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Babesia microti is a protozoan that infects red blood cells. Babesiosis is becoming a new
global threat impacting human health. Rhoptry neck proteins (RONs) are proteins located
at the neck of the rhoptry and studies indicate that these proteins play an important role in
the process of red blood cell invasion. In the present study, we report on the bioinformatic
analysis, cloning, and recombinant gene expression of two truncated rhoptry neck
proteins 2 (BmRON2), as well as their potential for incorporation in a candidate vaccine
for babesiosis. Western blot and immunofluorescence antibody (IFA) assays were
performed to detect the presence of specific antibodies against BmRON2 in infected
mice and the localization of N-BmRON2 in B. microti parasites. In vitro experiments were
carried out to investigate the role of BmRON2 proteins during the B. microti invasion
process and in vivo experiments to investigate immunoprotection. Homologous sequence
alignment and molecular phylogenetic analysis indicated that BmRON2 showed
similarities with RON2 proteins of other Babesia species. We expressed the truncated
N-terminal (33–336 aa, designated rN-BmRON2) and C-terminal (915–1171 aa,
designated rC-BmRON2) fragments of the BmRON2 protein, with molecular weights of
70 and 29 kDa, respectively. Western blot assays showed that the native BmRON2 protein is
approximately 170 kDa, and that rN-BmRON2 was recognized by serum of mice
experimentally infected with B. microti. Immunofluorescence analysis indicated that the
BmRON2 protein was located at the apical end of merozoites, at the opposite end of the
nucleus. In vitro red blood cell invasion inhibition studies with B. microti rBmRON2 proteins
showed that relative invasion rate of rN-BmRON2 and rC-BmRON2 group is 45 and 56%,
respectively. Analysis of the host immune response after immunization and B. microti infection
showed that both rN-BmRON2 and rC-BmRON2 enhanced the immune response, but that
rN-BmRON2 conferred better protection than rC–BmRON2. In conclusion, our results
org February 2021 | Volume 12 | Article 6163431
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indicate that truncated rhoptry neck protein 2, especially its N-terminal fragment (rN-
BmRON2), plays an important role in the invasion of host red blood cells, confers immune
protection, and shows good potential as a candidate vaccine against babesiosis.
Keywords: babesiosis, Babesia microti, invasion, rhoptry neck protein 2, host immune responses
INTRODUCTION

Babesia microti is a protozoan parasite that infects red blood
cells. It is mainly transmitted by tick bites and can cause fever,
anemia and even death in severe cases (1–3). Babesia can also be
transmitted through blood transfusion. Currently there are no
laws requiring screening of blood donors for Babesia, so there is a
risk of transmission through blood transfusion in China (4, 5).

As in other apicomplexan protozoa, red blood cell invasion by
Babesia is a complex multistep process, including initial
attachment to the host cell, which is a reversible process,
followed by parasite realignment. Irreversible attachment and
formation of tight junctions with host red blood cells occur
rapidly, followed by entry mediated by actin and myosin (6).
During the invasion process, parasite proteins and lipids are
released from organelles such as the micronemes, rhoptries, and
dense granules, located at the apical end of the parasite (7). The
subcellular structure of Babesia is similar to that of other
apicomplexan parasites. The rhoptry is the most important
organelle during the invasion process and is comprised of a
posterior electron-dense bulb and an anterior electron-lucent
neck (8–14). The rhoptry-associated protein (RAP) complex is
localized in the rhoptry bulb. Members of this complex include
RAP1 and either RAP2 or RAP3 in P. falciparum (15). RAP2 and
RAP3 are paralogs derived from a gene duplication event in a P.
falciparum ancestor (16). RAPs have been found in many
Babesia spp., including B. bovis, B. bigemina, B. divergence, B.
canis, B.motasi-like, B. orientalis, and B. gibsoni (17–22). In total,
they have been reported in 12 species, including five RAP genes
in B. motasi, four RAP genes in B. bigemina, four RAP genes in B.
divergence, two RAP genes in B. bovis, and one RAP gene in
B.canis and B. microti (23–28). Rhoptry neck proteins (RONs)
receive that name due to their localization at the neck of the
rhoptry. These proteins are involved in host cell adhesion and
formation of the tight junction between the invading parasite and
erythrocyte (29). RONs have been found in many apicomplexan
parasites, including P. falciparum (e.g., Rh1, 2a, 2b, 4, and 5), and
serve as adhesins that bind to host cell receptors (30–36).
PfRON2, PfRON4, and PfRON5, in combination with secreted
microneme proteins, participate in the formation of the tight
rhoptry neck protein 2; C-BmRON2,
rhoptry neck protein 2; cDNA,
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junction (37–40). Four RONs in T. gondii (TgRON2, TgRON4,
TgRON5 and TgRON8) localize at the tight junction during
invasion and bind to a microneme protein, T. gondii apical
merozoite antigen 1 (TgAMA1) (37, 41–44). Prior to 2010
almost no rhoptry neck proteins had been identified (with the
exception of those from Plasmodium and T. gondii), and only
some hypothetical proteins had been found in other
apicomplexan protozoa. In recent years, however, increasing
numbers of Babesia rhoptry neck proteins have been reported.
For example, Ngabu malobi et al. discovered the rhoptry neck 2
BoRON2 protein in B. orientalis. BoRON2 is a polypeptide of
1,345 amino acids (~150 kDa) encoded by a 4,035 bp full-length
open reading frame without introns (45). Rosalynn L. Ord et al.
confirmed the existence of B. divergens and B. microti rhoptry
neck proteins (BdRON2 and BmRON2, respectively), and
proved that they are required for host cell invasion (46). As in
other apicomplexan protozoa, Babesia rhoptry neck proteins
associate with the microneme apical membrane antigen AMA1
to form a tight junction and play an essential role during red
blood cell invasion (47).

Cytokines (CK) regulate immune and inflammatory
responses. They play an important role in the development
and prognosis of babesiosis. According to the different
cytokines secreted by CD4+ Th cells, immune responses can be
divided into several categories (48), including Th1-type and Th2-
type. Th1-type cytokines mainly include interleukin-12 (IL-12),
IFN-g and tumor necrosis factor (TNF-a), whereas Th2-type
cytokines mainly include IL-4, IL-5, IL-10 and IL-13.
Th1-type cytokines enhance cellular immunity, whereas Th2-
type cytokines promote humoral immunity. Hence, IL-12
induces a Th1-type immune response, whereas IL-4 induces a
Th2-type immune response. On the other hand, IL-4 and IL-10
inhibit Th1-type immune responses, while IFN-g inhibits Th2-
type immune responses. In many diseases, the proportion of
cytokines promoting cellular or humoral immune responses is
dysregulated, so cytokines have become one of the research
hotspots in babesiosis. In this study we investigated the
structure, function and immunological properties of BmRON2,
laying the foundation for future investigations.
MATERIALS AND METHODS

Animals and B. microti Strain
BALB/c mice were purchased from the Institute of Zoology,
Chinese Academy of Sciences, and maintained at the animal care
center of the National Institute of Parasitic Diseases, China CDC
(IPD, China CDC). The B. microti Peabody strain (ATCC, PRA-
99) was obtained from the American Type Culture Collection
February 2021 | Volume 12 | Article 616343
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(Manassas, VA) and maintained in BALB/c mice by serial
passage, following the method described previously (49).

Ethics Approval and Consent
to Participate
This study was conducted following the guidelines of the
Laboratory Animal Welfare & Ethics Committee (LAWEC) of
the National Institute of Parasitic Diseases of China CDC (IPD,
China CDC) and carried out in strict accordance with the
recommendations for the care and use of laboratory animals.
Permit Number: IPD-2019-14.

Sequence Analysis of Rhoptry Neck
Protein of B. microti (BmRON2)
The EMBL-EBI (http://www.ebi.ac.uk/) and Piroplasma DB
(http://piroplasmadb.org/piro/) websites were used to
download the BmRON2 gene sequence. ExPASy-PortParam
(http://web.expasy.org/protparam/) was used to obtain basic
physicochemical information, such as molecular weight,
isoelectric point, amino acid composition, atomic ratio, and
extinction coefficient of the target protein. ExPASy-ProtScale
(http://Web.expasy.org/protscale/) was employed to analyze the
hydrophobicity of the protein. TMHMM (http://www.cbs.dtu.
dk/services/TMHMM/) and SignalP 4.1 server (http://www.cbs.
dtu.dk/services/SignalP/) were employed to analyze the trans-
membrane regions and to predict the signal peptide. BmRON2
homologous protein sequences were identified using the Blastp
function of the SwissProt database. Next, Clustal-X software was
used to analyze amino acid sequence conservation between
different species. A phylogenetic tree was constructed using
PAUP software and the NJ (Neighbor-Joining) method was
used to compare multiple alignments of amino acid sequences.

Expression and Purification of
Recombinant N-BmRON2 and C-BmRON2
Primers were designed to amplify the C- and N-terminally
truncated (C-BmRON2 and N-BmRON2) BmRON2
fragments, based on the BmRON2 gene sequences deposited in
the GenBank database (Table 1). Total B. microti RNA was
extracted using the EZNA total RNA Kit I from OMEGA,
following the kit instructions. For the synthesis of
complementary DNAs (cDNA), reverse transcription PCR
(RT-PCR) was performed to amplify the target gene. Next, the
PCR product was cloned into the pET28a vector to obtain the
recombinant plasmid. After identification (based on restriction
enzyme analysis and sequencing), E. coli BL21 cells were
transformed with the recombinant plasmid and induced with
Isopropyl b-D-1-thiogalactopyranoside (IPTG). Sodium dodecyl
Frontiers in Immunology | www.frontiersin.org 3
sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was
carried out to identify the expression products. The
recombinant protein was purified with a Ni+ ion affinity
chromatography column. The purified protein was aliquoted
and stored at −80℃ for further use.

Generation of Anti-rBmRON2 Antibodies
We generated polyclonal antibodies against rN-BmRON2 and
rC-BmRON2 proteins following a method described previously
(48). Briefly, two female New Zealand rabbits (each weighing 2
kg) were subcutaneously injected four times with 100 µl of rN-
BmRON2 or rC-BmRON2 proteins (300 µg) at two-week
intervals. Ten days after the last immunization, blood samples
were collected and the serum was separated by centrifugation.
Polyclonal antibodies were affinity purified using rN-BmRON2
and rC-BmRON2-coupled CNBr-activated Sepharose 4B (GE
Corporation, Fairfield, CT). Polyclonal antibody titers were
measured by ELISA and samples were stored at −80°C until use.

Western Blot Analysis of Native BmRON2
and r-BmRON2 Proteins
Western blot analysis was performed using standard methods, as
described previously (49). Briefly, proteins extracted from iRBCs
at 8 days post-infection and from uninfected RBCs, as well as the
purified rN-BmRON2 and rC-BmRON2, were fractioned by
SDS-PAGE. Gel-separated proteins were transferred to
polyvinylidene fluoride (PVDF) membranes (Millipore), which
were incubated with rabbit polyclonal anti- rN-BmRON2
antibody (1:500 dilution), or mouse anti-B. microti sera (1:500
dilution). Next, HRP-conjugated goat anti-rabbit IgG (1:2,500
dilution) (Sigma-Aldrich, St. Louis, USA), or HRP-conjugated
goat-anti-mouse IgG antibody (1:3,000 dilution) (Sigma-Aldrich,
St. Louis, USA) was added, and the protein-antibody complexes
were visualized using an Enhanced DAB kit (Tiangen Biotech,
Beijing, China), following the manufacturer’s instructions.

Indirect Immunofluorescent Assay (IFA)
to Detect Native BmRON2
Indirect immunofluorescent assays (IFA) were performed to
localize the native BmRON2 within B. microti parasites, as
described previously (49). Briefly, infected red blood cells were
fixed with 100% methanol on microscope slides. Samples were
resuspended in PBS, and then blocked with 5% BSA. After
several washes with PBS, the slides were incubated overnight
with the rabbit polyclonal anti-rBmRON2 antibody (1:200
dilution). After additional washes, goat anti-rabbit IgG-FITC
(488 nm, Santa Cruz Biotechnology, Dallas, TX) (1:2,500
dilution) was added and the samples were incubated for 120
TABLE 1 | Primer sequences used in this study.

Name Sequence (5′-3′) Restriction sites Description

N- BmRON2-F CCCaagcttAGTGGTGCAATTCTTCCCCCCAA Aagctt (Hind III) Forward primer for N-fragment of Bm RON2
N- BmRON2-R CCGctcgagTATAAAATTCTCCAACTGTTTA Ctcgag(Xho I) Reverse primer for N-fragment of Bm RON2
C- BmRON2-F CCCaagcttAGTGGTGCTTACAAATATCTAAGAATAT aagctt (Hind III) Forward primer for C-fragment of Bm RON2
C- BmRON2-R CCGctcgagTGAATGTTGAAATTCAATCT ctcgag(Xho I) Reverse primer for C-fragment of Bm RON2
F
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min in the dark. After more washes, the slides were incubated
with 6-diamidino-2-phenylindole (DAPI) in the dark for 10 min.
Images were examined using a Nikon C2 confocal microscope
system and analyzed with NIS-Elements AR software (Nikon,
Tokyo, Japan).

In Vitro Inhibition of Invasion of Red Blood
Cells by Recombinant BmRON2
Whole blood was collected from Babesia-infected BALB/c mice
in EDTA-anticoagulant tubes when the parasite density was
about 70%, and centrifuged at 1,200 rpm for 10 min. The
supernatant, plasma and leukocyte layers were discarded, and
the pellet washed twice with Puck’ saline glucose (PSG), and once
with PSG plus extra glucose (PSG + G). Infected red blood cells
were added to uninfected cells at a ratio of 1:2, so the infection
rate of the culture was reduced to 23%. Next, 10 mL of
recombinant protein was added to obtain a final concentration
of 500, 250, 100, 50, or 10 mg/mL. BSA or 10 ml of HL-20 medium
alone (blank control) were added to two parallel cultures as
negative controls. The 96-well culture plates (150 mL per well)
were placed in a hypoxic cell culture system filled with nitrogen,
transferred to a carbon dioxide incubator, and incubated for 48h
at 37°C. To calculate the infection rate, ethidium bromide (40 mL
of a 20 mg/mL working solution) was mixed with the same
volume of culture media and incubated for 30 min at room
temperature in the dark, followed by 420 mL of HL20 medium,
for a total volume of 500 mL. A total of 50,000 cells were collected
and the infection rate was calculated based on the ratio of
positive cells versus the total number of cells counted by flow
cytometry (50).

The relative invasion rate was calculated as follows:

Relative invasion rate

= infection rate of the experimental group=infection rate of the control group

Immunization With Recombinant BmRON2
Proteins and B. microti Infection
BALB/c mice were randomly divided into 3 groups: control group,
rN-BmRON2 group, and rC-BmRON2 group. Sera from each
group of mice were collected before the initial immunization as a
negative control. Recombinant N-BmRON2 and rC-BmRON2
proteins were mixed with Freund’s complete adjuvant and
subcutaneously injected on the back of BALB/c mice. Mice were
boosted at 14 d, 28 d, and 42 days with antigens emulsified in
incomplete Freund’s incomplete adjuvant. Tail blood was collected
and the immune titers were measured by ELISA method. Two
weeks after the last immunization, 100mL whole mouse blood
(20% B. microti infection rate) was injected intraperitoneally. Five
mice from each group were randomly selected to collect tail blood
every other day to measure the infection rate. Five blood samples
were collected from the remaining mice and tested on 0d, 7d, 14d,
21d, and 28d post-infection.

Monitoring Infection in BALB/c Mice
The number of B. microti-infected red blood cells per 1,000 was
calculated to determine the infection rate on a given day. The
Frontiers in Immunology | www.frontiersin.org 4
weight of the spleen was measured at 0, 7, 14, 21, and 28 days
post-infection. Blood cells were analyzed using a Mindray BC-
5300 Vet automated hematology analyzer at 0, 7, 14, 21, and 28
days post-infection, following the manufacturer’s instructions.
Briefly, whole blood was mixed with the anticoagulant, and
“mouse” was selected as the animal type in the blood cell
analyzer (version number V01.08.00.16056). The analyzer
mode was CBC+DIFF (complete blood count + differential).
Eight red blood cell-related markers, 11 white blood cell-related
markers and 4 platelet-related markers were measured. The
mean plus or minus the standard deviation (�x ± s) was
calculated and statistical analysis was performed with SPSS
21.0 software for each index that exceeded the normal mouse
reference range. Differences between two groups were compared
using repeated measures analysis of variance. When statistically
significant, the LSD method was used for comparisons.
Differences were statistically significant when P<0.05.

Cytokine Quantification With CBA
The Cytometric Beads Array (CBAmethod) was used to quantify
cytokines in infected and control mice. Multiple cytokines in a
sample were simultaneously measured using microspheres
coated with specific antibodies labelled with different
fluorescence markers. The main steps included preparation of
cytokine standards, mixed factor capture microspheres, sample
incubation, and flow cytometry. After detection, results were
collected in FCS2.0 format, and standard curve plots and data
analysis were performed using the CBA-specific analysis
software FCAP Array (V1.0).
RESULTS

Analysis of the BmRON2 Gene
The B. microti-related gene (accession number BBM_III04695)
found in the Piroplasma DB database and the gene with
accession number XP_012649548 found in the EMBL database
correspond to the same “rhoptry neck protein gene of B. microti”,
which is 4, 443 bp long. The BmRON2 protein has a total of
1,480 amino acids, a molecular weight of 165.31 kDa, and an
isoelectric point of 8.92. Fragments 468–578aa and 824–1301aa
contain two highly conserved structural functional domains. It is
a stable and hydrophilic protein, and its N-terminal part is rich
in the amino acid methionine. TMHMM analysis showed that
the protein has four transmembrane regions: 7–29 aa, 1,256–
1,278 aa, 1,377–1,399 aa and 1,414–1,433 aa. The SignalP 4.1
server showed that BmRON2 is a secreted protein with a signal
peptide sequence. The BmRON2 amino acid sequence is 99%
homologous to B. microti strain RI rhoptry neck protein 2, 41%
homologous to Theileria equi hypothetical protein
BEWA_034640, and 36% homologous to Theileria orientalis
hypothetical protein MACJ_00002836. In addition, it showed
38–39% homology with the following Babesia spp. rhoptry-
related proteins: hypothetical protein of B. bovis, rhoptry neck
protein 2 of B. divergens, RON2, partial protein of B. bigemina,
rhoptry neck protein of B. ovata, membrane protein of
February 2021 | Volume 12 | Article 616343
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B. bigemina, and rhoptry neck protein 2 of Babesia sp. Xinjiang
(Table 2). Phylogenetic tree analysis showed that BmRON2 was
closely related to other Babesia spp. genes and was relatively
distant from other species (Figure 1).

Prokaryotic Expression and Purification of
Truncated rBmRON2 Proteins
The signal peptide sequence predicted by the SignalP 4.1 server is
1–30 aa, and the four transmembrane regions of the protein are
Frontiers in Immunology | www.frontiersin.org 5
located at the following sites: 7–29 aa, 1,256–1,278 aa, 1,377–
1,399 aa and 1,414–1,433 aa. Therefore, the N-terminal amino
acid sequence selected for expression (designated as N-
BmRON2) skipped the signal peptide and transmembrane
regions and included amino acids 33–336. N-BmRON2 is 304
aa long and the gene sequence has 912 bp, its predicted molecular
weight is 32.7 kDa, and its isoelectric point is 4.43. The C-
terminal sequence selected for expression (designated as C-
BmRON2) includes amino acids 915–1,171, it is 257 aa long
TABLE 2 | Sequence analysis of homologous proteins compared with the RON2s from NCBI.

Species Gene name Ident Accession Number of amino acids PUBMED references

B. microti strain RI Rhoptry neck protein 2 99% XP_021338832.1 1483 27752055/24023759/
22833609

Theileria equi Hypothetical protein BEWA_034640 41% XP_004830272.1 1395 23137308
Theileria orientalis Hypothetical protein MACJ_00002836 36% PVC55603.1 1454 /
Babesia bovis T2Bo Hypothetical protein 39% XP_001608815.1 1365 /
Babesia divergens Rhoptry neck protein 2 38% ADM34975.2 1350 /
Babesia bigemina RON2, partial 39% AQU42588.1 1344 /
Babesia ovata Rhoptry neck protein 39% GBE61372.1 1344 29078748
Babesia bigemina Membrane protein, putative 39% XP_012767633.1 1351 /
Babesia sp. Xinjiang Rhoptry neck protein 2 39% ORM40446.1 1012 27784333
Plasmodium falciparum Rhoptry neck protein 2, partial 31% BAH22613.1 1369 18952195
Toxoplasma gondii TgCatPRC2 Rhoptry neck protein RON2 28% KYK62796.1 1479 /
February 2021 | Volum
A

B

FIGURE 1 | Gene analysis of BmRON2. (A) Apicomplexa rhoptry neck protein 2 sequence dendrogram. The dendrogram was constructed using the neighbor-
joining method. Bootstrap analysis was performed with 1,000 replicates. (B) Signal peptide prediction results for rhoptry neck protein 2. The green boxes show the
two truncated protein fragments.
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A B

C D

E F

FIGURE 2 | SDS-PAGE and Western blot analysis of native and recombinant BmRON2 proteins. (A) (N- BmRON2). M, Protein markers; A1, Uninduced cells, A2,
IPTG-induced cells, A3, Supernatant, A 4, Precipitate. (B) (N- BmRON2). M, Protein markers; B1, Pre-purified protein, B2, Flow through, B 3-7, Different
concentrations of purified protein. (C) (C- BmRON2). M, Protein markers; C1, Uninduced cells, C2, IPTG-induced cells, C3, Supernatant, C 4, Precipitate. (D) (C-
BmRON2). M, Protein markers; D1, Pre-purified protein, D2, Flow through, D 3-7, Different concentrations of purified protein. (E) Western blot analysis of rN-
BmRON2. E1-2, rN-BmRON2 protein tested with normal mouse serum; E3-4, rN-BmRON2 protein tested with serum from a B. microti-infected mouse. (F) Western
blot analysis of native BmRON2. F1, Uninfected RBCs protein extract tested with rabbit polyclonal anti- rN-BmRON2 antibody, no bands were detected; F2, iRBCs
protein extract tested with rabbit polyclonal anti- rN-BmRON2 antibody, a specific band of approximately 170 kDa, plus two additional bands of about 55 kDa to 70
kDa were detected in this sample, suggesting proteolysis of BmRON2.
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and the corresponding gene sequence has 771 bp. Its predicted
molecular weight is 29.1 kDa and its isoelectric point is 8.86
(Figure 1). Analysis with APE software showed that the
amplified C-BmRON2 and N-BmRON2 genes were identical
to the original gene sequences, but that N-BmRON2 contained
one base mutation (the 547th base was changed from A to G).

rN-BmRON2 and rC-BmRON2 were successfully expressed in
E. coli as His-tagged fusion proteins and purified using Ni-affinity
chromatography. SDS-PAGE was performed to evaluate protein
expression. Results showed that rN-BmRON2 is a soluble protein
that eluted at a concentration of 500mM imidazole (Figures 2A, B).
rC-BmRON2 is an inclusion body protein that eluted at an
imidazole concentration of 250–500 mM. The predicted
molecular weight of rN-BmRON2 is 37 kDa, but after actual
expression, its weight was determined to be 70 kDa, which is
obviously greater than the theoretical weight. Both recombinant
vectors appear to be similar, so this may be related to mutations in
this segment of the gene, or to the binding of unknown components
which caused the molecular weight of the protein to increase. The
specific reason remains unknown and needs to be explored further.
In the case of rC-BmRON2, its actual weight (29 kDa) was
consistent with the expected MW (Figures 2C, D). Western blot
analysis indicated that rN- BmRON2 was recognized by serum of
mice experimentally infected with B. microti, whereas sera from
non-infected mice did not recognize it (Figure 2E). In contrast, rC-
BmRON2 was not recognized by serum of mice infected with B.
microti (data not shown). These results suggest that N-BmRON2 is
Frontiers in Immunology | www.frontiersin.org 7
highly immunogenic. Western blot assays also showed that a
specific protein with a MW of approximately 170 kDa was
detected in iRBC lysates prepared on day 8 post-infection,
whereas no bands were detected in the uninfected homogenates.
The molecular weight of the detected band was in line with the
expected size of the full-length BmRON2 protein. However, another
two bands of about 55 and 70 kDa were detected in this sample,
suggesting proteolysis of BmRON2. These same results were found
in the preliminary study (Figure 2F).

Localization of BmRON2 Protein in
B. microti by Immunofluorescence
The purified rabbit anti-rN-BmRON2 and anti- rC-BmRON2
antibodies were used to determine the localization of BmRON2 in
B. microti. Samples were incubated with anti-rN-BmRON2 and
anti-rC-BmRON2 antibodies, then with goat anti-rabbit IgG-
conjugated to FITC and counterstained with 4′, 6-diamidino-2-
phenylindole (DAPI) to stain the nuclei of intraerythrocytic
parasites. In the case of C-BmRON2, its localization could not
be determined in this study (figure not shown). In the case of N-
BmRON2, DAPI stained the parasite nuclei blue (Figure 3B),
while the antibody labeled the native RON2 and showed green
(Figure 3C). These results indicate that BmRON2 and the nucleus
are located at opposite ends of B. microti merozoites, and that
BmRON2 is located at the apical end (Figures 3A–D). Red blood
cells of normal mice did not show any specific fluorescent
signals (Figures 3E–H).
FIGURE 3 | Immunofluorescent localization of BmRON2 in intraerythrocytic B. microti. The anti-r BmRON2 antibody reacts with native BmRON2 in the cytoplasm of
B. microti, indicating that BmRON2 is localized at the apical end of the merozoite. White arrows in images (A–D) show RBCs infected with B. microti parasites.
Nuclei are stained blue with 6-diamidino-2-phenylindole (DAPI) (B), and BmRON2 is stained green (C, D), indicating reactivity with the FITC—labelled anti-rabbit IgG
and anti-rBmRON2 antibodies. Red blood cells of uninfected mice did not show any specific fluorescent signals (E–H). Scale bar represents 5 µm.
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Inhibition of RBC Invasion by rN-BmRON2
and rC-BmRON2
To investigate the in vitro effects of the recombinant proteins on
the process of B. microti invasion, different concentrations were
added to the culture medium. After 48 h of incubation, the
infection rates were calculated by flow cytometry, by gating
fluorescent cells corresponding to B. microti-infected
erythrocytes. The infection rates were recorded for the
experimental groups and the control group, and the relative
infection rates were calculated, as described in the methods
section. The results showed that both rN-BmRON2 and rC-
BmRON2 inhibited invasion to a certain degree. This inhibitory
effect was concentration-dependent and was strongest when the
protein concentration was 500 mg/ml. At this concentration, the
relative invasion rates in the presence of rN-BmRON2 and rC-
BmRON2, were 45 and 56%, respectively. The strongest
inhibitory effect was seen with rN-BmRON2. This inhibitory
effect was concentration-dependent and was almost undetectable
at 10 mg/ml (Figure 4).

In Vivo Immune Protective Effect of
rBmRON2
After three immunizations with rN-BmRON2 and rC-BmRON2,
blood was collected from the mice, and serum was prepared by
centrifugation tomeasure the antibody titers. The average anti-rN-
BmRON2 antibody titer produced in BALB/c mice was 8.5×104,
whereas the anti-rC-BmRON2 antibody titer was 8.2×104. Both
groups ofmice produced specific antibodies with high titers, which
allowed us to proceed with the in vivo infection experiments.
Therefore, 18 mice with high titers were selected from each group
for subsequent experiments. Analysis of blood smears showed that
the infection peaked on the 7th day after infection (the infection
rates in the rN-BmRON2, rC-BmRON2, and control groups were
30, 38, and 50%, respectively) (Figure 5A). Morphologically, the
spleens of the mice were enlarged after immunization with the
recombinant proteins and were especially enlarged after infection
with B. microti. In the infected control group, the spleen showed
the largest size at 14 days after infection, reaching a length of 34.33
mm. On the 14th day after infection, the spleen features and size in
the three groups reached peak values. The spleen changes in the
rN-BmRON2 and rC-BmRON2 groups were less noticeable than
in the infected control group, but nonetheless this organ differed
significantly when compared with the normal control group
(Figure 5B). Whole blood cell analysis showed that the number
of white blood cells (WBC) peaked on the 7th day after infection,
and then decreased. Analysis of variance showed there were no
significant differences between the groups (F= 1.842, P>0.05)
(Figure 5C). The total number of white blood cells, neutrophils,
monocytes, lymphocytes, and eosinophils in the two experimental
groups and the infected control group fluctuated over time. The
number of red blood cells (RBC) and the hemoglobin content
(HGB) reached their lowest values on the 7th day after infection.
Interestingly, the number of RBCs in the rN-BmRON2 and rC-
BmRON2 groups was higher than in the infected control group,
but lower than in the normal control group. The RBC numbers
gradually recovered with the reduction in the infection rate, and
Frontiers in Immunology | www.frontiersin.org 8
the RBC number in infected mice was close to normal after 21
days. There were significant differences between groups 7 and 14
days after infection (F=8.096, P<0.05) (Figures 5D, E). The
number of platelets (PLT) reached the lowest value on the 7th
day after infection and then gradually recovered. Interestingly, the
number of platelets in the rN-BmRON2 and rC-BmRON2 groups
was higher than in the infected control group but lower than in the
normal control group (Figure 5F).

Analysis of Host Immune Responses After
BmRON2 Immunization and B. microti
Infection
TNF-a and IFN-g levels increased in the infected control group,
reaching peak values on the 7th day after infection, and then
gradually decreased to pre-infection levels. TNF-a and IFN-g
levels in the rN-BmRON2 and rC-BmRON2 groups were higher
A

B

FIGURE 4 | In vitro inhibition of red blood cell invasion by B. microti
rBmRON2 proteins. Inhibitory effects of rN-BmRON2 and rC-BmRON2 on
red blood cell invasion. Recombinant proteins were added to the culture
medium at concentrations between 10 and 500 mg/mL. rN- BmRON2 (A)
and rC- BmRON2 (B) showed a dose-dependent inhibitory effect.
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than in the infected control group, especially in the rN-
BmRON2 group, where this trend was more obvious (Figures
6A, B). IL-10 levels in the infected control group peaked on the
7th day after infection, and then decreased slightly, but
continued to increase after 14 days of infection. IL-10 levels in
the rN-BmRON2 group increased after infection, reaching a
peak on the 21st day. The overall IL-10 level trend in the rC-
BmRON2 group was similar to what was seen in the infected
control group (Figure 6C). In the rN-BmRON2 and rC-
BmRON2 groups, IL-2, IL-4, IL-6 and IL-17a levels peaked on
Frontiers in Immunology | www.frontiersin.org 9
the 21st day after infection, but then decreased rapidly. In
contrast, in the infected control group, IL-2, IL-4, IL-6, and IL-
17a levels rose slowly and did not change significantly after day
21 post-infection (Figures 6D–G).
DISCUSSION

The B. microti-related gene (Accession No. BBM_III04695)
found in the Piroplasma DB database and the gene (Gene
A B

C D

E F

FIGURE 5 | In vivo immune protective effect of rBmRON2 proteins in B. microti infected mice. (A) Infection rates; (B) Changes in spleen weight; (C) White blood cell
(WBC) counts; (D) Red blood cells (RBC) numbers; (E) Hemoglobin (HGB) content; (F) Platelet (PLT) numbers. Normal (uninfected) control group (yellow line,
inverted triangles); Infected control group (green line, triangles), rC-BmRON2 group (red line, squares), rN-BmRON2 group (purple line, circles).
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Bank accession number XP_012649548) retrieved from the
EMBL database are both 4,443 bp long. APE software was used
to perform sequence alignment, and the results showed that both
gene sequences were identical. However, there are few reports on
rhoptry neck proteins related to B. microti. The gene investigated
in this study was the same rhoptry-associated gene reported by
Rosalynn et al. (46), further validating the search method used in
this study. Rosalynn et al. identified the RON2 proteins of B.
divergens (BdRON2) and B. microti (BmRON2). This was the
first characterization of these proteins in two human babesiosis
species, and B. microti RON2 was found to have a MW of about
170 kDa. Guanbo Wang et al. (51) also identified these proteins
by immunoblotting with mouse anti-rBmRON2 sera and
Frontiers in Immunology | www.frontiersin.org 10
detected distinct bands at 170 and 52 kDa, which is consistent
with our results. Homologous sequence alignment and
molecular phylogenetic analysis showed that BmRON2 is
similar to RON2 proteins of other Babesia species and that
their phylogenetic relationship is close, which is consistent with
other research reports (46). Although the secondary structure of
this protein has been predicted, its function and properties are
still unknown.

The molecular weight of BmRON2 is relatively high. Since
there is no prokaryotic expression method for macromolecular
proteins, which may show poor immunospecificity and, in
addition, the signal peptide and transmembrane regions are
difficult to express, a truncated expression approach was
A D

B

C

E

F

G

FIGURE 6 | Cytokine concentrations. (A) Tumor necrosis factor (TNF-a); (B) Interferon-gamma (IFN-g); (C) IL-10; (D) IL-2; (E) IL-4; (F) IL-6; (G) IL-17a. Normal
control group (brown line, inverted triangles); Infected control group (green line, triangles), rC-BmRON2 group (red line, squares), rN-BmRON2 group (purple
line, circles).
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adopted. Guanbo Wang et al. expressed a truncated gene
encoding the predicted transmembrane regions 2 and 3 of
BmRON2 as a His fusion recombinant protein. The MW of
this rBmRON2 was approximately 18 kDa, but it was not
recognized by serum from a hamster in a Western blot, and
exhibited only limited protection against B. microti challenge
(51). In our study, gene fragments coding for 33–336aa and 915–
1,171aa were expressed as rN-BmRON2 and rC-BmRON2. The
recombinant sequences were compared with the original gene
sequence using APE software. We found that C-BmRON2 was
identical to the original gene sequence, but that N-BmRON2 had
one base that did not match the target gene sequence (the 547th
base was mutated from A to G). The molecular weight of rN-
BmRON2 was predicted to be 37 kDa, but in the actual expressed
protein the molecular weight was 70 kDa, which is significantly
larger than the theoretical value. According to our experimental
results, the recombinant vector is similar, so the larger molecular
weight may be related to the mutation, or perhaps the protein
binds to unknown components, which causes the molecular
weight of the protein to increase. The specific reasons need to
be further explored. Western blot assays indicated that rN-
BmRON2 was recognized by serum from mice experimentally
infected with B. microti. Hence, rN-BmRON2 is immunogenic
and can protect against B. microti infection.

The moving junction is critical for successful penetration of
the host cell by apicomplexan parasites. This moving junction,
formed by a complex between AMA1 and rhoptry neck protein 2
(RON2), has been well studied in Plasmodium and Toxoplasma,
and is believed to be conserved among apicomplexan parasites.
Recent studies identified and characterized the AMA1 and
RON2 genes from B. microti (46, 52). Guanbo Wang et al.
found that combined immunization with rBmAMA1 and
rBmRON2 was an effective protective strategy against B.
microti (51). In our study, the AMA1 protein was not
expressed and interactions between AMA1 and RON2 were
not investigated. Future studies may provide additional insights.

The RON2 protein is one of the most important Babesia
molecules involved in red blood cell invasion. It is also one of the
most important candidate molecules for inclusion in a vaccine.
Babesia merozoites bind to red blood cell surface receptors,
invade and reproduce inside red blood cells. The proliferation
of Babesia parasites leads to red blood cell rupture, releasing
merozoites. Babesia then invades new erythrocytes, triggering a
new round of autologous infection (53). The main clinical
manifestations in babesiosis patients are a decrease in the
number of red blood cells and platelets. Although there are
reports in the literature that the red blood cell count, hemoglobin
content and other indicators are reduced to varying degrees
during Plasmodium infections, there are few studies on
babesiosis patients. In this study, we monitored the blood
indices in detail, and found that the peak reduction in RBC,
HGB and PLT values occurred on the 7th day post-infection. The
infection rates in the two BmRON2 groups (7 days after
infection) were lower than in the infected control group, but
N-BmRON2 produced better results than C-BmRON2.
However, the mechanisms underlying the protective immune
Frontiers in Immunology | www.frontiersin.org 11
effects of the two truncated BmRON2 proteins need to be
explored further.

BALB/c mice are an effective model for studying the
mechanism of resistance to Babesia (54). The spleen is the
largest immune organ in mice, containing large numbers of
lymphocytes and macrophages, and is the center of cellular and
humoral immunity. Abundant evidence (55) suggests that the
spleen plays an important role in the clearance of parasites and
parasite-infected red blood cells, but the spleen’s role in parasitic
infections and the underlying mechanisms are still unclear. We
found that after infection with B. microti, the spleen was swollen
and its weight increased, indicating that a complex immune
response occurred in the mouse body to combat infection. In the
infected control group, the spleen length peaked at 14 days after
infection, but the spleen changes in the rN-BmRON2 and rC-
BmRON2 groups were lower than in the infected control group,
indicating that these proteins had a certain protective effect
against infection and reduced the degree of stimulation of the
inflammatory response. Studies have reported that cellular and
humoral immunity play an important role in the fight against
intracellular parasitic infections. During the acute infective phase
by B. microti (56) Th1-type cytokines increase, including IL-12,
IFN-g and TNF-a, and these are essential for controlling the
proliferation of parasites (57). In particular, TNF-a (58, 59) is a
cytokine that plays an important role in Babesia and
Plasmodium infections, and can affect the severity of the
disease. In this study, we found that TNF-a expression was
highest on the 7th day post-infection; that is, when the parasite
density peaked, and that TNF-a increased in parallel with the
parasite density, which is consistent with previous studies (58,
59), confirming that TNF-a plays an important role during
infection. The change in TNF-a concentration in the rN-
BmRON2 group was more obvious, indicating that the rN-
BmRON2 protein can play an immunoprotective role during
Babesia infection.

Clawson et al. (60) found that IFN-g-deficient mice developed
mild parasitemia after infection with B. microti, but eventually
cleared the infection. In contrast, the state of parasitemia in B cell
deficient mice did not differ from the control group. These data
indicate that cellular immunity is critical for BALB/c mice to
resist Babesia infection. Buddle et al. (61) hypothesized that IFN-
g is an important component of the Th1-type immune response
which mediates resistance to infection. On the other hand, Th2-
type cytokines, such as IL-4 and IL-10, have contrasting roles
with respect to Th1-type factors. In this study, IL-10 levels in the
control group were higher than in the experimental group on the
7th day after infection. Jeong et al. (62) found that IL-10
promoted invasion by Babesia, and that parasite density was
high when IL-10 expression was high. This is consistent with the
results of this study. However, they only measured this cytokine
14-day post-infection. Our study found that IL-10 levels in the
experimental groups were higher than in the control group on
day 21 after infection. The specific reasons still need to be
investigated. In this study we only investigated some immune
mechanisms induced by BmRON2, such as cytokine indexes. A
more comprehensive evaluation of immune cells and antibodies
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may better clarify the protective immune mechanisms.
Pathological changes or the effects of knocking out the
BmRON2 gene may provide additional insights.
CONCLUSIONS

Homologous sequence alignment and molecular phylogenetic
analysis showed that BmRON2 is similar to the BmRON2
proteins of other Babesia species. A truncated recombinant
expression approach was adopted to generate rN-BmRON2
and rC-BmRON2, with molecular weights of 70 and 29 kDa,
respectively. The native BmRON2 protein is approximately 170
kDa. rN-BmRON2 was recognized by serum from mice
experimentally infected with B. microti. The BmRON2 protein
and the nucleus are located at opposite ends of B. microti
merozoites—BmRON2 is located at the apical end. rN-
BmRON2 and rC-BmRON2 inhibited red blood cell invasion
by B. microti to a certain degree (45 and 56%, respectively). In
vivo analyses of host immune responses after immunization and
B. microti infection showed that both rN-BmRON2 and rC-
BmRON2 enhanced the immune response, but that the immune
protection triggered by rN-BmRON2 was better.
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