains, promoting active disassociation of pre-
formed IgE-FcϵRI complexes via allosteric inhibition

no no

(163) DARPin E2_79 (E001) E001 binds to IgE-Cϵ3 domains, promoting active disassociation of pre-
formed IgE-FcϵRI complexes via allosteric inhibition

no yes

Biparatopic DARPin bi53_79
(E002)

E002 is a biparatopic variant complexing E001 to a second anti-IgE
(DARPin E3_53) recognizing receptor-bound IgE, showing higher disruptive
efficacy on IgE-FcϵRI complexes

(164) Biparatopic DARPin bi53_79
(E002)

E002 binds to IgE-Cϵ3 domains and receptor-bound IgE, actively disrupting
IgE-FcϵRI complexes

no yes

(165) Trivalent DARPins
(KIH_E07_79, tri11_53_79,
tri11_E07_79)

Rapid disassociation of pre-formed IgE-FcϵRI complexes inhibits
degranulation and terminates pre-initiated allergic reactions. Co-
engagement of FcgRIIb receptor improves the disruptive efficacy and
reduces anaphylactogenicity.

no yes

(40) De-sialylation of IgEs Removal of sialic acid residues from IgEs of allergic donors attenuates
degranulation by effector cells and reduces anaphylaxis

peanut yes

(166) Peptide-based anti-IgE
conjugate vaccine

Vaccine using virus-like particles conjugated to peptides and adjuvants to
generate antibodies binding to the IgE Cϵ3 domain, promoting the active
removal of circulating IgE

no yes

(167) Self-assembled peptide-
based anti-IgE vaccine

Vaccine using self-assembled peptides to generate antibodies binding to
the IgE Cϵ3 domain, promoting the active removal of circulating IgE and
inhibition of acute IgE-mediated anaphylaxis

no no

sIgE (168) Covalent Heterobivalent
Inhibitors (cHBIs)

Irreversible binding to circulating human sIgE specific for Ara h2 and Ara h 6 peanut yes

FcϵRI (169) Anti-human FcϵRI monoclonal
antibodies

Binding to human FcϵRI, rapid suppression of IgE-mediated anaphylaxis
and rapid desensitization achieved and maintained using repeated small
doses. Treatment induces loss of blood basophils, removal of membrane
IgE and FcϵRIa on mouse peritoneal MCs

egg yes

BTK (170) Ibrutinib, Acalabrutinib Inhibited IgE-mediated degranulation and release of IL-6, IL-8, IL-10, MCP-
1 and GM-CSF by skin-derived human MCs. Prevented IgE-mediated
bronchoconstriction and anaphylaxis

no yes

IL-4Ra (171) Dupilumab, IL-4/
IL-13 MC priming (indirect
evidence of the effects of
IL-4Ra blockade)

Dupilumab prevents the expression of chemokines, proinflammatory Th2
cytokines and eosinophil infiltration in the lungs, while not affecting
circulating eosinophils. Exposure to IL-4 enhances IgE-mediated MC
responses, causing an increase in Th2-associated chemokine and cytokine
gene expression upon IgE crosslinking

no yes
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TABLE 3 | Continued

Experimental setup

BALB/c mice medium-chain tryglicerides plus egg
white anaphylaxis model
Cytokine, antibodies and mouse mast cell protease 1
measurement by ELISA, immunofluorescence and
flow cytometry for tissue analysis
Binding analysis on CHO3D10 and HMC-1 cells
expressing FcgRIIb
Human basophil histamine release using NIP/anti-NIP
stimulation
Transgenic mice expressing human FcϵRIa NP PCA
model
Selection of DARPins and surface plasmon
resonance
Human BAT using grass pollen extracts with/without
DE53-Fc and bivalent DARPin E53
Fluorescence binding assay to HMC-1 mast cell line
Human basophil histamine release using whole
peanut extracts
Transgenic mice expressing human FcϵRIa and
C57BL/6 and Fcgr2btmiTtk mice peanut allergy model
Selection of DARPins, surface plasmon resonance
and ELISA binding assays
Human primary basophils from healthy and grass
pollen allergic donors used for BAT, inhibition assay
Transgenic mice expressing human FcϵRIa
anaphylaxis model
BALB/c mice sensitized intraperitoneally with peanut
extract, local and intravenous anaphylaxis model
Human cord-blood derived and skin MCs, mouse
C57BL/6 bone marrow and skin MCs
MC degranulation assays using anti-FcϵRI
monoclonal antibodies, cytokine assay by ELISA
Human cord blood-derived MCs, Murine bone
marrow-derived MCs
BALB/c DNP PCA mouse model, OVA-sensitized
asthma model
Human LAD2 and skin-derived MCs
Lung PCLS bronchoconstriction challenge
Humanized Mcpt5-Cre+/–R26-CD33+ TNP PCA and
PSA mouse models, peritoneal MCs
Human CD34-derived MCs
Intrapulmonary bronchi for bronchoconstriction
challenge using anti-IgE
RBL- 2H3 cells transfected with normal and mutated
forms of Siglec-8
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Reference Intervention Observed results Food
allergens
tested

Hum
teste

TSLP–IL-
25–IL-
33R/ST2

(172) Anti-mouse TSLP, IL-25 and
IL-33R/ST2 monoclonal
antibody cocktail

Binding and neutralization of key alarmins TSLP, IL-25 and IL-33 cytokine
receptor. Suppression of established allergy and anaphylaxis upon allergen
challenge, reduction and prevention of sensitization to allergens

egg no

FcgRIIb (173) FcgRIIb–FcϵRIa bifunctional
fusion protein

Simultaneous binding of FcgRIIb and FcϵRIa inhibits Syk phosphorilation
and FcϵRIa-mediated activation

no yes

(174) Anti-IgE/FcgRIIb fusion
protein (bivalent DARPin E53
and DE53-Fc)

Simultaneous binding to FcϵRI-bound IgE and FcgRIIb inhibits basophil and
MC activation

no yes

(175) Ara h 2–Fcg fusion protein
(AHG2)

Inhibition of peanut-specific anaphylaxis and inhibition of histamine release
by engagement of FcgRIIb, decreased airways induced inflammation by
peanut challenge

peanut yes

(176) Anti-IgE/FcgRIIb fusion
protein (D11_E53)

Simultaneous binding to FcϵRI-bound IgE and FcgRIIb inhibits basophil
degranulation and anaphylaxis, abrogating intracellular activation signaling
pathways

no yes

(177) Anti-Ara h 2 monoclonal
antibody

Anti-Ara h 2 binds to FcgRIIb receptor, inhibits systemic and local allergic
reactions elicited by peanut and protects from anaphylaxis

peanut no

CD200R (178) Soluble CD200-IgG fusion
protein

Inhibition of FcϵRI-mediated MC degranulation and cytokine secretion no yes

CD300a (179) Bispecific IgE-CD300a
antibody fragment (IE1)

Dose-dependent inhibition of signaling events induced by FcϵRI and IgE-
mediated MC degranulation in vitro, abrogates anaphylaxis and allergic
airway inflammation in vitro

no yes

Siglec 3
(CD33)

(180) Liposomal nanoparticles
coated with CD33L and
antigen (TNP)

Engagement of CD33 prevents antigen-specific degranulation, suppresses
MC IgE-mediated activation and anaphylaxis and inhibits IgE-mediated
airway bronchoconstriction via phosphorylation of Syk, PLCg1, MEK and
ERK

peanut yes

Siglec 8 (181) Anti-Siglec 8 monoclonal
antibodies

Engagement of Siglec-8 on MCs inhibits FcϵRI-dependent release of
mediators, except IL-8, reduces calcium flux and anti-IgE-evoked
bronchoconstriction

no yes
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TABLE 3 | Continued

Observed results Food
allergens
tested

Human
tested*

Experimental setup

sis of eosinophils activated with IL-5, promoted
ll cytotoxicity by NK cells, reduced the infiltration of
es and prevented anaphylaxis through the inhibition

no yes Human peripheral blood eosinophils and lung tissues
NSG-SGM3 BLT mice NP PSA model

ophils in sputum and inhibits IgE-mediated
g tissues

no yes Sputum and lung tissue from asthma patients,
analysis of gene expression for eosinophils and MCs,
MC activation assay using anti-FcϵRI antibodies

ivation and infiltration in small intestine upon oral
tion in Th2 immunity against casein, increased Th1,
ses.

cow’s milk no BALB/c mice sensitized to casein and intranasally
immunized using casein mixed with 20%
nanoemulsion adjuvant (ultra‐pure soybean oil with
cetylpyridinium chloride). Duodenal and jejunal MCs
quantification via tissue sections

hylaxis, induction of peanut-specific IgG antibodies,
n by eosinophils and MCs, reduced MC activation

peanut no BALB/c mice peanut anaphylaxis model,
subcutaneous immunization with CuMVtt combined
with either whole extract of roasted peanut (Ara R),
Ara h 1 or Ara h 2
Murine bone marrow–derived MCs sensitized with
sera of mice sensitized to peanut and challenged
with peanut extract

ase, CuMVtt, Cucumber Mosaic Virus including tetanus toxin epitopes; DARPin, Designed Ankyrin Repeat Protein; DNP, dinitrophenol; ELISA,
eceptor II b; HDM, house dust mites; IgE, Immunoglobulin E; IL-4Ra, Interleukin-4 receptor alpha; IL-33R/ST2, Interleukin -33 receptor; MC, mast
acetyl; OVA, ovalbumin; PCA, passive cutaneous anaphylaxis; PCLS, precision-cut lung slices; PSA, passive systemic anaphylaxis; sIgE, allergen-
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line (173, 174, 176) (Table 3). Conversely, FcgRIIb bispecific
molecules specifically targeted to major allergenic epitopes
reduced allergen-specific responses in a peanut allergy mouse
model using an Ara h 2-FcgRIIb fusion protein (175) (Table 3).
Furthermore, FcgRIIb exerts a pivotal role in the generation of
allergen-specific tolerance during the course of allergen
immunotherapy, as outlined in Modulation of Mast Cell
Reactivity Using Allergen-Specific Immunotherapy.

As member of the Immunoglobulin receptor superfamily,
CD200R is an inhibitory receptor widely expressed on myeloid
cells and skin MCs, shown to hinder MC activation and cytokine
release in the absence of ITIM domains but in need of FcϵRI co-
ligation, similar to FcgR receptors (178, 223). Antibodies
targeting CD200R were effective in inhibiting MC activation in
experimental mouse models and in vitro and tissue-derived
human MCs (178) (Table 3), but no evidence of efficacy in
food allergy models has been provided to date.

Siglec receptors selectively bind to sialic acid-containing
glycoproteins, each with a specific sialoside ligand preference
(224). Among the many Siglec receptors expressed by human
MCs [i.e. Siglec 2, 3 (CD33), 5 through 10] (225, 226), CD33 and
other CD33-like molecules (i.e. Siglec 5–11) are inhibitory
receptors with intracellular ITIM/ITIM-like domains inhibiting
FcϵRI-dependent activation (227, 228).

Beyond their suppressive role in IgE-mediated activation,
recent evidence also suggests an inhibitory role in IL-33-
mediated activation of MCs, with reduction of airway
inflammation and fibrosis markers, studied in non-allergic
mouse models of cigarette-induced chronic obstructive
bronchopulmonary disease and bleomycin-induced lung
injury (229).

Siglec 3 and 8 are currently the most promising targets in the
treatment of allergic diseases. In fact, CD33 ligand-coated
liposomal nanoparticles suppress MC activation, prevent IgE-
mediated anaphylaxis and induce allergen desensitization lasting
a few days in ovalbumin and peanut allergy mouse models (180)
(Table 3). On the other hand, the engagement of Siglec 8 reduces
intracellular calcium flux and FcϵRI-dependent release of
mediators on human MCs (181, 229), while exerting a potent
pro-apoptotic effect on human eosinophils and reducing tissue
distribution ex vivo (135, 182, 230) (Table 3). Furthermore, in a
humanized mouse model, lirentelimab (AK002) successfully
inhibited IgE-mediated passive systemic anaphylaxis (182)
(Table 3). In recent clinical trials, lirentelimab showed positive
effects in the treatment of patients with asthma and eosinophilic
gastroenteritis (135, 231), and further clinical applications are
currently under investigation, albeit not for food allergy (Table 2).

Within the CD300 receptor family, only CD300a and CD300f
show ITIM/ITIM-like domains, expressed on MCs. In humans,
CD300 receptor ligands include phosphatidylserine (CD300a),
ceramide, sphingomyelin (CD300f), released by apoptotic, tumor
or infected cells (214). In addition to the disruption of IgE-
mediated activation (179), CD300a engagement also impairs MC
proliferation and survival by inhibiting stem cell factor (SCF)
signaling (232), whereas co-engagement of CD300f with IL-4Ra
promotes IL-4 mediated activation of MCs (233). Fusion
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proteins targeting CD300a and IgE on MCs in a passive
cutaneous anaphylaxis mouse model, showed a successful
reduction in MC activation (179) (Table 3).
ALLERGEN-DEPENDENT APPROACHES

Modulation of Mast Cell Reactivity Using
Allergen-Specific Immunotherapy
Allergen-specific immunotherapy (AIT) is the only disease-
modifying intervention currently available to treat some
allergic conditions, like insect venom allergy, allergic rhinitis
and asthma due to respiratory allergy to pollens and house dust
mites (234–237).

AIT consists in the repetitive exposure to escalating doses of
native allergen extracts, which might induce generalized MC and
basophil activation. The risk of eliciting an anaphylactic episode
is mitigated by starting with very low allergen doses, by being
performed only by trained professionals and in safe conditions
under careful monitoring of potential early signs of systemic
reaction (236, 238). The timing of dose increase depends on the
protocol, ranging from weeks in conventional AIT to days/hours
in rush/ultra-rush protocols (234, 238).

The concerted activity of cells from both innate and acquired
immunity contributes to the efficacy of AIT (34–36), ultimately
eliciting antigen-selective inhibition of MC and basophil
activation and long-lasting suppression of IgE-mediated
responses at large. In fact, AIT induces a pro-tolerogenic state,
promoting allergen-specific IgG/IgG4 production opposed to
sIgE by B cells (15). IgG and IgG4 not only selectively compete
with IgE in allergen binding, but also the engagement of the
FcgRIIb receptor by allergen-IgG complexes cross-linking with
surface IgE-FcϵRI actively inhibits MC activation (218, 239–
242). IgG-mediated inhibition also prevents further
amplification of IgE production, by reducing Th2 cytokine
release from activated MCs and basophils (242).

AIT also promotes the development of Tregs, which suppress
MC activities, not only by secreting the anti-inflammatory
cytokine IL-10, but also inducing MC cell anergy via OX40L
receptor engagement (15, 27, 243). OX40-OX40L binding on
MCs activates downstream signalling by C-terminal Src kinases,
suppressing Fyn kinase activity and impairing microtubule
rearrangement and degranulation (243) (Figure 1E).

Although effective, these events require time to induce a
protective response, while exposure to incremental doses of
allergen rapidly desensitizes MCs. However, the mechanism
explaining such effect remains unclear. A study suggests that
rapid incremental IgE receptor occupancy induces the depletion
of cell surface IgE by internalization of IgE–FcϵRI complexes
(244). Others find in desensitized anergic MCs an impaired
internalization of allergen–IgE–FcϵRI molecules (245), and
aberrant rearrangements of cytoskeleton actin fibers that
inhibit FcϵRI-mediated calcium flux and intracellular vesicles
trafficking (246).

Rapidly desensitized MCs, in turn, produce IL-2 that
contribute to Treg survival and recruitment in the periphery,
August 2021 | Volume 12 | Article 613461
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hence indirectly contributing to peripheral tolerance, as
demonstrated in mice (247).

Both tolerance induction and MC desensitization are widely
exploited to achieve long-term modulation and quick onset
protection of allergic reactions with rush/ultra-rush protocols,
respectively (248).

Allergen-Specific Immunotherapy
in Food Allergy
For both treatment and prevention of severe reactions upon
accidental exposure to food allergens, increasing the maximum
tolerated dose of allergen is necessary and can be achieved with
AIT (249).

AIT in food allergy is performed using either native allergens
(e.g. whole food, allergen extracts) administered via the oral,
sublingual or epicutaneous routes, or baked allergens (alone or
mixed with other ingredients creating a food matrix) via the oral
route (250).

Recently, the first peanut allergen powder formulation
(AR101) was approved for peanut AIT by the U.S. Food and
Drug Administration and European Medicines Agency (251,
252), and numerous other trials using either whole peanut or
peanut extracts promoted tolerance to varying doses of crude
peanut in 60–80% of treated subjects (72, 81, 83, 85, 90, 92, 94)
(Table 1). However, the safety of AIT protocols in food allergy is
still a matter of debate, since the risk of a severe allergic reaction
during AIT cannot be completely abated (253). In fact, a 1–21%
frequency of systemic adverse reactions and increased
occurrence with higher peanut end goal doses were observed in
peanut AIT trials (254). Furthermore, while long-term treatment
is effective in preventing severe allergic reactions in AIT
responders (79, 92), a fraction of subjects might still experience
anaphylaxis with previously tolerated allergen doses when
aggravating co-factors are present (i.e. physical exercise, use of
non-steroidal anti-inflammatory drugs, infections, etc.) or due to
poor AIT adherence (79, 253).

Combination Treatments With Biologics
To increase AIT safety in food allergy, newer therapeutic
strategies involve the combination of AIT with biologics.
Evidence suggests that omalizumab administered during AIT
reduces the risk of severe reactions and facilitates AIT (97, 99,
101) (Tables 1 and 2). In fact, while AIT caused an increase in
the levels of inhibitory allergen-specific IgG4, in the threshold for
MC responsiveness and a reduction of Th2 cytokine production
(83, 84, 92, 239), omalizumab decreased the likelihood of basophil
degranulation, especially relevantduringdose escalation (101).This
omalizumab-induced protection is most likely dependent on
basophil IgE–FcϵRI disengagement, as suggested by empirical
evidence (159) and omalizumab pharmacokinetics.

However, studies on long-term use of omalizumab in cow’s
milk AIT proved long-term omalizumab add-on treatment not
being cost-effective, albeit the higher safety profile (255)
(Table 2). Further trials testing the utility of omalizumab
adjunct to food AIT, or other biologics like dupilumab with
AR101 (NCT03682770) are currently ongoing (Tables 1 and 2).
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Alternative Food Immunotherapy
Approaches
Allergen-dependent strategies alternative to AIT are currently
being tested. Among these, the use of hypoallergenic
molecules, lacking key anaphylactogenic conformational
epitopes, promises to obtain safer alternatives to AIT using
native allergen extracts, as observed in fish and peanut allergy
studies conducted in humans and mice, albeit still in early
development (256, 257).

Other therapeutic approaches involve antibodies targeting
major allergenic molecules, like a recently developed
monoclonal anti-Ara h 2, preventing both local and systemic
allergic reactions, as tested in a mouse model of peanut allergy
(177) (Table 3). The advantage of monoclonal treatment is not
only given by their competition with IgE molecules in allergen
binding, but also by sharing with endogenous allergen-specific
IgG antibodies the same mechanisms, regardless of patients’
capacity to mount an effective anti-allergic immune response
as in conventional allergen immunotherapy. However,
subjects sensitized to multiple allergen epitopes might only
partially benefit from such treatment, unless multiple
monoclonal antibodies against different epitopes are used
in combination.

The complexing of allergenic epitopes with molecules actively
promoting a tolerogenic state (i.e. production of IL-10, induction
of IgG4, generation of Tregs), such as Toll-like receptor ligands
(i.e. CpG, LPS, R848), viral-attenuated molecules, Siglec-
engaging tolerance-inducing antigenic liposomes (STALs) and
nanoformulations, is used as adjuvant immunotherapy to elicit
allergen-specific tolerance (258).

An alternative approach under study is the use of plasmid
DNA-based vaccines. Such vaccines induce the production of
specific exogenous target proteins via allergen-coding DNA
particles, exploiting the natural immune pathways leading to
the production of IgG to promote long-lasting tolerance (259). In
addition, peptide vaccines aimed at eliciting IgG antibody
production targeted against highly allergenic epitopes are also
currently under scrutiny (260).

Several recent studies on nanoformulations and adjuvant
immunotherapy candidates for cow’s milk and peanut allergy
have been conducted, showing promising results in mouse
allergy models (183, 184, 261, 262) (Table 3). In humans, few
ongoing clinical trials on DNA-based vaccines (ASP0892,
NCT03755713; ASP0892, NCT02851277) and modified
a l l e rgen prote ins (HAL-MPE1 subcutaneous AIT,
NCT02991885) are currently in Phase I, while a previous
attempt with attenuated E. Coli Ara h 1-2-3 recombinant
vaccine candidate failed to promote tolerance, inducing severe
adverse reactions in 20% of participants (96) (Table 1).
CONCLUSIONS

Albeit complex, the allergic immune response relies on MC
functionality, making these cells important targets for
therapeutic intervention. Given the plethora of current and
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future treatments, some considerations on most promising
choices and benefit/risk assessment are warranted.

Anti-IgE treatment is a valuable option for the control of food
allergy symptoms and especially beneficial when adjunct to AIT.
The lack of specificity and long term use of anti-IgE treatment
was historically considered a concern, due to the loss of the
protective IgE housekeeping functions. However, after 20+ years
of omalizumab use, no increased risks for parasitic or neoplastic
events could be observed (185, 263). Apart from a negligible risk
of anaphylaxis upon the first administrations (264), omalizumab
has been successfully used for long-term treatment and during
pregnancy with an excellent safety profile (265). However,
limited data is currently available on its safety in children less
than 6 years of age, hence narrowing its therapeutic range.

AIT and allergen-specific vaccines are currently the only
allergen-dependent interventions showing a curative potential
in food allergy, however the risks associated to the exposure to
allergenic molecules for treatment purposes should be
minimized as much as possible, with safer protocols and
drug formulations.

While allergen-dependent therapeutic strategies require the
full functionality of the immune system to work, showing great
variability in treatment response between individuals, sIgE
inhibition could hamper allergen-specific activation regardless
of the quality of patients’ immune response, but likely without
comparable long-term disease-modifying effect as AIT.

The engagement of inhibitory receptors, abundantly
expressed and not unique to MCs, are not only effectively
inhibiting MC functions, but their activities can be directed
against specific epitopes by formulating bispecific allergen-
inhibitory ligand molecules [e.g. CD33L-coated liposomal
nanoparticles (180), Ara h 2-FcgRIIb fusion proteins (175)].
This envisages a targeted allergen-specific inhibitory approach,
while preserving pathways for IgE-mediated housekeeping
functions, albeit still in early development.

Given the wide distribution of cytokine receptors and their
pleiotropic effects exerted on many different cell types,
therapeutic strategies blocking IL-4Ra, or cytokines important
Frontiers in Immunology | www.frontiersin.org 16
for the initiator phase of immune responses, like IL-33 and TSLP,
pose some concerns. The suppression of protective immunity,
the generation of paradoxical responses as, for instance, the
conjunctivitis induced by dupilumab treatment in atopic
dermatitis (266), or the little known effects of long-term
exposure are safety issues that need further clarification.

Conversely, the broad, simultaneous and unspecific inhibition
of multiple effector cells involved in allergic responses by anti-
cytokine or by anti-Siglec monoclonal antibodies is potentially
beneficial in the modulation of complex inflammatory diseases,
as observed in asthma, atopic dermatitis, chronic rhinosinusitis
with nasal polyps, eosinophilic gastroenteritis and other Th2-
mediated conditions, including food allergy (Tables 1 and 2).
Therefore, both anti-cytokine and anti-Siglec monoclonal
antibodies are among the most encouraging disease-modifying
allergen-independent therapies available in the near future for
the treatment of severe allergic conditions, warranting further
consideration especially in the field of food allergy.

Despite that there is still a strong need for clinical trials to
assess the efficacy and safety of both allergen-independent and
-dependent therapeutic approaches, the knowledge on the
immunological mechanisms behind MC activation are the
ultimate key for a successful allergy therapeutic intervention.
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