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T Follicular helper (Tfh) cells promote germinal center (GC) B cell responses to develop
effective humoral immunity against pathogens. However, dysregulated Tfh cells can also
trigger autoantibody production and the development of autoimmune diseases. We report
here that Tsc1, a regulator for mTOR signaling, plays differential roles in Tfh cell/GC B cell
responses in the steady state and in immune responses to antigen immunization. In the
steady state, Tsc1 in T cells intrinsically suppresses spontaneous GC-Tfh cell
differentiation and subsequent GC-B cell formation and autoantibody production. In
immune responses to antigen immunization, Tsc1 in T cells is required for efficient GC-
Tfh cell expansion, GC-B cell induction, and antigen-specific antibody responses, at least
in part via promoting GC-Tfh cell mitochondrial integrity and survival. Interestingly, in mixed
bone marrow chimeric mice reconstituted with both wild-type and T cell-specific Tsc1-
deficient bone marrow cells, Tsc1 deficiency leads to enhanced GC-Tfh cell differentiation
of wild-type CD4 T cells and increased accumulation of wild-type T regulatory cells and T
follicular regulatory cells. Such bystander GC-Tfh cell differentiation suggests a potential
mechanism that could trigger self-reactive GC-Tfh cell/GC responses and autoimmunity
via neighboring GC-Tfh cells.

Keywords: TSC1/2, mTOR, T follicular helper cells, germinal center B cells, autoimmunity, Regulatory T cells (T reg),
T follicular regulatory (Tfr) cell
INTRODUCTION

T follicular helper (Tfh) cells are important players in both normal immune responses and
autoimmune disease via contact-dependent and independent mechanisms to provide helping
signals to B cells in the germinal centers (GCs). Tfh cells promote GC B cell proliferation and
survival, Ig class switch and affinity maturation, and plasma cell and memory B cell formation (1, 2).
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However, deregulated Tfh cells can trigger abnormal GC B and
memory B cell responses to produce autoantibodies and
contribute to autoimmune diseases. Abnormal Tfh cells have
been associated with or are the causal factors for autoimmune
diseases in human patients and/or in autoimmune mouse models
(3–9). Tfh cells express Bcl6, a transcription factor critical for
their differentiation (10–13). Tfh cell differentiation is regulated
via multiple mechanisms, including TCR signal strength and
duration, costimulatory signaling such as CD28 and ICOS, and
chemokine receptors such as CXCR5 (12, 14–22). Additionally,
Tfh cells and GC B cells are suppressed by T follicular regulatory
(Tfr) cells to prevent dysregulated antibody responses and
autoimmunity (23–25). Recently, evidence has emerged that
mTOR, which integrates TCR, costimulatory, cytokine, and
metabolic signals (26–28), is crucial for Tfh cell differentiation,
homeostasis, and function via signaling through both mTOR
complexes 1 and 2 to regulate Bcl-6 expression and Tfh cell
proliferation, survival, and metabolism (29–33), and it regulates
Tfr cell differentiation and function (29, 30).

TSC1/2 are key regulators of mTOR signaling, inhibiting
mTORC1 and, in certain instances, promoting mTORC2
activities. TSC1, TSC2, and TBC1D7 form the core of the TSC
protein complex. TSC2 contains GAP activity for RheB to inhibit
mTORC1 activation. TSC1 is crucial for TSC2 stability (34–36).
Via tight control of mTOR, TSC1/2 regulate diverse processes
such as cell metabolism, growth, proliferation, differentiation,
quiescence, stemness, and autophagy and play important
roles in many diseases (37, 38). Recent studies have revealed
significant impacts of Tsc1 deficiency on immune cell
development and function using mouse models with tissue-
specific Tsc1 ablation. These studies have demonstrated that
Tsc1 deficiency greatly affects hematopoietic stem cells,
conventional T cells, regulatory T cells, iNKT cells, B cells, NK
cells, macrophages (including M1/2 polarization), dendritic cells,
and mast cells to influence both adaptive and innate immune
responses, self-tolerance, and diseases (39–52). In T cells, Tsc1
has been found to be important for T cell homeostasis,
quiescence, anergy, and effector and memory responses (39–
45). However, the role Tsc1 plays in Tfh cells regarding
controlling antibody responses has been unknown. In this
report, we demonstrate that Tsc1 performs differential roles in
Tfh cell differentiation in the steady state and during immune
responses to immunization. In the steady state, Tsc1 inhibits Tfh
cell differentiation, and T cell-specific Tsc1 deficiency causes
spontaneous Tfh cell differentiation, leading to the accumulation
of GC-B cells and the production of autoantibodies. In contrast,
Tsc1 positively contributes to Tfh cell differentiation and
antigen-specific antibody responses after immunization—at
least in part by promoting Tfh cell survival via maintaining
mitochondrial integrity and reducing reactive oxygen species.
Additionally, Tsc1 deficiency not only intrinsically promotes
Tfh cell differentiation but also extrinsically leads to bystander
Tfh cell differentiation of WT T cells in the steady state.
The discovery of bystander Tfh cell differentiation suggests
potential mechanisms for the development of autoantibody
and autoimmune diseases.
Frontiers in Immunology | www.frontiersin.org 2
MATERIALS AND METHODS

Mice
Tsc1f/fmice (53) and Cd4-Cre (54) mice were purchased from the
Jackson Laboratory and Taconic Farms, respectively. Tsc1f/f mice
were backcrossed to the C57BL/6 background for nine
generations. All mice were generated and used according to
protocols approved by the Duke University Institute Animal
Care and Use Committee.

Flow Cytometry and Antibodies
Single-cell suspensions from the spleen were stained for surface
markers with appropriate fluorochrome-conjugated antibodies
in PBS containing 2% FBS on ice for 30 min. Intracellular Bcl-6,
cMaf, Foxp3, and Gata3 staining was conducted using the
Invitrogen eBioscience Transcription Factor Buffer Set, and
Ki67, iNOS, IgG1, and IgG2b staining was done using the BD
Bioscience Cytofix/CytopermTM solution according to the
manufacturer’s protocols. Cell death was determined by Live/
Dead Fixable Violet Dead Cell Stain (Invitrogen, Carlsbad, CA)
according to the manufacturer’s protocol. Fluorescence-
conjugated anti-mouse CD4 (GK1.5), TCRb (H57-597), CD8
(53-5.8), CD44 (IM7), CD62L (MEL-14), CD45.1 (A20), CD45.2
(104), B220 (RA3-6B2), CXCR5 (L138D7), PD-1 (RMP1-30),
ICOS (C398.4A), GL7 (GL7), Fas (JO2), IgG1 (RMG1-1), IgG2b
(RMG2b-1), CD93 (AA4.1), B220 (RA3-6B2), SLAM (A12
(7D4), ICAM1 (YN1/1.7.4), iNOS (W16030C), and PB-
Annexin V were purchased from Biolegend (San Diego, CA).
Anti-mouse Gata3 (L50-823), cMaf (T54-853), Streptavidin
(BV711), and Ki67 were purchased from BD Biosciences. The
anti-Bcl-6 (BCL-DWN) and anti-Foxp3 (FJK-16s) antibodies
were purchased from eBioscience. Goat anti-mouse IgG (H+L)
antibody (Alexa Fluor 568) for the detection of the anti-Ki67
antibody, anti-phospho-S6 S235/236 (cupl43k) antibody, and
anti-phospho-Akt S474 (SDRNR) antibody were purchased
from Thermo Fisher Scientific. Reactive oxygen species (ROS)
were detected with 2’,7’-dichlorodihydrofluorescein diacetate
(H2DCFDA, Thermo Fisher Scientific). Briefly, after cell
surface staining with appropriate fluorochrome-conjugated
antibodies, cells were resuspended in PBS and incubated with 1
mmol CM-H2DCFDA at 37°C for 30 min in the dark. After
washing, the cells were gently resuspended in 10% FBS IMDM
for flow cytometry. Mitochondrial membrane potential was
detected with TMRM (Thermo Fisher Scientific). Cells were
incubated in PBS containing 1 mmol TMRM at 37°C for
30 min followed by other cell surface markers staining at 4°C.
Data were collected using a BD LSRFortessaTM cytometer (BD
Biosciences) and analyzed using the FlowJo Version 9.9.6
software. Supplementary Figure 1 illustrates the gating
strategies to identify Tfh cells, Tregs, and non-Tfh cell
conventional T cells.

Glucose Uptake
One million splenocytes in PBS in a 96-well plate were incubated
with or without 100 mM 2-Deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-
4-yl)amino]-D-glucose (2-NBDG, Thermo Fisher) at 37°C with 5%
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CO2 for 30 min. After being washed with pre-clod PBS, the cells
were stained with proper antibodies and analyzed by
flow cytometry.

Western Blot Analysis
Western blot analysis was performed as previously described
(26). Briefly, WT and Tsc1-T-KO CD4 T cells were sorted from
splenocytes with a Moflo sorter (Beckman Coulter). Cell lysates
of 1 x106 cells in 1% Nonidet P‐40 Lysis solution (1% Nonidet‐
40, 150 mM NaCl, and 50 mM Tris, pH 7.4) with freshly added
protease and phosphatase inhibitors were subjected to
immunoblotting analysis with indicated antibodies. Anti-Tsc1
(D43E2, #6935), anti-phospho-S6 S235/236 (2F9, #4856), anti-
phospho-4E-BP1 T37/46 (236B4, # 2855), anti-4E-BP1 (53H11,
#9644), and anti-Akt1 (C73H10, #2938) antibodies were
purchased from Cell Signaling Technology.

Immunization and Measurement of
Antibody Responses
Mice were immunized with a single i.p. injection of 20 mg of 4-
hydroxy-3-nitrophenylacetyl conjugated chicken gamma
globulin (NP17-CGG, Biosearch Technologies) in alum, as
previously described (55). Serum was collected pre-
immunization and on day 7, 14, and 21 post-immunization.
Appropriately diluted sera were added into 96-well plates
precoated with 50 ml 2 mg/ml NIP4-BSA or NIP26-BSA in 0.1
M carbonate buffer (pH 9.0) at 4°C overnight. After incubation
and multiple washes, HRP-conjugated goat anti-mouse IgM,
IgG, IgG1, IgG2b, and IgG3 were used to detect NIP-specific
IgM, IgG, and IgG subtypes.

Serum Immunoglobulin Concentrations
One hundred ml of appropriately diluted sera from unimmunized
mice was added into 96-well plates (Corning, New York, NY)
precoated with anti-mouse Igk and Igl antibodies (2mg/ml;
SouthernBiotech, Birmingham, AL) in 0.1 M carbonate buffer
(pH 9.0) at 4°C overnight. IgM, IgG, IgG1, IgG2b, and IgG3
levels were detected with ELISA using HRP-conjugated goat
anti-mouse total or Ig subtype antibodies. Relative levels of Ig
were computed by OD450 values.

Chimeric Mice
CD45.1+CD45.2+ WT mice in C57BL/6 background were
irradiated with a single dose of (1,000 rad) and were
intravenously injected with 1.0 x 107 BM cells of a mixture of
CD45.2+ Tsc1f/f- Cd4cre mice and CD45.1+ WT mice at 1:1 ratio
4 h after irradiation. Recipient mice were euthanized and
analyzed 8 weeks later.

Statistical Analysis
Data were presented as mean ± SEM and analyzed for statistical
differences using the Prism 5/GraphPad software. Data with each
experiment that contained a pair of test and control mice that were
the same sex and age, were hosted in the same cage, and in most
cases were also littermates were analyzed with a two-tailed
pairwise Student t-test. A connection line in the scatterplots
indicates a pair of test and control mice in each experiment.
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Data that did not fall into the aforementioned pairwise Student t-
test criteria such as from experiments with two or more test or
control mice in one experiment were analyzed by an unpaired
Student t-test. P-values less than 0.05 were considered significant.
RESULTS

Deficiency of Tsc1 in T Cells Caused
Constitutive Tfh Cell Differentiation and
GC B Cell Formation
To determine the role of Tsc1 in GC-Tfh cells, we analyzed
Tsc1f/f-Cd4Cre (Tsc1-T-KO, KO) mice and Tsc1+/+-Cd4Cre
or Tsc1f/f control (Ctrl) mice. In purified Tsc1-T-KO CD4 T
cells, Tsc1 was virtually undetectable, but S6 and 4E-BP1
phosphorylation increased, indicating efficient ablation of Tsc1
and enhanced mTORC1 signaling in these cells (Figure 1A). In
the spleen of unimmunized WT mice, few Foxp3- CD4 T cells
were CXCR5+PD-1+, markers for GC-Tfh cells, or CXCR5intPD-
1int (markers for Tfh cells). However, both Tfh cells and GC-Tfh
cells were increased 5.8-fold and 2.7-fold in the percentages and 7.7-
fold and 3.1-fold in the numbers, respectively, in Tsc1-T-KO mice
(Figures 1B, C). Both mTORC1 and mTORC2 promote GC-Tfh
cell differentiation in part by increasing glucose metabolism (26–
28). In Tsc1-T-KO GC-Tfh cells and naïve and effector memory
(EM) CD4 T cells, S6 phosphorylation was enhanced, suggesting
enhanced mTORC1 activity; Akt phosphorylation at serine 374 was
not obviously changed, suggesting normal mTORC2 activity
(Figures 1D, E), and glucose uptake was not obviously changed
(Figures 1F, G). The transcription factor Bcl6 and costimulatory
molecule ICOS are critical for Tfh cell differentiation (10–13, 17, 19,
56, 57). In Tsc1-T-KO GC-Tfh cells, both Bcl-6 and ICOS levels
were increased compared with WT GC-Tfh cells (Figures 1H, I).
Together, these data suggest that TSC1 may negatively control
mTORC1 and the expression of Bcl-6 and ICOS to prevent
spontaneous GC-Tfh cell differentiation.

In Tsc1-T-KO mice, splenic B220+ B cell percentages and
numbers increased (Figure 1J). Within B cells, IgM+IgD- and
IgM-IgD+ B cell percentages were not altered, but IgM-IgD- (DN)
B cell percentages increased about 30%. Due to increased total B
cells, their numbers all increased (Figure 1K). Consistent with
increased GC-Tfh and Tfh cells, Tsc1-T-KO mice also contained
increased Fas+GL7+ GC B cells (Figures 1L, M). Thus, Tsc1
inhibited spontaneous Tfh differentiation and GC-B cell
formation in the steady state.

TSC1 Intrinsically Inhibited Tfh Cell
Differentiation and Extrinsically
Suppressed Bystander Tfh
Cell Differentiation
Because Tsc1 was absent in both CD4 and CD8 T cells in Tsc1f/f-
Cd4Cre mice, we generated mixed bone marrow (BM) chimeric
mice to determine whether Tsc1 intrinsically controlled Tfh
cell differentiation. We reconstituted lethally irradiated
CD45.1+CD45.2+ recipient mice with a mixture of BM cells of
either CD45.1+ WT and CD45.2+ WT (WT/WT) or CD45.1+
April 2021 | Volume 12 | Article 620437
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FIGURE 1 | Inhibition of Tfh and GC responses by Tsc1. Splenocytes from 8–10 weeks old Tsc1f/fCd4Cre and WT control mice were analyzed. (A) Immunoblotting
of purified CD4 T cell lysates with the indicated antibodies. (B) Representative dot-plots of CXCR5 and PD1 staining in gated CD4+TCRb+Foxp3- T-cells.
Gating strategies for GC-Tfh, Tfh, Treg, Tfr, naïve, CD44+CD62L+ central memory (CM), CD44+CD62L- effector memory (EM) CD4 T cells are shown in
Supplementary Figure 1. (C) Scatterplots represent mean ± SEM of GC-Tfh and Tfh cell percentages and numbers. (D) Overlaid histograms show Akt and S6
phosphorylation in CD4+TCRb+Foxp3- naïve and GC-Tfh cells. (E) Scatterplots represent mean ± SEM of mean fluorescence intensity (MFI) of phosphor-Akt and –S6
in CD4+TCRb+Foxp3- T cell populations. (F) Overlaid histograms show 2-NBDG uptake in GC-Tfh cells. (G) Scatterplots represent mean ± SEM of 2-NBDG MFI in
CD4+TCRb+Foxp3- T cell populations. (H) Overlaid histograms show Bcl6 and ICOS levels in GC-Tfh cells. (I) Scatterplots represent mean ± SEM of Bcl6 and ICOS MFI
in GC-Tfh cells. (J) Scatterplots show percentages and numbers of B220+ B cells. (K) Scatterplots show mean ± SEM of percentages and numbers of indicated B cell
populations. (L) Representative dot-plots show GL7 and Fas staining in gated CD93-B220+ B cells. (M) Scatterplots represent mean ± SEM of GC-B cell percentages
and numbers. Data represent or are pooled from 3–6 experiments. *p < 0.05; **p < 0.01, ***p < 0.001 determined by a pairwise two-tailed Student t-test.
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WT and CD45.2+ Tsc1f/f-Cd4Cre (WT/KO) BM cells at a 1:1
ratio. Six – eight weeks after reconstitution, WT/KO mice
displayed enlarged spleens with increased total cell numbers
compared with WT/WT mice (Figure 2A). Moreover, both CD4
Frontiers in Immunology | www.frontiersin.org 5
T cell and B cell but not CD8 T cell numbers were increased in
WT/KO mice (Figure 2B). Foxp3- CD4 T cells in WT/KO mice
had increased Tfh and GC-Tfh cell percentages and numbers
(Figures 2C, D), accompanying increased GC B cells in both
A

E
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J

H

B C D

FIGURE 2 | Intrinsic and extrinsic control of Tfh cell differentiation by Tsc1. CD45.1+CD45.2+ WT recipient mice were lethally irradiated (1,000 g) and intravenously
injected with a mixture of BM cells of either CD45.1+ WT and CD45.2+ WT (WT/WT) or CD45.1+ WT and CD45.2+ Tsc1f/f-Cd4Cre (WT/KO) BM cells at 1:1 ratio.
Splenocytes in recipient mice were analyzed 6–8 weeks later. (A) Total spleen cell numbers. (B) Total CD4 and CD8 T cell and B cell numbers. (C) Representative
contour-plots of CXCR5 and PD1 staining in gated CD4+TCRb+Foxp3-T-cells. (D) Scatterplots represent mean ± SEM of GC-Tfh and Tfh cell percentages and
numbers. (E) Representative dot-plots show GL7 staining in gated CD93-B220+ B cells. (F) Scatterplots represent mean ± SEM of GC-B cell percentages and
numbers. (G) Representative contour-plots of CD45.1 and CD45.2 staining in gated CD4+TCRb+Foxp3- T (Tcon) cells. (H) Scatterplots show CD45.1+CD45.2-

and CD45.1-CD45.2+ CD4 T cell percentages. (I) Representative contour-plots of CXCR5 and PD1 staining in gated CD45.1+CD45.2- and CD45.1-CD45.2+

CD4+TCRb+Foxp3- T-cells. (J) Scatterplots represent mean ± SEM of CD45.1+CD45.2- and CD45.1-CD45.2+ GC-Tfh and Tfh cell percentages and numbers. Data
represent or are pooled from three experiments. *p < 0.05; **p < 0.01, ***p < 0.001 determined by an unpaired two-tailed Student t-test.
April 2021 | Volume 12 | Article 620437
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percentages and numbers (Figures 2E, F). Further analyses of
CD45.1+CD45.2- (CD45.1+) WT and CD45.1-CD45.2+

(CD45.2+, WT or Tsc1-T-KO) Foxp3- CD4 T cells did not
show significant differences between the ratios of CD45.1+ WT
and CD45.2+ WT or Tsc1-T-KO Foxp3- CD4 T cells in the
chimeric mice (Figures 2G, H). Although CD45.2+ Tsc1-T-KO
CD4 T cell percentages displayed a decreased trend compared
with CD45.1+ WT CD4 T cells in the WT/KO mice, such
differences were not statistically significant. Interestingly, both
CD45.1+ WT and CD45.2+ Tsc1-T-KO Foxp3- CD4 T cells had
similarly increased Tfh and GC-Tfh cells in WT/KO mice
compared with WT/WT mice (Figures 2I, J). The increases of
CD45.1+CD45.2- WT Tfh cells in WT/KO mixed chimeric mice
were likely caused by positive feedback mechanisms from
increased GC-B cells and/or by changes in the local
environment caused by Tsc1-deficient CD4 T cells to favor Tfh
differentiation. Together, these data suggest that Tsc1 exerted
Frontiers in Immunology | www.frontiersin.org 6
dual roles in inhibiting Tfh cell differentiation. On the one hand,
it intrinsically inhibited Tfh cell differentiation. On the other
hand, it extrinsically inhibited the bystander Tfh cell
differentiation of neighboring CD4 T cells.
Tsc1 Deficiency Resulted in Abnormal Tfh
Cell Properties
To examine how Tsc1 deficiency increased GC-Tfh cells, we
examined GC-Tfh cell proliferation and survival in the mixed
BM chimeric mice. Both CD45.1+ WT and CD45.2+ Tsc1-T-KO
GC-Tfh cells in WT/KO mice and WT/WT mice expressed
similar levels of Ki67, a marker of cell proliferation (Figure
3A) and showed a similar death rate (Figure 3B), suggesting that
increased GC-Tfh cells in WT/KO mice was not due to increased
proliferation or improved survival. Within CD45.2+ Tsc1-T-KO
GC-Tfh cells, Bcl6, cMaf, ICOS, and SLAM levels increased
A

D

E F

B C

FIGURE 3 | Increased expression of Tfh cell promoting molecules in Tsc1-deficient GC-Tfh cells. Splenocytes in the mixed BM chimeric mice shown in Figure 2
were analyzed. (A) Scatterplots represent mean ± SEM of Ki67+ cells in CD45.1+CD45.2- and CD45.1-CD45.2+ GC-Tfh cells. (B) Scatterplot represents mean ±
SEM of survival and death rates of Tfh cells. (C) Overlaid histograms show Bcl6, cMaf, ICOS, and SLAM levels in GC-Tfh and non-GC-Tfh cells. (D) Scatterplots
represent mean ± SEM of MFI of Bcl6, cMaf, ICOS, and SLAM in GC-Tfh and non-GC-Tfh cells. (E) Overlaid histograms show ICAM1 and SLAM levels in GC-B
cells. (F) Scatterplots represent mean ± SEM of MFI of ICAM1 and SLAM levels in GC-B cells. Data represent or are pooled from three experiments. *p < 0.05;
**p < 0.01 determined by an unpaired two-tailed Student t-test.
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(Figures 3C, D). Because these molecules promote Tfh cell
differentiation and/or function (21, 58–60), Tsc1 may
negat ive ly control Tfh cel l d i fferent iat ion via the
downregulating expression of these molecules. Interestingly,
GC-B cells in WT/KO mice expressed higher levels of ICAM1
and SLAM than those in WT/WT mice (Figures 3E, F). Because
ICAM1 interacts with LFA1 expressed on T cells to promote Tfh
cell differentiation (61, 62) and SLAM strengthens GC B cell-Tfh
cell interactions (63), GC-B cells with increased ICAM1 and
SLAM in WT/KO mice might have enhanced capability to
promote both Tsc1-T-KO Tfh cell and bystander WT Tfh
cell differentiation.

Elevated IgG1+ GC-B Cells and Serum
IgG1 Autoantibodies in Tsc1-Deficient
Mice
We next examined whether dysregulated Tfh/GC B cells in Tsc1-
T-KO mice would lead to altered antibodies and enhanced
autoimmunity. Tsc1-T-KO mice contained elevated serum IgG1
levels but normal serum IgG3 levels. Their IgG2b levels were
slightly decreased, but such decreases were not statistically
significant (p = 0.412, Figure 4A). Within splenic Tsc1-T-KO
GC B cells, IgG1+ class-switched cells increased but IgG2 class-
switched cells were not changed (Figures 4B, C), leading to
increased numbers of IgG1+ cells but normal numbers of
IgG2b+ cells (Figure 4C). Moreover, Tsc1-T-KO mice contained
increased anti-double strand (ds) DNA IgM and IgG1but not
IgG2b or IgG3 autoantibodies (Figure 4D). Interestingly, Tsc1-T-
KO Tfh cells expressed elevated GATA3 levels (Figure 4E) and
contained increased Bcl6hiGATA3+ Tfh2 cells (Figures 4F, G).
Thus, TSC1 deficiency appeared to cause skewing of Tfh cells
toward the Tfh2 cell sublineage, leading to elevated IgG1 class-
switched GC B cells and serum IgG1 levels and the development of
IgG1-dominant autoantibody responses.

Intrinsic and Extrinsic Regulation of Treg
and Tfr Cells by Tsc1
Regulatory T cells (Tregs), especially Tfr cells, suppress Tfh/GC
B cell differentiation and GC responses (23–25). mTOR regulates
Treg and Tfr cell differentiation and function (29, 30, 64, 65).
Although Tsc1 promotes Treg stability and function (51), its role
in Tfr cells has been unknown. In Tsc1f/f-Cd4Cre mice, the
percentages and numbers of Foxp3+ Tregs within CD4 T cells
and CXCR5+PD1+ Tfr cells within Foxp3+ Tregs were not
obviously different from WT mice (Figures 5A, B). However,
Tsc1-T-KO Tfr cells expressed increased levels of Bcl6 but
similar levels of Gata3 compared with WT Tfr cells (Figure
5C), suggesting that some properties of Tsc1-T-KO Tfr cells were
altered. Given the dysregulated Tfh/GC B cell differentiation in
Tsc1-T-KO mice, it is possible that Tsc1-deficient Tregs and Tfr
cells might be functionally impaired to suppress GC-Tfh cell and
GC B cell differentiation and/or that Tsc1-deficient GC-Tfh cells
might be resistant to Treg/Tfr cell mediated suppression. Future
studies should examine these possibilities.

Interestingly, in CD45.1+WT/CD45.2+WT (WT/WT) and
CD45.1+WT/CD45.2+ Tsc1-T-KO (WT/KO) mixed BM mice,
as described in Figure 2, Treg percentages and numbers in
Frontiers in Immunology | www.frontiersin.org 7
WT/KO mice increased compared with those in WT/WT mice
(Figure 5D). Within WT/WT chimeric mice, Treg percentages
and numbers in the CD45.2+ WT CD4 T cells and in the
CD45.1+ WT CD4 T cells were similar (Figure 5E). In
contrast, Treg percentages and numbers decreased within the
CD45.2+ Tsc1-T-KO CD4 T cells but increased within the
CD45.1+ WT CD4 T cells in WT/KO chimeric mice
(Figure 5E). Such differences were also observed when they
were compared with their counterparts in WT/WT chimeric
mice. These data suggest that Tsc1 deficiency not only
intrinsically limits Treg accumulation but also extrinsically
promotes WT Treg accumulation in a competitive setting.

Within CD4+Foxp3+ Tregs, PD1+CXCR5+ Tfr cells were
increased in WT/KO chimeric mice compared with WT/WT
chimeric mice (Figures 5F, G). Moreover, the CD45.1+ WT Tfr
cells increased, whereas the CD45.2+ Tsc1-T-KO Tfr cells
decreased in both percentages and numbers within WT/KO
chimeric mice. Such trends were also true when compared
with their counterparts in WT/WT chimeric mice (Figures
5H, I). Thus, Tsc1 deficiency intrinsically inhibits Tfr cell
differentiation/maintenance but appears to extrinsically
promote bystander WT Tfr cell differentiation/maintenance.

Impairment of Antibody Responses to
Antigen Immunization in Tsc1-Deficient
Mice
We further asked whether Tsc1 deficiency in T cells would affect
antigen-specific antibody responses after immunization. We
immunized Tsc1f/f-Cd4Cre and Tsc1f/f or Tsc1+/+-Cd4Cre
control mice with a T cell-dependent antigen NP-CGG (4-
Hydroxy-3-nitrophenylacetyl hapten conjugated to chicken
gamma globulin). In Tsc1-T-KO mice, both total and high
affinity anti-NIP IgM titers decreased on days 7, 14, and 21
after immunization; although total and high affinity anti-NIP
IgG titers displayed reduced trend, such decreases were not
statistically significant (Figure 6). Further analyses of IgG
subtypes revealed similar levels of IgG1 anti-NIP antibodies
but obviously decreased IgG2b and IgG3 anti-NIP antibodies
in Tsc1-T-KO mice compared with WT mice. Thus, TSC1
deficiency selectively impaired antigen-induced IgM, IgG2b,
and IgG3 antibody responses with IgG1 responses spared.

Impaired Tfh Cell Responses to Antigen
Immunization in Tsc1-Deficient Mice
Given the observations of increased Tfh/GC B cells in Tsc1f/f-
Cd4Cre mice in the steady state, it was surprising that antigen-
specific antibody responses were impaired in these mice. We
further examined GC-Tfh cells in these mice after NP-CGG/
alum immunization. Splenic GC-Tfh cell percentages within
CD44+ CD4 T cells decreased in Tsc1-T-KO mice compared
with WT mice after immunization (Figures 7A, B). Tsc1-T-KO
GC-Tfh cells expressed increased Bcl6 and Ki67 (Figures 7C–E),
suggesting that their decreases were not caused by reduced Bcl6
or impaired proliferation. In contrast, the death rates of Tsc1-T-
KO GC-Tfh cells and non-GC-Tfh CD4+ effector T cells were
increased 2.9- and 2.4-fold, respectively, compared with WT
controls (Figure 7F), suggesting that the increased death of
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FIGURE 4 | Elevated IgG1 humoral immunity and Tfh2 cells in Tsc1-deficient mice. (A) Serum concentrations of IgG subtypes. (B) IgG1 and IgG2b expression in
GC-B cells from spleen. (C) Scatterplots show mean ± SEM of percentages and numbers of IgG1+ and IgG2b+ cells within GC B cells. (D) Serum autoantibodies
levels detected by ELISA. (E) Overlaid histogram showed Gata3 levels in GC-Tfh and naïve CD4+TCRb+Foxp3- T cells. (F) Representative FACS plots show Gata3
and Bcl6 expression in GC-Tfh and naïve CD4+TCRb+Foxp3- T cells. (G) Scatterplots show percentages and numbers of Bcl6hiGata3+ Tfh2 cells within GC-Tfh
and naïve CD4+TCRb+Foxp3- T cells. Data shown are representative of or pooled from 2–5 experiments. *p < 0.05 determined by an unpaired (A, D) and pairwise
(C, E, G) two-tailed Student t-test.
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FIGURE 5 | Intrinsic and extrinsic regulation of Tfr cells by Tsc1. (A–C) Splenocytes from 8–10 weeks old Tsc1f/fCd4Cre and WT control mice were analyzed.
(A) Scatterplots represent mean ± SEM of Treg percentages and numbers. (B) Scatterplots represent mean ± SEM of Tfr cell percentages and numbers.
(C) Scatterplots represent mean ± SEM of Bcl6 and Gata3 MFI in Tfr cells. (D–I) Analysis of splenocytes in CD45.1+WT/CD45.2+WT (WT/WT) and
CD45.1+WT/CD45.2+ Tsc1-T-KO (WT/KO) mixed BM mice described in Figure 2. (D) Scatterplots represent mean ± SEM of Treg percentages and numbers in
WT/WT and WT/KO spleens. (E) Scatterplots represent mean ± SEM of CD45.1+ and CD45.2+ Treg percentages and numbers in WT/WT and WT/KO spleens.
(F) Representative dot-plots of CXCR5 and PD1 staining in live gated splenic CD4+TCRb+Foxp3+ Tregs in WT/WT and WT/KO mice. (G) Scatterplots represent
mean ± SEM of Tfr cell percentages and numbers in WT/WT and WT/KO spleens. (H) Representative dot-plots of CXCR5 and PD1 staining in live gated CD45.1+ or
CD45.2+ splenic Tregs in WT/WT and WT/KO mice. (I) Scatterplots represent mean ± SEM of CD45.1+ and CD45.2+ Tfr cell percentages and numbers in WT/WT
and WT/KO spleens. *p < 0.05; **p < 0.01, ***p < 0.001, ****p < 0.0001 determined by a two-tailed pairwise (A–C) and unpaired (D, E, G, I) Student t-test.
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Tsc1-deficient GC-Tfh cells might contribute to impaired GC-
Tfh cells and antibody responses after immunization.

In both GC-Tfh and non-GC-Tfh cells from Tsc1-T-KO
mice, reactive oxygen species (ROS) and iNOS levels increased,
but mitochondrial potential , as reflected by TMRM
(Tetramethylrhodamine methyl ester perchlorate) staining,
decreased (Figures 7G, H). These data suggested that increased
ROS, in the absence of Tsc1, might damage mitochondrial
Frontiers in Immunology | www.frontiersin.org 10
integrity and cause the death of GC-Tfh cells during immune
responses to antigens.
DISCUSSION

Understanding the regulation of Tfh cell differentiation is
important for developing new strategies to effectively elicit
protective immunity and improve the treatment of autoimmune
diseases. Previous reports have established the importance of Tsc1
for the tight control of mTOR in T cells to regulate multiple
aspects of T cell functions. We demonstrate here that Tsc1 also
plays differential roles in Tfh cell/GC-B cell differentiation in the
steady state and in the response to immunization.

Our data indicate that Tsc1 intrinsically inhibits GC-Tfh cell
and subsequent GC B cell differentiation and autoantibody
production in the steady state. In Tsc1-deficient mice, GC-Tfh
cells increased. Because Tsc1-deficient GC-Tfh cell proliferation
and survival is similar to WT controls, Tsc1 deficiency is likely to
augment CD4 T cell differentiation to GC-Tfh cells.

Because mTOR signaling is critical for GC-Tfh cell
differentiation via multiple mechanisms such as differentiation,
metabolism, survival, expansion, and migration (29–33) and is
involved in T cell migration (66–68), and Tsc1 negatively
controls mTORC1 signaling (30, 31, 33, 39–41, 69), Tsc1 may
negatively control GC-Tfh cell differentiation via inhibiting
mTOR signaling. Previous reports have found that PI3K/Akt
signaling and its upregulation due to reduced or deficiency of
PTEN promotes GC-Tfh cell differentiation (12, 17, 21, 70–72).
Because the Tsc1/2 complex is inhibited by the PI3K/Akt
pathway, our data are consistent with these observations and
indicate that the PI3K/Akt/mTOR pathway needs to be tightly
regulated at multiple steps for proper Tfh cell differentiation. In
Tsc1-deficient GC-Tfh cells, Icos, SLAM, cMaf, and Bcl6 are
upregulated, which may contribute to their enhanced
differentiation. Engagement of ICOS with ICOSL expressed on
B cells promotes GC-responses (73–75). Icos can signal through
the PI3K-Akt-mTOR cascade to inactivate Foxo1 and promote
Bcl6 and cMaf expression and GC-Tfh cell differentiation (12, 17,
18, 76, 77). cMaf intrinsically promotes Tfh cell differentiation
and is important for promoting IL-21 expression to enhance GC-
Tfh and GC B cell responses (12, 58, 59, 78). Although SLAM is
not critical for GC-Tfh cell differentiation, it prolongs T cell–B
cell contact for optimal Tfh cell function, especially expression of
IL-4 and GC formation (60, 63, 79). In addition to SLAM, other
SLAM family members such as CD84 and Ly108 regulate GC-
Tfh cell differentiation and GC responses (79–81); it will be
interesting to determine whether these molecules are affected by
Tsc1 deficiency.

Our data also revealed that Tsc1 is required for optimal Tfh/
GC B cell responses and antibody production to T-dependent
antigens after immunization. The impaired antibody responses
of Tsc1-T-KO mice to T-dependent antigens after immunization
suggest that the proper control of Tsc1-regulated pathways is
important for Tfh cell differentiation and function during
antigen-induced responses. Tsc1-deficient Tfh cells contain
FIGURE 6 | Impaired antigen-induced antibody responses in TSC1-deficient
mice after immunization. Tsc1f/f-Cd4Cre and control mice were immunized
with NP17-CGG in alum. Total and high affinity-anti-NIP antibodies before
immunization and 7, 14, 21 days after immunization were measured via
ELISA. Line plots show Mean ± SEM of serum concentrations of anti-NIP
antibodies. Data shown are representative of two experiments. *p < 0.05;
**p < 0.01; ***p < 0.001, ****p < 0.0001 determined by an unpaired two-tailed
Student t-test.
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increased ROS and manifested impaired mitochondrial integrity
and increased cell death. It has been reported that CD44+ Tsc1-
deficient CD4 T cells also contain high levels of ROS, and the
Frontiers in Immunology | www.frontiersin.org 11
treatment of these cells with a ROS scavenger improve their
survival (39). It is plausible that Tsc1 prevents overproduction of
ROS and subsequent mitochondrial damage to promote GC-Tfh
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H
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B C

FIGURE 7 | Impaired Tfh responses to antigen immunization in Tsc1-deficient mice. Splenocytes from Tsc1f/f-Cd4Cre and control mice 10 days after immunization
with NP17-CGG in alum were analyzed. (A) FACS plots show CXCR5 and PD1 staining in live gated CD4+TCRb+CD44+CD2L- effective T cells. (B) Bar graphs
represent mean ± SEM of GC-Tfh cell percentages. (C) Bar graphs represent mean ± SEM of MFI of Bcl6 in GC-Tfh cells. (D) Representative FACS plots show Ki67
staining in GC-Tfh and non-GC-Tfh cells. (E) Bar graphs represent the mean ± SEM of Ki67+ cells in GC-Tfh and non-GC-Tfh cells. (F) Bar graphs represent mean ±
SEM of death rates of GC-Tfh and non-GC-Tfh cells. (G, H) Overlaid histograms show staining of CM-H2DCFDA (ROS), iNOS, and TMRM in GC-Tfh and non-GC-
Tfh cells. (H) Bar graphs represent the mean ± SEM of MFI of H2DCFDA, iNOS, and TMRM in GC-Tfh and non-GC-Tfh cells. Data shown are representative of or
pooled from three experiments. *p < 0.05; **p < 0.01, determined by an unpaired two-tailed Student t-test.
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cell survival during the immune responses to antigens.
Additionally, Tsc1-deficient CD4 T cells are hyper-activated in
the steady state (39–41), and excessive stimulation upon
immunization could also contribute to impaired Tfh cell
responses. Similar to GC-Tfh cells, Tsc1-deficient CD8 T cells are
also defective in responses to microbial infection (43, 44). Of note,
Tsc1 is deleted in naïve CD4 T cells in Tsc1f/f-Cd4Cremice, and our
data do not illustrate whether a Tsc1 deficiency affects multiple
stages from T cell activation to GC-Tfh cell differentiation and
homeostasis—or selectively affects GC-Tfh cells.

Our observations that Tsc1-deficient T cells enhance the
bystander Tfh cell differentiation of WT CD4 T cells in mixed
BM chimeric mice reconstituted with WT and Tsc1f/f-Cd4Cre
BM cells are surprising and interesting because bystander Tfh
cell differentiation has not been previously noted. Although the
exact mechanisms that regulate bystander Tfh cell differentiation
remain to be illustrated, there are multiple possibilities that Tsc1-
deficient T cells, particularly Tfh cells, could cause bystander Tfh
cell differentiation. Tsc1-deficient Tfh cells could lead to increased
Tfh cell-promoting cytokines such as IL21 (82, 83) in the local
environment to enhance bystander Tfh cell differentiation. They
may also indirectly promote bystander Tfh cell differentiation via
GC-B cells (84). Increased GC-B cell numbers and potentially
altered properties associated with these B cells induced by Tsc1-
deficient Tfh cells could promote WT T cell differentiation to Tfh
cells and/or expansion of Tfh cells already generated in the steady
state. GC-B cells in the WT/Tsc1-T-KO mixed BM chimeric mice
expressed increased levels of ICAM1 and SLAM compared with
those in WT/WT mice, which could not only positively provide
feedback to Tsc1-deficient Tfh cells but also enhance WT Tfh cell
differentiation/expansion as ICAM1 engages LFA1 on T cells and
SLAM forms homodimer or heterodimer with SLAM on T cells to
promote Tfh cell differentiation (61–63). Bystander Tfh cell
differentiation could have important implications for
autoimmune diseases. It is conceivable that bystander
differentiation of self-reactive Tfh cells could occur during
immune responses against pathogens or commensal bacteria,
which could contribute to increased self-reactive Tfh cells and
subsequent GC-B cells and subsequent autoantibody production.
This hypothesis should be tested in the future.

In addition to Tfh cells, our data also indicate that Tsc1 is
involved in the intrinsic and extrinsic regulation of Tfr cells. In
Tsc1f/f-Cd4Cremice, Tsc1 is not crucial for Tfr cell accumulation
but negatively regulates Bcl6 expression. In mixed BM chimeric
mice, Tsc1-deficient Tfr cells and Tregs are less competitive
than their WT counterparts. The striking increases of WT Tregs,
and especially Tfr cells in WT/KO mice, suggest that Tsc1 may
extrinsically prevent bystander Treg and Tfr cell differentiation/
accumulation. The increases of WT Treg and Tfr cells could be a
compensatory response to the increased Tfh and GC B cells in
these mice due to changes of the local environment that promote
Frontiers in Immunology | www.frontiersin.org 12
Treg and Tfr cell differentiation or both. Additional studies are
needed to understand the mechanisms by which Tsc1
intrinsically and extrinsically regulates Tfr/Treg and Tfh/GC
B cells.
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