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Regulatory T cells have been implicated in the regulation and maintenance of immune

homeostasis. Whether gender and sex hormones differentially influence the expression

and function of regulatory T cell phenotype and their influence on FoxP3 expression

remains obscure. We provide evidence in this study that the number and percent

of human regulatory T cells (Tregs) expressing CD4+ and CD8+ are significantly

reduced in healthy females compared to healthy males. In addition, both CD4+CD25+hi

and CD8+CD25+hi subsets in healthy males have a 2-3 fold increase in FoxP3

mRNA expression compared to healthy females. Female SLE patients, compared to

healthy women, have elevated plasma levels of estradiol and decreased levels of

testosterone. Higher levels of testosterone correlate with higher expression of FoxP3 in

CD4+CD25hiCD127low putative Tregs in women with SLE. Incubation of CD4+ regulatory

T cells with 17β-estradiol at physiological levels generally decreased FoxP3 expression

in females with SLE. These data suggest that females may be more susceptible than

males to SLE and other autoimmune diseases in part because they have fewer Tregs and

reduced FoxP3 expression within those cells due to normal E2 levels which suppress

FoxP3 expression. In addition, low levels of plasma testosterone in women may further

reduce the ability of the Tregs to express FoxP3. These data suggest that gender and

sex hormones can influence susceptibility to SLE via effects on regulatory T cells and

FoxP3 expression.

Keywords: sex hormones, gender, regulatory T cells, systemic lupus erythematosus, 17β-estradiol

INTRODUCTION

Many autoimmune diseases including lupus are gender biased, with females outnumbering males
9:1 (1–5). Emerging evidence shows that sex hormones influence the expression and function of
regulatory cells in both mice and humans (6) and that regulatory T cells (Tregs), which play an
important role in the regulation and maintenance of a normal immune responses, are impaired in
numbers or in function in many autoimmune diseases including SLE (7–9). Both CD4+ and CD8+

Tregs in the peripheral immune system have important roles in suppressing autoimmune disease
(10–15). Impaired development and function (16–19) or removal (20–23) of Tregs can also promote
the development of autoimmunity. We have shown previously that Tregs suppress autoreactive T
and B cells in lupus-prone mice and protect against disease (24–27). Some recent reports suggest a
decreased percentage of CD4+CD25+ cells (28–30); whereas, other reports seem to indicate normal
or increased numbers of circulating Tregs (31–35) in active SLE patients. These differences may be
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due to differences in phenotyping methods, analyses, disease
status, or therapies. Our own research points to a significantly
decreased percentage of Tregs in our SLE cohort. However,
gender-based differences in the roles of Tregs, expression
of FoxP3, and their regulatory capacities have not been
thoroughly studied.

Recent studies have shown that FoxP3 plays a significant role
in regulatory T cell differentiation, function, and the prevention
of auto-reactivity (8, 36, 37). FoxP3 is a critical transcription
factor essential for determining the phenotype, development,
and function of Tregs. FoxP3 deficiency or mutation results in
the “Scurfy” phenotype in mice (38) and in humans results
in IPEX (Immune dysregulation, Polyendocrinopathy, X-linked)
syndrome (8, 9, 39–41).

Sex hormones have been known to play an important role
in regulating lupus both in human and animal models (42, 43).
Estrogen has been shown to increase calcineurin in T cells of
SLE patients but not in age and sex matched healthy controls
(44, 45). These previous studies did not examine the role of
Tregs in SLE patients. A recent study identified the expansion of
CD4+CD25+ and FoxP3+ Tregs during the follicular phase of the
menstrual cycle in healthy females and found that an increase in
Tregs correlated with changes in serum estradiol levels (46). In
healthy males, testosterone antagonists have been shown to cause
significant decreases (∼30%) in the percentage of CD4+CD25+

T cells in comparison with baseline and with subjects in the
placebo group. This decline normalized with the return of natural
hormone levels after the antagonists were discontinued (47). In
males with SLE, imbalances in estrogens and androgens could
contribute to susceptibility to the disease (48–52).

Testosterone suppresses both IgG anti-dsDNA antibody and
total IgG production in PBMCs from SLE patients (53, 54).
Low levels of plasma androgens was reported (55) and androgen
administration has been demonstrated to improve disease
activity (56) in women with active SLE disease. However, this
study (56) did not evaluate Treg function or the expression
of FoxP3.

In the present study, we provide evidence that sex hormones
and gender influence both the number and phenotype of
Tregs and the Treg expression of FoxP3 differentially in men
and women and also in SLE patients and healthy controls.
Notably, we have found that plasma levels of estradiol are
increased and testosterone levels are decreased in SLE females
compared to healthy females. Furthermore, we have found
that Treg exposure to testosterone in vitro increases FoxP3
expression in SLE females. Finally, we have demonstrated that
plasma concentrations of testosterone in SLE females positively
correlates with levels of FoxP3 expression. These data suggest
that sex hormones and gender play pivotal roles in the regulation
and maintenance of immune responses and provide novel
evidence for a modulatory role of 17β-estradiol and androgen

Abbreviations: E2, 17β-estradiol; Tregs, regulatory T cells; RT-PCR, real-time PCR;

SLE, systemic lupus erythematosus; PBMC, peripheral blood mononuclear cells;

TGF-β, transforming growth factor beta; CD25, IL-2 receptor α chain; FoxP3,

Forkhead box protein-3; FACS, fluorescence-activated cell sorting.

(DHT) in the phenotype and regulation of immune responses
in autoimmunity.

MATERIALS AND METHODS

Subjects
We enrolled 27 subjects who were 18 years or older and
fulfilled the American College of Rheumatology revised criteria
for the classification of SLE (57, 58) and 23 healthy donors
(19–70 years of age) with no history of autoimmune disease.
Patients with comorbid conditions were excluded from the
study. Disease activity was recorded based on the SLE disease
activity index (SLEDAI) (59). For estradiol and testosterone
measurement, we obtained control and SLE plasma samples from
the UCLA Rheumatology biobank. The study was approved by
the Institutional Review Board of the University of California
Los Angeles. Written informed consent was obtained from each
subject who participated in the study.

Cell Isolation and Preparation
T cell enriched peripheral blood mononuclear cells (PBMCs)
were isolated on a density gradient (Histopaque-1077, Sigma-
Aldrich, St. Louis, MO, USA) from blood samples of lupus
patients and healthy volunteers. Lymphocytes were washed
twice in serum free media. Red blood cells (RBC) were
lysed with RBC lysing solution (Sigma-Aldrich, St. Louis, MO,
USA). CD4+CD25+hiCD127low and CD8+CD25+hiCD127low

Tregs were sorted after staining using a FACS Aria flow cytometer
(BD Biosciences) for sex hormone experiments.

Immunophenotyping and Flow Cytometry
Peripheral blood mononuclear cells (PBMCs) from patients
and healthy volunteers were stained with CD4-FITC, clone
(RPA-T4); CD8-PerCP, clone (SK1); CD25-APC, clone (BC96);
and CD127-PE, clone (hIL7R-M21) fluorochrome-conjugated
monoclonal antibodies (mAb). Intracellular staining for FoxP3
(clone-PCH101) was performed after cell surface staining by
fixation and permeabilization as per manufacturer protocol
(eBiosciences, San Diego, CA). The antibodies for cell surface
staining and isotype controls were from BD Biosciences,
eBiosciences, and from BioLegend. (San Diego, CA). Data
were collected using FACSCalibur (BD Biosciences) and
analyzed by BD Cell Quest software (Becton-Dickinson,
Mountain View, CA) or FCS De Nova software (Thornhill,
Ontario, Canada).

Cell Culture
PBMCs and sorted CD4+CD25+hiCD127low Tregs (1-2x10

6 cells)
were cultured with the sex hormones 17β-estradiol (30, 60–100,
500 pg/ml) or testosterone (30, 60, 100, 500 pg/ml), or with TGFβ
(20 ng/ml) with and without fetal calf serum in complete media
for 24–72 h. After culture, supernatants were obtained; cells were
washed and stained for FACS analyses, and lysed for RNA and
Western blot analyses.
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ELISA
Estradiol and testosterone levels were measured in plasma and
culture supernatants by commercial ELISA (Calbiotech, Inc.,
Spring Valley, CA) as per manufacturer instructions.

RNA Isolation and Real Time PCR
RNA was isolated from sorted and cultured Tregs with TRIzol
(Invitrogen) as per the manufacturer’s protocol. Real time PCR
was used to analyze mRNA gene expression as described
earlier (1, 26, 27). Human FoxP3 specific primers and
probes were synthesized from Applied Biosystems. Human
FoxP3 primer and probe sequences are as follows: FoxP3
forward, 5′-TCTTCTCGGTATAAAAGCAAAGTTGTT-3′;

reverse, 5′-GTGAAGTGGACTGACAGAAAAGGAT-3′; probe,
6FAM-TGATACGTGACAGTTTCCCACAAGCCA-TAMRA.
Human GAPDH primers and probes were obtained from
Applied Biosystems. The amplification primers were used
at 900 nM and probes at 200 nM. All samples were run in
duplicate. Data was normalized with the house-keeping
gene GAPDH.

Statistical Analyses
Data was analyzed using Prism 4.0 (GraphPad Software, San
Diego, CA). Comparisons were performed using paired one- or
two-tailed test. Results are expressed as mean ± SEM. p < 0.05
was considered significant.

FIGURE 1 | The percentage of CD4+ and CD8+ expressing characteristics of regulatory T cells are significantly reduced in SLE patients compared to gender and age

matched healthy controls. Representative FACS analysis from PBMC of active female SLE patients compared with healthy controls (A,B,D,F,G). Peripheral blood

mononuclear cells (PBMC) were isolated from 20 to 30ml of blood obtained from SLE patients and healthy controls. 10,000 cells were gated and analyzed by FACS.

Representative FACS analysis of FoxP3+ T cells (B) (with percent of positive cells in the Upper-Right quadrant indicated) were analyzed after gating of CD4+ T cells

and CD8+ T cells from PBMC. (C) Cumulative data of CD4+FoxP3+ T cells in healthy controls (n = 14) and SLE patients (n = 25). (D) Representative FACS analysis

of CD8+FoxP3+ T cells from PBMC of SLE patient vs healthy control. (E) Cumulative data of CD8+FoxP3+ T cells in healthy controls (n = 13) and SLE patients (n =

16). (F) Representative FACS analysis of CD4+CD25+ T cells from SLE patient vs. healthy control. (G) Representative FACS analysis of CD8+CD25+ T cells from SLE

patient vs. healthy control. (H) Cumulative data of CD4+CD25+hiFoxP3+ T cells in healthy controls (n = 10) and SLE patients (n = 12). p values indicating significant

differences are shown in each panel (C,E,F). *p < 0.05, **p < 0.01, ***p < 0.001.
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RESULTS

CD4+CD25+hiFoxP3+ and
CD8+CD25+hiFoxP3+ Tregs Are Reduced in
SLE Patients
In order to determine the number, phenotype, and homeostatic
regulation and effects of sex hormones on Tregs in lupus patients
compared to healthy controls, we performed an extensive
immunophenotyping of PBMCs from each group (see gating
scheme Figure 1A). Treg cells were identified as those cells
expressing FoxP3 and CD25+high. We found that lupus patients
exhibited significantly reduced percentages of CD4+FoxP3+ (p<

0.0041) andCD8+FoxP3+ T cells (p< 0.0102) when compared to
healthy controls (Figures 1A–E). We also characterized levels of
CD4+CD25+ (Figure 1F) and CD8+CD25+ T cells (Figure 1G)
between healthy control and SLE patient and found that the
percentage of CD4+CD25+hiFoxP3+ Tregs in peripheral blood
was also significantly reduced in patients with SLE relative to
healthy controls (Figure 1H; p < 0.0005). Collectively these data
demonstrate that lupus patients have reduced percentages of both
CD4+ and CD8+ Tregs.

CD4+CD25+hi and CD8+CD25+hi T Cells
From Healthy Males Have Higher FoxP3
mRNA Levels Than Healthy Females
Healthy males had significantly higher percentages of
CD4+CD25+hi and CD8+CD25+hi Tregs relative to healthy
females (Figures 2A,B; p < 0.007 and p < 0.02). Since lupus
is a gender-biased disease with a female to male ratio of
9:1, we determined whether FoxP3 expression in healthy
male and female individuals varies in their regulatory T cell
compartments. FoxP3 expression in CD4+ and CD8+ regulatory
subsets, CD4+CD25+hi and CD8+CD25+hi T cell subsets
were sorted by FACS. The sorted cells were subjected to RNA
isolation from both healthy male and female subjects. We
found that CD4+CD25+hi and CD8+CD25+hi subsets of
healthy males had 2-3 times higher FoxP3 mRNA compared
to healthy females (Figures 2C,D). Overall, we found that
circulating CD4+CD25+high and CD8+CD25+high T cells are
higher in healthy males than healthy females and, although,
FoxP3 expression is decreased in both CD4+ and CD8+ T
cells, it was only significantly decreased within the CD4+ T
cell compartment.

Females Have Less Total FoxP3 Message
in PBMCs Relative to Males; Evidence
Suggests That TGFβ Promotes FoxP3
Expression in Both Sexes
Having examined the expression of FoxP3 in CD4+ and CD8+

Tregs of healthy males and females, we were interested to see
whether transforming growth factor-β (TGFβ) promotes FoxP3
expression differently in whole peripheral blood mononuclear
cells (PBMCs) of healthy males and females. Transforming
growth factor-β (TGFβ) is a multifunctional cytokine regulating
T cell biology (60, 61). It has been shown to induce FoxP3+ T
regulatory cells from CD4+CD25− precursors (12, 62, 63). To

FIGURE 2 | Circulating Tregs of healthy males have higher FoxP3 mRNA than

cells from healthy females. Numbers of circulating CD4+ and CD8+ regulatory

T cells are decreased in healthy females. (A) CD4+ regulatory T cell numbers

were measured after FACS staining by CD4, CD8, and CD25 monoclonal

antibodies from 6 healthy males and 10 healthy females, **p < 0.007 by Mann

Whitney two-tailed t test. (B) CD8+ Tregs from 8 healthy males and 10 healthy

age matched females, *p < 0.02 by paired two-tailed t test. Percent positive

CD4+ Treg and CD8+ Tregs were determined from total CD4 and CD8 cells

from PBMCs. T cells from male and female healthy subjects were sorted by

FACS and total RNA isolated from CD4+CD25+hi (C) and CD8+CD25+hi (D)

cells. 100 ng of RNA from each male and female was used for real-time PCR

to quantitate FoxP3 mRNA levels, and data were normalized with GAPDH.

Data shown are from 3 males and 5 females. *p < 0.05, **p < 0.001, ns, not

significant.

address TGFβ effects on FoxP3 expression in healthy males and
females, PBMCs were obtained, total RNA isolated, and real-
time PCR performed to analyze FoxP3 expression. We found
that female have less FoxP3 expression compared to age matched
male healthy subject (Figure 3A). Overall, TGFβ increased FoxP3
expression in both healthy male and healthy female PBMCs
(Figure 3B) however, the fold increase of FoxP3 expression was
less in healthy females than in healthy males. These findings of
a lower response to TGFβ in terms of expression of FoxP3—
a classical marker of Tregs–in healthy females compared to
healthy males might be one explanation of why SLE and other
autoimmune disorders are predominantly expressed in females.

Female SLE Patients Have Altered Sex
Hormone Levels—Increased Plasma
Estradiol Levels and Decreased
Testosterone Levels
Since chronic exposure to estradiol leads to activation of pro-
inflammatory cells and genes, wemeasured 17β-estradiol levels in
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FIGURE 3 | TGFβ promotes FoxP3 expression in human PBMCs in vitro.

PBMCs (2–4 × 106) were isolated from healthy males (n = 5) and healthy

females (n = 5) and cultured with TGFβ (20 ng/ml) for 24–48 h range in

complete media. RNA was isolated and real time PCR was performed for

FoxP3 mRNA expression. 100 ng of RNA was used for FoxP3 mRNA

expression with a specific primer and probe for the human FoxP3 gene. (A)

PBMCs were isolated from a 21-year-old male and 22-year-old female, RNA

was isolated, and real-time PCR was performed. Experiment was performed in

triplicate and error bar shows the values from the triplicates. A deficiency of

FoxP3 mRNA levels was noted in the female subject as compared to male. (B)

PBMCs from healthy males (n = 5) had a larger magnitude of response to

TGFβ treatment (20 ng/ml) than female cells (n = 5).

SLE patients and age- and sex-matched controls. We found that
female SLE patients have significantly increased plasma estradiol
levels compared to healthy controls (Figure 4A). We also found
that testosterone levels were decreased in female SLE patients
compared to healthy female controls (Figure 4B).

Sex Hormones Influence CD4, CD25, and
FoxP3 Expression Differentially in Healthy
Males and Females and in SLE Female
PBMCs
It is not clear whether sex hormones influence CD4, CD25
and FoxP3 expression differentially in humans, both healthy
and in SLE patient cells. To address this, we isolated PBMCs
from healthy male and female volunteers and cultured their
PBMCs with different concentrations of 17β-estradiol (E2). In
preliminary in vitro experiments using different concentrations
of E2 (30–150 pg/ml), we determined that maximal responses
in both healthy and SLE individuals occurred at the 30–60
pg/mL range (data not shown). Of significance, we found that
incubation with E2 at physiologic range (60 pg/ml) significantly
increased CD4, CD25, and FoxP3 (mean fluorescence intensity)
expression in PBMCs from a healthy female (Figures 5A–C)
but not in PBMCs from a healthy male (Figures 5D–F). In
contrast, in SLE patients (both males and females) PBMCs
treated with E2 at a physiological dose (60 pg/ml) was
associated with significantly reduced FoxP3 mRNA expression
(Figures 6A,B). These differences in response to E2 in SLE
patients’ immune cells vs. healthy cells suggest that the disease-
inflammatory microenvironment may play a significant role.
Next, we wanted to see how CD4+CD25− T cells from SLE

FIGURE 4 | Estradiol and testosterone levels in plasma of SLE patients and

healthy controls. (A) Female SLE patients (n = 31) have increased plasma

estradiol levels compared to female healthy controls. (n = 27) and (B) Female

SLE patients (n = 51) have decreased testosterone levels compared to healthy

female controls (n = 51). Plasma estradiol and testosterone levels were

measured by ELISA. *p < 0.05.

patients would response to E2. We found that CD4+CD25−

T cells treated with E2 were unable to drive FoxP3 protein
expression (Figure 6C) and that the mean fluorescence intensity
of FoxP3 was significantly (p < 0.04) decreased in E2-treated
CD4+CD25− T cells (Figure 6D). These data suggest that in
healthy females E2 promotes an increase in regulatory T cell
numbers and FoxP3 expression; whereas, females with SLE have
defective regulatory T cell responses to E2 at physiologic levels.
Therefore, females with SLE do not expand Tregs normally in
response to estradiol stimulation.

Androgen/Testosterone Increases the
Expression of FoxP3 mRNA and Protein in
Regulatory T Cells of SLE Patients
In the present study, we also tested the androgen effect on
isolated CD4+CD25+CD127low Tregs in female SLE patients.
Isolated cells were cultured with testosterone (100 ng/ml) and
then lysed, RNA isolated, and RT-PCR performed. We found
that treatment with testosterone/DHT (100 ng/mL) significantly
increased FoxP3 mRNA expression in SLE patient’ CD4+

Tregs (Figure 7A). The positive effect of testosterone on FoxP3
expression is further suggested by the data shown in Figure 7B,
which indicates that plasma concentrations of testosterone in
females with SLE correlates significantly with the expression of
FoxP3 in their CD4+CD25+CD127low T cells. Furthermore, we
found that incubation with androgen increased the expression
of total FoxP3 protein in the PBMCs of female SLE patients
(Figure 7C). These data suggest that androgens positively
regulate FoxP3 expression in SLE patients.

DISCUSSION

Environmental factors, genetic defects, and hormones can
regulate immune responses and therefore may influence SLE
susceptibility (64–67). Regulatory T cells (Tregs) play a key role
in maintaining immune homeostasis including the prevention
of autoimmunity, maintenance of self-tolerance, and regulation
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FIGURE 5 | Estrogen increases expression of CD4, CD25, and FoxP3 in vitro in a healthy female subject but not in a healthy male subject. PBMCs (2–4 × 106) were

isolated from a healthy female and a healthy male subject and cultured for 24–48 h range with physiological concentrations of E2 (60 pg/ml). Estrogen increases CD4

and CD25 cell surface expression and intracellular FoxP3 expression in a healthy female PBMCs (A–C). These effects were not seen in a healthy male PBMCs cells

(D–F).

of immune responses against infection (68–70). The functional
failure of Tregs can result in development of autoimmune
diseases including SLE (18, 71–73). Regulatory B cells (Breg)
and myeloid-derived suppressor cells (MDSC) (74–79) and
type1 regulatory T cells (CD4+IL-10+FoxP3−) (80–85) have
an immunosuppression role and promote immune tolerance.
Genetic polymorphisms in the FoxP3 gene and imbalances of
regulatory T cells and autoimmunity have also been reported (86)
as-well-as polymorphisms of genes involved in Tregs activation
and function (87). Gender effects have also been reported.

Women are more prone than men to the development of
autoimmune diseases including SLE (3, 4) and the role of sex
hormones (17β-estradiol and androgen) has been demonstrated
in SLE (88). The female sex hormone (estrogen) contributes to
the pathogenesis of SLE by activating T cells and by modulating
the function of regulatory T cells (89–91). However, it is not clear
whether sex hormones and/or gender regulate the function of
these regulatory cells or expression of markers including FoxP3
differentially in humans.

The role of sex hormones (17β-estradiol and androgen)
has been demonstrated in SLE (88). The female sex hormone
(estrogen) contributes to the pathogenesis of SLE by activating
T cells and by modulating the function of regulatory T
cells (89–91). In addition, an association of single-nucleotide
polymorphisms in the FoxP3 gene have been correlated with
SLE susceptibility (92). However, it is not clear whether sex
hormones and/or gender regulate the function of these regulatory
cells or expression of markers including FoxP3 differentially in
humans. In the present study, we did not address the issue of

gene polymorphisms or the possibility that individual SNPs may
play a significant role in healthy Treg populations which have
low FoxP3 expression. Future study will be needed to address
these possibilities. Previous studies have shown that estradiol
treatment of PBMCs affects T cells, B cells, and monocytes
(54, 93, 94); and gender differences in estrogen receptor (ER)
expression were documented (95). However, the effect of gender
and sex hormones on the phenotype and function of Tregs

and expression of FoxP3 in SLE patients compared to healthy
controls is less well studied. Recent evidence in a mouse model
of autoimmune diseases indicates that female sex hormone (17β-
estradiol-E2) influences the expression of FoxP3 and Treg number
and function. Further, estradiol has been shown to influence the
activation and function of many immune cells (74, 93) including
CD4+ (Th1, Th2, Th17, and Treg) and CD8+ T cells (96–98).
It has been reported that estrogen exposure directly activated T
cells through the cell membrane estrogen receptor (99) and that
17β-estradiol receptors are differential expressed in women with
SLE (100).

Estrogen binds to nuclear receptors (ERα and ERβ) on various
cells, including CD4+ T cells, thus altering the rate of gene
transcription (48-51). It also acts independently of ER (estrogen
receptor) through alterations in the plasma membrane. Exposure
of T cells to 17β-estradiol stimulates kinase activation and
calcium flux. In normalmice, administration of physiologic doses
of 17β-estradiol to ovariectomized females increased 2-to-3-fold
the numbers of CD4+CD25+ and CD4+FoxP3+ T cells in PBL,
spleens and lymph nodes, suggesting that 17β-estradiol in the
absence of other ovarian hormones strongly influences expansion
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FIGURE 6 | Lupus patient immune cells respond to E2 with a decrease in FoxP3 expression. Estrogen decreases expression of FoxP3 in both female and male SLE

patient PBMCs. Lupus patient PBMCs (2–4 × 106 cells) were isolated and cultured (24–48 h range) with E2 at physiological concentrations (60 pg/ml). RNA was

isolated, and real time PCR was performed with FoxP3 primers and probes. GAPDH was used as the house keeping gene. FoxP3 mRNA expression was reduced in

female (n = 5) and male (n = 3) SLE pts (A,B). (C) Estrogen decreases FoxP3 protein in CD4+CD25− T cells from SLE patients. CD4+CD25− T cells were isolated

from female SLE patient cells (n = 3) and cultured for in the 24–48 h range with E2 at 30 pg/ml concentration. FoxP3 intracellular protein was measured by FACS. (D)

Mean fluorescence intensity (MFI) decreases in CD4+CD25− T cells from SLE patients treated with E2. *p < 0.05.

of Tregs (101). In vivo or in vitro exposure to 17β-estradiol
increases CD4+CD25+ T cell numbers and FoxP3 expression in
Experimental Autoimmune Encephalomyelitis (EAE) (102).

Male hormones (androgens) also influence the immune
response in many diseases including SLE (47). In males with SLE,
imbalances in both estrogens and androgens could contribute
to increased susceptibility to the active disease (48–52). Earlier
studies indicated that testosterone suppressed both IgG anti-
dsDNA antibody and total IgG production in PBMCs from
SLE patients (53, 54). Androgen administration (of prasterone,
which can be metabolized to testosterone) has recently been
demonstrated to improve disease activity in females with SLE
(56). The effect of testosterone on CD4+ Tregs and FoxP3
expression, stability, and plasticity in SLE patients is not clear
and has not been studied extensively. Although recent evidence
suggests that FoxP3 protein stability is controlled by several
proteins including cyclin dependent kinase−2 (CDK-2) (103),
Pim-2 kinase (104), Nemo-like kinase, and CNS2 (non–coding
sequence 2 demethylation by TET (ten-eleven translocation)
protein (105, 106). However, the molecular mechanisms that
control FoxP3 stability and Treg plasticity remains to be identified
in SLE.

In the present study, we demonstrate that the percentage
of CD4+ and CD8+ Tregs are significantly reduced in SLE

patients compared to gender and age matched healthy controls
(Figure 1); and that the percentage of both CD4+ and CD8+

Tregs is reduced in healthy females compared to healthy males.
Our data is the first report that healthy male cells express higher
FoxP3 mRNA levels than healthy female cells (Figure 2). We
show that female SLE patients have increased plasma levels
of estradiol (Figure 4) and that incubation of CD4+ Tregs

with 17β-estradiol (at physiological levels) either maintains or
decreases FoxP3 expression in females with SLE, in contrast to
inducing a significant increase in CD4+ Treg in healthy females
(Figures 5, 6). We further show that TGFβ treatment induces
FoxP3 expression in PBMC of both healthy males and females,
but at a larger degree in males than healthy females (Figure 3).
At the mechanistic level, we demonstrate that estrogen increases
expression of CD4, CD25, and FoxP3 in a healthy female but
not in a healthy male subject (Figure 5). Finally, at the clinical
and translational significance level, we showed for the first time
that in female SLE patients (1) testosterone levels are reduced
(Figure 4); (2) testosterone exposure increases the expression of
FoxP3mRNA in Tregs (Figure 7); and (3) that the plasma levels of
testosterone positively correlates with FoxP3 mRNA (Figure 7).
Thus, our data suggest that sex hormones and gender influences
the expression of FoxP3 and regulatory T cells differentially
in SLE.
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FIGURE 7 | Testosterone increases the expression of FoxP3 mRNA in female

SLE patient Tregs in vitro, and the plasma level of testosterone correlates with

FoxP3 mRNA in SLE patients. (A) Androgen/testosterone treatment (100

pg/ml) increases FoxP3 expression significantly in female SLE patient’ Tregs.

CD4+CD25+highCD127low Tregs were isolated from female SLE patients (n =

7-10) cells after cultured for 24–48 h range with androgen. RNA was isolated,

and real time PCR was performed with FoxP3 primers and probes. GAPDH

was used to normalize data. (B) Positive correlation between plasma levels of

testosterone and expression of FoxP3 in female SLE patients (n = 12) immune

cells. *p < 0.05. (C) Female PBMCs were isolated from SLE patients and

cultured at a density of 2-3 × 106 cells per well with and without androgen

(10 ng/ml) for 24–48 h range. Cells were washed, stained with CD4 and FoxP3

antibodies, and analyzed with FACS. A minimum of 10,000 cells were gated.

Representative FACS analysis from two female SLE patients is shown. Mean

fluorescence intensity (MFI). *p < 0.05.

We postulate that women are predisposed to SLE and to
the maintenance of disease activity in part because of their
relatively high levels of estradiol (E2), and their low levels of
testosterone and related active metabolites. We also suggest that
the sex hormone (estradiol that has higher concentrations in
females) work in part by suppressing the numbers and functional
activity of CD4+ Tregs, with resultant inadequate suppression of
CD4+CD25− effector T cells and of autoantibody-producing B
cells. Our data suggest that CD4+CD25+hi and CD4+FoxP3+ T
cells are lower in numbers in women with SLE than in matched
healthy controls, and that these cells are relatively insensitive
to E2 stimulation at the levels that increase FoxP3 expression
in normal Tregs but not in SLE. Our results are in-line with
other investigators who found that estradiol treatment enhances

increased expression of CD25+ T cells and increased FoxP3
expression in mice treated with estradiol (102). Furthermore,
estradiol treatment increased Treg numbers and functions and
induces FoxP3 expression both in vitro and in vivo (6). These
data indicate that lupus patient’ immune cells (PBMCs) behave
differently than those from healthy subjects when they are
cultured in vitro with 17β-estradiol (Figure 6).

Androgen-induced immunosuppression was reviewed
recently (107) in both sexes and shown to affect the
differentiation and function of Tregs differently in men and
women. In vivo administration of androgens to women with
adrenal insufficiency and rats with experimental autoimmune
orchitis has been shown to increase Treg numbers (108, 109).
Further it was suggested that, androgens are capable of directly
converting peripheral T cells into Tregs in women. However,
in a contradicting report it was suggested that androgens
interfere with Treg function in men, as occurs in a mouse
model of Sjögren’s syndrome which predominantly affects male
mice (110). Further it has been shown that administration of
5-dehydroepiandrosterone (DHEA), which is metabolized to
testosterone, reduces disease activity in women with SLE (56).
However, this DHEA study did not evaluate the expression
of FoxP3 nor regulatory T cell numbers or function. In our
current study, testosterone significantly increases FoxP3
expression in CD4+CD25+hi cells from females with SLE in
vitro. Furthermore, we showed that testosterone increases
the expression of FoxP3 mRNA in female SLE patient’ Tregs

(Figure 7A). In addition, we showed that plasma concentrations
of testosterone positively correlated in those females with the
expression of FoxP3 in their CD4+CD25+hi T cells (Figure 7B)
suggesting that this response to testosterone may be normal in
women with SLE, in contrast to their response to estradiol.

Our data is in agreement with a previous study which
showed that androgen causes expansion of Tregs and a significant
androgen-dependent increase of FoxP3 expression in human T-
cells from women; however, this response was not seen in males.
The study also identified a functional androgen response element
(ARE) within the FoxP3 locus (111) and showed that binding
of the androgen receptor (AR) to the ARE leads to epigenetic
changes. The authors were able to show that the FoxP3 gene
is more responsive to androgen treatment in T cells isolated
from women than in men, indicating gender-specific androgen
signaling. These studies, together with our data, demonstrate
that healthy females may be more susceptible than males to SLE
and other autoimmune diseases in part because females have
fewer Tregs with reduced FoxP3 expression within those cells. In
addition, females with SLE have less ability to generate CD4+

Tregs in response to physiologic concentrations of 17β-estradiol
in comparison to healthy females; whereas, an active testosterone
metabolite can increase the generation of CD4+ Tregs in SLE
females. The responsiveness of female T cells to induce or
transform into Tregs, under the effect of androgen, may provide
a mechanistic basis to control excessive and damaging immune
responses (autoimmunity). Future studies will be required
addressing the exact mechanism of this immune homeostasis.

In summary, our results provide novel evidence for a
functional modulatory role of sex hormones (estradiol and
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androgen) in the differentiation of Treg cells in SLE. Further, we
provided evidence that androgen effects the regulation of the
FoxP3 expression on T regulatory cells differentially in women
and men.
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