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Genetic and epigenetic factors are considered to be critical for host-parasite interactions.

There are limited data on the role of such factors during human infections with Ascaris

lumbricoides. Here, we describe the potential role of genetic factors as determinants of

the Th2 immune response to A. lumbricoides in Brazilian children. Stool samples were

collected from the children to detect A. lumbricoides by microscopy and peripheral blood

leukocytes (PBLs) were cultured in whole blood cultures for detection of cytokines (IL-5,

IL-10, and IL-13) in vitro. Levels of anti-A. lumbricoides IgE and IgG4 were measured in

plasma. DNA was extracted from PBLs and genotyped using Illumina 2.5 Human Omni

Beadchip. Candidate genes associated with A. lumbricoides responses were identified

and SNVs in these selected genes associated with the Th2 immune response to A.

lumbricoides. Haplotype, gene expression, and epigenetic analyses were done to identify

potential associations with Th2 immune responses. GWAS on samples from 1,189

children identifiedWSB1 as a candidate gene, and IL-21R was selected as a biologically

relevant linked gene for further analysis. Variants in WSB1 and IL21R were associated

with markers of Th2 immune responses: increased A. lumbricoides-specific IgE and

IL-5/IL-13 by PBLs from infected compared to uninfected individuals. In infected children,

WSB1 but not IL21R gene expression was suppressed and increased methylation was

observed in the WSB1 promoter region. This is the first study to show an association

between genetic variants in WSB1 and IL21R and Th2 immune responses during A.

lumbricoides infections in children. WSB1/IL21R pathways could provide a potential

target for the treatment of Th2-mediated diseases.

Keywords: Ascaris lumbricoides, immunity, polymorphism, WSB1, IL21R

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.622051
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.622051&domain=pdf&date_stamp=2021-02-22
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cavfigueiredo@gmail.com
https://doi.org/10.3389/fimmu.2021.622051
https://www.frontiersin.org/articles/10.3389/fimmu.2021.622051/full


Carneiro et al. Ascaris-Specific IgE/IgG4 and WSB1 and IL21R Genes

INTRODUCTION

A quarter of the world’s population is estimated to be infected
with soil-transmitted helminth (STH) parasites. The highest
prevalence occurs among children living in rural areas of the
tropics in conditions of poverty with limited access to treated
water and sanitation (1, 2). Among STH infections, Ascaris
lumbricoides infection is estimated to infect 820 millions causing
a significant burden of morbidity and mortality, the latter
generally being associated with intestinal obstruction (3–5).
Chronic infections in children, particularly among those with
high parasite burdens, can impair host nutrition leading to
growth stunting and diminished cognitive development (1, 6).

Ascaris lumbricoides infection induces strong Th2-type
immune responses in infected humans leading to the production
of high circulating levels of total and parasite-specific IgE,
generally targeted at larvae that undergo a phase of extra-
intestinal migration through the lungs. Th2-induced host
protective mechanisms against A. lumbricoides parasites include
eosinophil-mediated killing of larvae in the tissues, mast-cell
degranulation in the tissues and intestinal tract, and increased
intestinal mucus production through goblet-cell hyperplasia
(7, 8).

WSB1, IL21, and IL21R genes are important regulators of
the IgE response. The WSB1 gene has a role in the regulation
and maturation of the interleukin-21 receptor (IL-21R) (9). The
WSB1 gene was initially described through its relationship with
the suppressor-protein-signaling box (SOCS) cytokine family
(10, 11). The IL21R gene is constitutively expressed on T and
B lymphocytes and NK cells (12) and has effects that vary
according to the stage of cell differentiation. B cell proliferation
and differentiation into plasma cell in vitro appear to occur
via IL-21 signaling (13) and IL-21R knock-out mice have high
levels of IgE and reduced IgG1. In mice, IL-21 inhibits IgE
responses through the IL-21 receptor on B cells, triggering IL-
4-independent signaling of STAT3 (14). IL21/IL21R binding
activates STAT-3 and production of interferon-gamma by T
cells and NK cells that counteracts the effects of IL-4 on IgE
production (13). In contrast, IL-21 activates STAT-3 in human
B cells and acts synergistically with IL-4 to increase the secretion
of IgE (14). Other studies in humans have shown that IL-21 can
suppress IgE synthesis, indicating that effects of the IL-21/IL-
12R pathway on IgE production may be affected by host genetics:
genetic variants in the IL21R gene associated with IgE production
have been identified byGWAS (15, 16). IL-21Rmay have a critical
role in the control of allergic responses and helminth infections
(17, 18).

The host immune response, during the course of a helminth
infection such as A. lumbricoides, involves the induction
of complex immune responses that include protective Th2-
mediated protective mechanisms. Host genetics is likely to play
a key role in resistance and susceptibility to A. lumbricoides
(19). Loci shown to be associated with susceptibility to helminth
infection include 5q31-q33, signal transducer and transcriptional
activator 6 (STAT6) and ligase 4 (LIG4) (20–22). To date, no
genome-wide association studies have addressed the role of
host genetics in Th2 responses to A. lumbricoides infection

and limited candidate-genes studies have been done (22–24).
Recently, positive associations between epigenetic alterations
of increased histone acetylation and type 2 immune responses
including IgE have been observed among individuals infected
with A. lumbricoides (25).

In the present study, we used a variety of strategies to
study genetic determinants of the host Th2 immune response
during A. lumbricoides infection in children that included gene
discovery using a genome-wide approach and a candidate gene
approach based on the findings of the former. This was followed
by expression quantitative trait loci and epigenetic analyses to
explore how genetic variations in candidate genes are linked to
host Th2 immune response during A. lumbricoides infection.

METHODS

Characterization of the Reference
Population
This study was done among children and adolescents in the
city of Salvador, Brazil, that has a population of 2.8 millions.
The study sample has been described in detail elsewhere (2, 26,
27). Briefly, 1,445 children were recruited in early childhood
into a prospective study to measure the impact of a sanitation
program in the city of Salvador on child morbidity (28). Data
were collected from children born between 1994 and 2001, who
lived in sentinel areas of the city. Standardized questionnaires
were applied to the legal guardian of each child between 1997
and 2003 (baseline) to collect data on demographic and social
variables, as well as on the domestic environment. In 2000, fecal
samples were collected for detection of geohelminth parasites by
microscopy. The children were surveyed again in 2005 to obtain
stool and blood samples for laboratory tests and extraction of
genomic DNA.

Ethics
The Brazilian National Research Ethics Committee approved
the study protocol and informed written consent was obtained
from the legal guardian of each child/adolescent (Resolution
Number: 15895).

Blood Collection and Cell Culture
Blood samples were collected in heparinized tubes and peripheral
blood leukocytes (PBLs) were cultured in whole blood at a
dilution of 1:4 in RPMI medium (Gibco, Auckland, New
Zealand), supplemented with 10 mmol/L glutamine (Sigma-
Aldrich, St Louis, USA) and 100µg/ml gentamicin (Sigma-
Aldrich, St Louis, USA). PBLs were cultured within 6 h of
collection in the presence of A. lumbricoides antigen (10
ug/mL, endotoxin-free), pokeweed mitogen (2.5 ug/mL), or no
stimulant, in a humidified environment at 37◦C with 5% CO2 for
5 days. Supernatant fluids were harvested for 24 h (IL-10) or 5
days of cultures (IL-5 and IL-13) (2, 29).

IL-10, IL-13, and IL-5 Measurements
Concentrations of IL-5, IL-10, and IL-13 in cell culture
supernatant were measured using commercial sandwich ELISAs
following the manufacturer’s instructions (BD PharMingen, San

Frontiers in Immunology | www.frontiersin.org 2 February 2021 | Volume 12 | Article 622051

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Carneiro et al. Ascaris-Specific IgE/IgG4 and WSB1 and IL21R Genes

Diego, CA, USA). Cytokine concentrations were dichotomized
into responders and non-responders using the lowest detection
level for each cytokine. Low/high detection limits (in pg/ml)
were 15.6/500 for IL-5, 62.5/4,000 for IL-13 and 31.25/500 for
IL-10. The number of individuals evaluated for IL-5 and IL-13
production were 67 and 73, respectively.

Parasitological Analysis
Two fecal samples were collected from each child, separated by a
2-week interval, and analyzed for A. lumbricoides infection using
sedimentation (30) and Kato-Katz methods (31) as described
(21). Positive children were defined by the presence of A.
lumbricoides eggs detected by eithermethod. All positive children
were treated with appropriate anthelmintics (26).

IgE and IgG4 Anti-A. lumbricoides

Antibodies Serum Concentrations
The ImmunoCAP assay (Phadia Diagnostics AB, Uppsala,
Sweden) was used for determination of specific IgE serum
concentrations against Ascaris and positive samples had ≥0.35
kU/L of anti–A. lumbricoides IgE. Anti–A. lumbricoides IgG4 was
detected using an indirect ELISA as described previously (32).

Genotyping and Quality Control
Genotyping was performed using the Illumina BeadChip
Human Omni2.5-8 Kit (www.illumina.com), by the Consortium
EPIGEN-Brazil (https://epigen.grude.ufmg.br/). One individual
was excluded due to inconsistency between registered and genetic
sex, based on X chromosome SNVs and 61 were removed
based on kinship coefficients (≥0.1, to include second-degree
relatives) between pairs of individuals (33). SNVs excluded from
the analysis were: on X, Y and mitochondrial chromosomes;
genotyping call rate <0.98; and deviance in the Hardy-Weinberg
equilibrium with a P-value < 10−4 and Minor Allele Frequency
(MAF) <1% (34). After quality control, 1,857,191 autosomal
SNVs were included. A total of 636 individuals had detectable
values of IgE and/or IgG4 and were included in the analysis.
Linear regression was done using ln-transformed ratio of anti-
A. lumbricoides IgE to IgG4 (35). Through this genome-
wide analysis, we selected SNVs in the WSB1 gene pathway
for a candidate gene approach based on biological role in
immune response from among the top 20 hits. The closely
linked gene pathway for IL21R was selected also. Genotype
information for these two genes was extracted from the chip
at the following regions: WSB1 from 27294080 to 27315926
(location: NC_000017.11) position at chromosome 17. IL21R
from 27402162 to 27452043 (location: NC_000016.10) position
at chromosome, 16 and a candidate-gene analysis was done
for both genes. For quality control, the following filters were
applied: genotyping call rate >90%, imbalance of Hardy-
Weinberg equilibrium with P < 0.05 and the Minor Allele
Frequency (MAF) >1% (34). A total of 12 markers on WSB1
and 35 markers on IL21R were analyzed after quality control.
These data are deposited in the European Nucleotide Archive
[PRJEB9080 (ERP010139) Genomic Epidemiology of Complex
Diseases in Population-Based Brazilian Cohorts], Accession

No. EGAS00001001245, under EPIGEN Committee Controlled
Access mode.

Real-Time Quantitative Polymerase Chain
Reaction (qRT-PCR)
To evaluate the expression levels ofWSB1 and IL21R genes, RNA
was isolated from PBL cultures using RNeasy Mini Kit (Qiagen,
Hamburg, Germany) and 0.3 µg of total RNA from each sample
was reverse transcribed into cDNA using 200U of Superscript III
Reverse Transcriptase (Life Technologies, Carlsbad, CA, USA)
and 500 ng of Oligo (dT) (Life Technologies, Carlsbad, CA,
USA), as described previously (36). Pre-synthesized Taqman R©

Gene Expression Assays (Applied Biosystems, Foster City, CA,
USA) were used to amplify WSB1 (Hs00373204_m1), IL21R
(Hs00222310_m1) and β-actin (Hs01060665_g1). cDNA was
detected using QuantStudio 12K Sequence Detection System
(Applied Biosystems, Foster City, CA, USA). Each qRT-PCR
assay was performed with 10 ng of cDNA in 10 µL of Taqman-
PCR Master mix 2X (Applied Biosystems, Foster City, CA, USA)
and 1 µL of primer/probe set and purified using deionized H2O
q.s. 20 µL. Gene expression was normalized to β-actin levels.
Relative quantification was performed using the comparative
threshold cycle (11CT) method (37–39).

In silico Functional Analysis
RegulomeDB (regulomedb.org) is a database for interpretation
of regulatory variants in the human genome. It includes high-
throughput, experimental datasets fromENCODE (Encyclopedia
of DNA Elements) and other sources. A score ranging from 1 to
6 is attributed for each SNV; the lower the score, the greater the
presumed involvement in regulatory processes (40).

DNA Methylation Assessment
We used an epigenetic approach to determine the level of
methylation on the promoter region WSB1 following infection
with A. lumbricoides using OneStep qMethyl kit (Zymo
Research). Primers within the CpG rich (promoter) region
of WSB1 were: forward, 5′-CAG GCC TTT GCA ATG TTT
AGG-3′; reverse, 5′-AGC CAG CAG GTT TTA GGA AGG-
3′. Methylation percentages were obtained using 20 ng of DNA
in duplicate in test and reference reaction mixes. Reactions
were done using a QuantStudio 12K Sequence Detection System
(Applied Biosystems, Foster City, CA, USA) as follows: 2 h
37◦C; 10min 95◦C; 40 cycles 30 s 95◦C, 1min 54◦C, 1min 72◦C
followed by an dissociation stage to check specificity of PCR
products. The Ct values obtained were used to calculate 1Ct
values Ct (test) and Ct (reference). Methylation percentages were
calculated as the product of 100× 2–1Ct.

Statistical Analysis
For GWAS, linear regressions were done to evaluate the
association between SNVs and lg (anti-A. lumbricoides IgE/
anti-A. lumbricoides IgG4) using additive models. Power for
genetic association analyses depends on effects of individual
polymorphisms (depending on both allelic frequency and
associated OR/beta), sample size, and type I error. In the context
of GWAS, it is common to consider two levels of significance:
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TABLE 1 | Baseline characteristics and immunological markers of A. lumbricoides

infection among 1,189 children, stratified by A. lumbricoides infection.

Subject group

Variables Infected

(N)

% Uninfected

(N)

% P-value*

189 15.9 996 84.1

Sex

Male 106 56.1 537 53.7 0.558

Female 83 43.9 459 45.9

Age

≤5 60 31.7 379 37.9 0.133

6–7 64 33.9 348 34.8

≥8 65 34.4 269 26.9

Anti-A. lumbricoides

IgE 134 70.9 458 45.8 <0.001

IgG4 65 34.4 126 12.6 <0.001

Cytokine production by A. lumbricoides-stimulated peripheral blood

cells#

IL-5 36 19.0 95 9.5 <0.001

IL-13 41 21.7 185 18.5 0.589

IL-10 13 6.9 36 3.6 0.082

*P-values were derived using the chi-squared-test.
#Percentage of responders children for each cytokine evaluated. Responders were

defined as those children with cytokine concentrations above the lower detection limits

for IL-5 (>15.63 pg/mL), IL-13 (>62.5 pg/mL), and IL-10 (>31.25 pg/mL).

a more stringent level such as 5 × 10−8 which may allow a
conclusion of statistical significance, and a less stringent level
such as 1 × 10−5 to identify potentially suggestive associations.
Using an additive model and a type I error of 1 × 10−5, our
sample of 996 uninfected and 189 infected children had a
power of 80% to detect a polymorphism with beta of 0.3 and
frequency >0.15. The statistical power calculation was done
using Quanto software (v1.2.4). Models were controlled for
confounding by population stratification by inclusion of the first
three components of a principal components analysis (PCA)
of ancestry informative markers (AIMs) as described (41). In
addition, the genomic inflation factor (λ) was estimated to
visualize and avoid inflated test statistics (42). Quantile-quantile
(Q-Q) plots were used to evaluate the overall significance of
the genome-wide association results (Supplementary Figure 2).
Associations between polymorphisms in WSB1 or IL21R and
A. lumbricoides infection, and IL-5, IL-13, and IL-10 cytokine
production by PBLs stimulated with A. lumbricoides and anti-A.
lumbricoides IgE and IgG4 were done using logistic regression
model in which multivariate models were adjusted for sex,
age, and ancestry (first 2 components of PCA analysis of
AIMs). Principal components (PC1 and PC2) have categorized
individuals according to their ethnic characteristics. Additive
models were used in all analyses. Adaptive permutations were
also done in adjusted and unadjusted analyses. A computationally
intensive procedure based on 1,000,000 permutations was used to
estimate the statistical significance of multiple correlation tests in
the genetic association analysis (43). Haplotype and genetic risk

score analysis were performed using SNPStats program (https://
www.snpstats.net/start.htm) (44). Linkage disequilibrium
(LD) analysis was done for selected SNVs. Haploview 4.2
software was used to calculate the degree of confidence in the
R2-value. Mann-Whitney or Kruskal-Wallis-tests were used
to compare continuous variables and the Chi-squared-test
to compare frequencies of categorical variables. Except as
specified for GWAS, statistical significance was inferred by P <

0.05. Statistical analyses were done using PLINK 1.9 software
(www.cog-genomics.org/plink/1.9/), R Statistical Software
(Foundation for Statistical Computing, Vienna, Austria), and
Prism software version 6 (GraphPad Inc., San Diego, CA).

RESULTS

Characteristics of the Study Population
Of 1,246 children eligible, 61 did not have stool data for A.
lumbricoides infection and were excluded from the analysis,
leaving 1,189 (996 non-infected and 189 A. lumbricoides
infected) children with complete data. Baseline characteristics
of the analysis sample are shown in Table 1. Levels of anti-A.
lumbricoides IgE and IgG4, and levels of IL-5 produced by A.
lumbricoides-stimulated PBLs were greater among infected than
non-infected children (P < 0.001).

Genome Wide Association Study for SNVs
Linked to Parasite-Specific IgE/IgG4
Responses
The Manhattan plot for the genome wide analysis of SNVs
associated with anti-A. lumbricoides IgE/IgG4 are shown in
Figure 1 and the top 20 SNVs identified are listed in Table 2

with results of a mapping analysis for these provided in
Supplementary Table 1. Among identified SNVs, rs7212516
(Beta: 0.33, CI: 0.18–0.47, P = 6.675 × 10−06), is an intronic
variant located in the WSB1 (WD repeat and SOCS box
containing 1) gene and plays an important role in IgE
production (9). Further analyses were focused on WSB1 and
the linked gene, IL21R. In addition, SNV rs3093406 in IL21R
was significantly associated with IgE/IgG4 ratio in GWAS (P
= 0.0222).

Using log-transformed anti-A. lumbricoides IgE and IgG4
as continuous variables: IgG4 was associated with immune
response genes such as PRKCA (a kinase that participates
in macrophage differentiation induced by macrophage colony-
stimulating factor) (P-values ranging 10−5 and 10−6); and
continuous IgE was associated with several genes including
NKAI2, a sodium-potassium transporter ATPase in T cells (P-
values ranging 10−5 to 10−6).

Associations Between WSB1 and IL21R

Variants and Parameters of Host Immune
Response to A. lumbricoides
The associations between 12 variants inWSB1 and infection with
A. lumbricoides and the host immune response to the parasite
were studied (Table 3). P-values refer to the permutational
test. With respect to levels of anti-A. lumbricoides specific IgE,
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FIGURE 1 | Manhattan plot for genome-wide association with anti-A. lumbricoide IgE/IgG4 ratio for 636 subjects. Each single nucleotide variants (SNVs) was tested

for association by linear regression using an additive regression model, adjusted for ancestry markers. The red line indicates genome-wide significance (p = 5 × 10−8)

and blue line suggestive significance (P = 1 × 10−5).

TABLE 2 | The results for the 20 best hits in the genome wide association with study anti-A. lumbricoide IgE/IgG4.

Rank Chr SNV Position (bp)# Risk allele MAF Gene β (CI 95%) p

1 10 rs7912186 25602870 C 0.02 GPR158 0.75 (0.46–1.04) 4.176 × 10−07

2 16 rs4782902 82449332 C 0.47 Intergenic 0.25 (0.15–0.35) 4.89 × 10−07

3 7 rs200282924 12171197 C 0.46 Intergenic 0.23 (0.14–0.33) 6.341 × 10−07

4 9 rs77248612 120566205 A 0.02 LOC105376244 0.80 (0.49–1.12) 6.896 × 10−07

5 7 rs10251182 12171373 T 0.46 Intergenic 0.23 (0.14–0.33) 7.527 × 10−07

6 9 rs10081726 2021814 T 0.08 SMARCA2 0.40 (0.24–0.56) 8.095 × 10−07

7 9 rs12550848 2021655 T 0.08 SMARCA2 0.39 (0.23–0.55) 1.379 × 10−06

8 3 rs4645161 31977744 T 0.45 OSBPL10 0.23 (0.14–0.33) 1.795 × 10−06

9 9 rs77772209 120537157 A 0.02 Intergenic 0.73 (0.46–1.12) 2.464 × 10−06

10 8 rs77284244 108679300 A 0.03 Intergenic 0.71 (0.41–1.00) 2.771 × 10−06

11 1 rs12738424 1.5E+07 G 0.42 KAZN 0.23 (0.13–0.33) 4.084 × 10−06

12 4 rs7653904 186607977 T 0.35 SORBS2 0.23 (0.13–0.33) 4.136 × 10−06

13 16 rs1025065 82451159 T 0.46 Intergenic 0.23 (0.13–0.33) 4.37 × 10−06

14 14 rs61992474 102532899 C 0.13 Intergenic 0.30 (0.43–0.17) 4.377 × 10−06

15 17 rs7219758 25597243 G 0.13 Intergenic 0.34 (0.19–0.48) 4.91 × 10−06

16 7 rs11980827 12171659 C 0.47 Intergenic 0.21 (0.12–0.31) 5.221 × 10−06

17 3 rs6444926 170133235 T 0.12 Intergenic 0.30 (0.17–0.44) 5.788 × 10−06

18 6 rs1998219 92382995 T 0.08 CASC6 0.41 (0.23–0.59) 6.252 × 10−06

19 9 rs7018777 104794048 G 0.02 Intergenic 0.72 (0.40–1.03) 6.493 × 10−06

20 17 rs7212516 25621797 C 0.13 WSB1 0.33 (0.18–0.47) 6.675 × 10−06

Analyses were corrected for genetic ancestry.
#Genomic version GRCh37–hg19; Chr, chromosome; SNV, single nucleotide variation; MAF, Minor Allele Frequency; p, P-value.

SNVs rs7213148, and rs8065359 were positively associated, while
rs1060618 and rs9867 were negatively associated. rs9867 was
associated with lower production of IL-5 in A. lumbricoides

antigen-stimulated PBL cultures. With respect to levels of
anti-A. lumbricoides specific IgG4, rs6505199 and rs9303634
were inversely associated (rs6505199 and rs9303634 are in

Frontiers in Immunology | www.frontiersin.org 5 February 2021 | Volume 12 | Article 622051

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Carneiro et al. Ascaris-Specific IgE/IgG4 and WSB1 and IL21R Genes

TABLE 3 | Significant associations between SNVs on WSB1 and parameters of the host immune response to A. lumbricoides including specific IgE and IgG4, and IL-5

production by A. lumbricoides antigen-stimulated PBLs.

SNV MAF A1* Model OR CI 95% P-value

Anti-Ascaris lumbricoides IgE

rs7213148 0.02 T ADD 1.98 1.16–3.36 0.009

rs8065359 0.09 A ADD 1.47 1.10–1.96 0.016

rs1060618 0.36 G ADD 0.79 0.66–0.93 0.005

rs9867 0.03 A ADD 0.67 0.43–0.98 0.027

Anti-Ascaris lumbricoides IgG4

rs6505199 0.43 G ADD 0.78 0.63–0.97 0.038

rs9303634 0.43 T ADD 0.78 0.63–0.97 0.038

rs7212516 0.13 T ADD 1.39 1.01–1.90 0.034

IL-5 production in Ascaris lumbricoides-stimulated blood cell cultures

rs9867 0.03 A ADD 0.40 0.16–0.99 0.047

*A1, minor allele; SNV, single nucleotide variation; MAF, Minor Allele Frequency; OR, Odds ratio; P-value, permutacional-test.

TABLE 4 | Significant associations between SNVs on IL21R and infection with A. lumbricoides and levels of anti-Ascaris lumbricoides IgE and IgG4 and parasite antigen

induced production of IL-5 and IL-10 by PBLs.

SNV MAF A1 Model OR CI 95% P-value

Ascaris infection

rs9938401 0.48 A ADD 1.34 1.07–1.96 0.012

rs3093406 0.36 T ADD 1.82 1.12–2.96 0.018

Anti-Ascaris lumbricoides IgE

rs76678990 0.08 T ADD 0.65 0.48–0.88 0.004

rs58579343 0.21 T ADD 0.77 0.63–0.95 0.016

rs11074859 0.18 A ADD 0.77 0.62–0.95 0.017

rs4140673 0.30 T ADD 0.82 0.69–0.99 0.033

rs115350516 0.23 A ADD 1.75 1.08–2.83 0.027

Anti-Ascaris lumbricoides IgG4

rs3093412 0.33 T ADD 0.25 0.10–0.61 0.002

rs179763 0.23 C ADD 0.73 0.56–0.97 0.029

IL-10 production in Ascaris lumbricoides-stimulated blood cell cultures

rs3091236 0.21 T ADD 1.78 1.11–2.85 0.017

rs9930086 0.36 C ADD 0.55 0.34–0.89 0.019

IL-5 production in Ascaris lumbricoides-stimulated blood cell cultures

rs3093319 0.10 G ADD 1.40 1.05–1.87 0.031

rs115350516 0.03 A ADD 2.06 1.11–3.83 0.017

rs3093308 0.21 T ADD 1.40 1.03–1.89 0.025

rs77718993 0.02 T ADD 1.93 1.01–3.68 0.037

A1, minor allele; SNV, single nucleotide variation; MAF, Minor Allele Frequency; OD, Odds ratio; P-value, Permutacional-test.

total LD- see Supplementary Figure 1A) and rs7212516 was
positively associated.

Because WSB1 is functionally related to IL-21R activation,
we scanned the IL21R gene for SNVs associated to A.
lumbricoides. Table 4 shows significant associations between
IL21R polymorphisms with the presence of measured parameters
of infection and immune response to A. lumbricoides. The
SNVs rs9938401 and rs3093406 were positively associated
with a presence of active A. lumbricoides infection. SNVs
rs3093412 and rs179763 were inversely associated with levels
of anti-A. lumbricoides IgG4. Four SNVs were inversely

associated with levels of anti A. lumbricoides IgE (T allele
rs76678990; T allele rs58579343; A allele rs11074859; and T
allele rs4140673), while two SNVs were positively associated
(T allele rs3093308; A allele, rs115350516). These latter two
SNVs were associated also with higher IL-5 production by PBLs
stimulated with parasite antigens (T allele, rs3093308; A allele,
rs115350516) as were rs3093319 and rs77718993. The SNV
rs3091236 was positively associated with IL-10 production while
rs9930086 was negatively associated. A high degree of linkage
disequilibriumwas seen between rs58579343 and rs11074859 (see
Supplementary Figure 1B).
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TABLE 5 | Associations between haplotypes for rs115350516 and rs3093308 in the IL21R gene and levels of anti-A. lumbricoides IgE and IL-5 produced by A.

lumbricoides-stimulated PBLs.

Haplotype rs115350516 rs3093308 Frequency ORa (95% CI) P-value

IL-5 production in A. lumbricoides-stimulated PBLs

Reference G C 0.74 1 —

Haplotype1 G T 0.23 1.73 (1.19–2.52) 0.004

Haplotype2 A C 0.03 3.31 (1.60–6.88) 0.001

Anti-A. lumbricoides IgE

Haplotype1 A C 0.03 2.08 (1.14–3.80) 0.018

aAdjusted for gender, age, and ancestry markers; OD, Odds ratio.

FIGURE 2 | Levels (pg/ml) of IL-5 and IL-13 in A. lumbricoides infected subjects produced by parasite antigen stimulated PBLs, by allele for SNV rs3093308 in IL21R:

(A) IL-13, (B) IL-5, and (C) gene expression analysis for IL21R in PBLs (non-significant). CC, genotype CC; CT/TT, genotype CT/TT. **p < 0.01.

Haplotype analysis for IL21R SNVs rs115350516 and
rs3093308 showed that PBLs from individuals with haplotypes
GT and AC produced greater levels of IL-5 when stimulated
with parasite antigen (Table 5). Individuals with haplotype AC
produced greater levels of anti-A. lumbricoides IgE.

SNV rs3093308 in IL21R Is Associated With
Type 2 Cytokine Production
The T allele of SNV rs3093308 was associated with elevated
levels of anti-A. lumbricoides IgE and parasite antigen induced
IL-5 production, both indicators of a strong Th2 response
and potential resistance to A. lumbricoides infection (45). The
presence of one T allele of rs3093308 was associated with
higher levels of Th2 cytokines (IL-5 and IL-13, Figures 2A,B)
by mitogen-stimulated PBLs among infected individuals (P <

0.01). None of the other SNVs studied were associated with
alterations in in vitro cytokine production by infection status
(data not shown). However, IL21R gene expression by PBLs was
not significantly different between the two alleles (Figure 2C).

Expression of WSB1 and IL21R in
Ascaris-Infected and Uninfected
Individuals
Figure 3 shows the expression levels of the WSB1 and IL21R
genes in A. lumbricoides-infected and uninfected individuals.
Expression of WSB1 was lower in infected (N = 15) subjects
compared to uninfected (N = 16) subjects (P = 0.0207;
Figure 3A). No difference was observed between the two groups
for IL21R gene expression (Figure 3B).
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FIGURE 3 | Levels of WSB1 (A) and IL21R (B) gene expression in Ascaris lumbricoides- infected (N = 15) and uninfected (N = 16) subjects in peripheral blood

leukocytes. *P ≤ 0.05.

FIGURE 4 | Percentage of DNA methylation in the WSB1 promoter region in

Ascaris lumbricoides-infected (N = 9) and uninfected (N = 8) individuals (*P =

0.031, Mann-Whitney-test).

Methylation of WSB1 Promoter Region
Figure 4 shows the percent methylation of WSB1 gene in PBLs
from A. lumbricoides-infected (N = 9) and uninfected (N = 8)
individuals. Infection with A. lumbricoides was associated with
increasedWSB1methylation (P= 0.031). rs7212516 is in the first
intron (position 692 bp). The region included in the methylation
analysis is in the promoter region (position −771 bp to −443
bp) containing 14 CpG sites and 4 restriction sites (according
to NCBI, Gene ID: 26118). The other SNVs are in the position
above 6,000 bp. The amplified region for DNA methylation
was analyzed in the reference populations of the 1,000 genome
project and found 13 SNVs in that region, two of them with
a frequency >1% in Africans and African Americans (https://
www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?assm=
GCF_000001405.25). These two SNVs do not alter or create
restriction sites for the enzymes present in the OneStep qMethyl
kit (Zymo Research). In addition, none of the 13 SNVs identified

in the 1000 genomes project belong to Illumina BeadChip
Human Omni2-8-8 Kit, used here for genotyping as well.

DISCUSSION

Previous studies suggest that the balance between helminth
specific IgE and IgG4might determine resistance or susceptibility
to helminth infections, showing that levels of specific IgE have
been correlated with resistance to infection, whereas levels
of IgG4 have been associated with susceptibility (34–36). In
this manuscript, we have conducted two distinct approaches
to determine genetic markers associated with A. lumbricoides
infection. First, we conducted a GWAS for anti-A. lumbricoides
IgE/IgG4 ratio for A. lumbricoides infection in a cohort of
an admixture population to determine if there are common
genetic variants contributing to susceptibility to A. lumbricoides
infection and as a second phase, based on the GWAS pieces
of evidence, we focused our attention to WSB1/IL21R pathway,
which revealed associations with markers of exposure and
cytokine responses to A. lumbricoides. For the best of our
knowledge, these associations have never been reported before.

We did not identify any novel SNVs meeting genome-wide
significance but did identify several SNVs below the genome-
wide threshold as being of potential interest: (1) rs7912186 in
the GPR158 gene, described as being linked to plasma membrane
scaffold protein in retinal bipolar neurons, contributing to the
pathophysiology of steroid-induced ocular hypertension and
glaucoma, (46, 47) and also involved in the regulation of the pre-
frontal cortex with a potential role chronic stress and depression
(48); (2) rs10081726 and rs12550848, located in SMARCA2, that
plays a role in the development of lung cancer, hepatocellular
carcinoma and esophageal adenocarcinoma (49, 50); and (3)
rs7212516, located in the WSB1 gene on chromosome 17 that is
known to be involved in IgE regulation (9).

Previous epidemiological studies have shown inverse
associations between levels of anti-Ascaris IgE and parasite
burden with A. lumbricoides indicating a potential role for IgE in
resistance to infection (51, 52). WSB-1, a IL-21 receptor binding
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molecule, enhances the maturation of IL-21 receptor. WSB1
gene plays an important role in the regulation and maturation
of the IL21R, and both genes are important for IgE production
(9). For this reason, we included the IL21R as a gene of biological
relevance in our candidate gene analysis. There are several lines
of evidence showing that IL-21/IL-21R signaling plays a clear
role modulating Type 2 cytokines production (9, 11). Mice
deficient for IL21R had reduced airways eosinophilia in a model
of mite-induced asthma (18), and knock-out mice for IL21R
expressed higher levels of IgE and lower levels of IgG1 than
normal mice after mite antigen exposure (17).

We explored if genetic variants in WSB1/IL21R might
influence Th2-associated immune responses during A.
lumbricoides infection using immunological markers of
susceptibility and resistance to infection including production
of Th2 cytokines in vitro. Our results show that variants
in these two genes are associated with such markers of the
host Th2 response during this helminth infection. SNVs in
WSB1 (rs7213148 and rs8065359) and IL21R [rs115350516 (A
allele) and rs3093308 (T allele)] were associated with increased
production of A. lumbricoides-specific IgE (Tables 4, 5) and
could be potentially linked to greater resistance to infection. The
same two SNVs in IL21R SNVs were associated with greater
parasite antigen-induced IL-5 production that has been linked
to resistance to geohelminth infections (45). These SNVs have
not been linked previously to helminth infection or Th2-driven
inflammatory conditions.

The T allele of rs3093308 in IL21R was associated also with
increased production of Th2 cytokines (IL-5 and IL-13) by
mitogen-induced PBLs among infected compared to uninfected
children (Figures 2A,B), and the same SNV tended to increase
IL21R gene expression (Figure 2C). These findings could be
indicative of a stronger protective immune response against A.
lumbricoides infection. No previous studies have reported a role
for this SNV. In a study evaluating IL21/IL21R signaling in
murine model of intestinal inflammation, Th2 responses (IL-4
and IL-5 by CD4+ T cells) were markedly suppressed in IL21R
deficient compared to wild-type mice (53).

Our data can explain, at least in part, findings from
previous studies showing elevatedAscaris-specific IgE levels to be
associated with decreased worm burden and increased resistance
to infections with this helminth (51, 52). Other studies have
shown significant associations between locus 13q33 that includes
the genes, LIG4, ABHD13, and TNFSF13B, with Ascaris-specific
IgE levels (22, 54, 55). Thus, consistent with our findings, genetic
regulation of IgE production may play an essential role in
susceptibility to Ascaris infection.

In our population, the G and T alleles of SNVs rs6505199 and
rs9303634, respectively, in WSB1 (see Table 3), were associated
with reduced Ascaris-specific IgG4 levels. These results favor
increased production of IgE relative to IgG4, the latter known
to be a marker of susceptibility to infection (51, 56). Both
SNVs were in high linkage disequilibrium (r2 = 1.00), (see
Supplementary Figure 1A). Conversely, the T allele of SNV
rs7212516 was positively associated with Ascaris-specific IgG4
and perhaps greater susceptibility to the infection.

We also did haplotype analyses in WSB1 and IL21R genes for
anti-A. lumbricoides IL-5 and IgE production. Two SNVs IL21R

(rs115350516 and rs3093308) and their haplotypes, especially
the AC haplotype, were associated with increased production of
IL-5 by Ascaris-stimulated PBLs. This same haplotype showed
a positive association with anti-A. lumbricoides IgE levels.
Interestingly, in regression analyses these same SNVs were
associated with increased anti-A. lumbricoides IgE and IL-
5 by Ascaris-stimulated PBLs which could be linked to a
more effective protective immune response against the parasite.
Previous studies have analyzed levels of WSB1 expression in
the brain, spleen, kidney and placenta, primarily with research
focusing on cancer development (9, 57). There is no previous
study describing the role of WSB1 in helminth infections or any
other Th2-driven condition.

In our gene expression assay, theWSB1 had lower expression
levels in infected subjects when compared with non-infected
subjects (Figure 3A). This result allows us to hypothesize
that low levels of WSB1 expression in infected subjects may
be related to epigenetic regulation as we have demonstrated
increased methylation of the WSB1 promoter region in infected
individuals (Figure 4). Although cell populations within whole
blood cultures may differ between cases and controls [infected
subjects had greater total leukocyte and eosinophil counts than
uninfected subjects (data not shown)], our findings indicated
that infection was associated with greater methylation but
lower gene expression. However, further studies are required
to support a potential effect of A. lumbricoides infections on
WSB1 gene hypermethylation. Epigenetic events, such as post-
transcriptional modifications of DNA at CPG sites, regulate
gene transcription activity, thereby determining the kinetics
and final expression (58, 59). On the other hand, there was
no statistical difference in gene expression levels for the IL21R
(Figure 3B). Persistent helminth infections appear to induce
changes in DNA methylation in CD4+ cells from helminth-
infected individuals. Other epigenetic mechanisms may also be
involved in the expression of key genes in the type 2 immune
response. A study evaluated histone acetylation in individuals
exposed to A. lumbricoides found that histone acetylation levels
in IL-4 and IL-13 genes were altered by infection (25).

This study has a number of potential limitations including:
a relatively small sample size limiting power using the GWAS
genome strategy; we were unable to do a replication analysis
because of a lack of previous studies collecting data on the same
variables (e.g., anti-A. lumbricoides IgE or IgG4); and use of
whole blood cultures rather thanmore homogeneous lymphocyte
populations due to logistical issues inherent to a population-
based study such as ours (26).

Our results, therefore, provide novel mechanistic insights
into how helminth infections that affect immune response
regulation may modulate also epigenetic processes. Further
studies are needed to improve our understanding on how such
regulation may occur and the consequences for Th2-driven
inflammatory conditions.
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