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Induction of immune tolerance for solid organ and vascular composite allografts

is the Holy Grail for transplantation medicine. This would obviate the need for

life-long immunosuppression which is associated with serious adverse outcomes,

such as infections, cancers, and renal failure. Currently the most promising means of

tolerance induction is through establishing a mixed chimeric state by transplantation

of donor hematopoietic stem cells; however, with the exception of living donor renal

transplantation, the mixed chimerism approach has not achieved durable immune

tolerance on a large scale in preclinical or clinical trials with other solid organs or vascular

composite allotransplants (VCA). Ossium Health has established a bank of cryopreserved

bone marrow (BM), termed “hematopoietic progenitor cell (HPC), Marrow,” recovered

from deceased organ donor vertebral bodies. This new source for hematopoietic cell

transplant will be a valuable resource for treating hematological malignancies as well

as for inducing transplant tolerance. In addition, we have discovered and developed

a large source of mesenchymal stem (stromal) cells (MSC) tightly associated with

the vertebral body bone fragment byproduct of the HPC, Marrow recovery process.

Thus, these vertebral bone adherent MSC (vBA-MSC) are matched to the banked BM

obtained from each donor, as opposed to third-party MSC, which enhances safety and

potentially efficacy. Isolation and characterization of vBA-MSC from over 30 donors has

demonstrated that the cells are no different than traditional BM-MSC; however, their

abundance is >1,000-fold higher than obtainable from living donor BM aspirates. Based

on our own unpublished data as well as reports published by others, MSC facilitate

chimerism, especially at limiting hematopoietic stem and progenitor cell (HSPC) numbers

and increase safety by controlling and/or preventing graft-vs.-host-disease (GvHD). Thus,

vBA-MSC have the potential to facilitate mixed chimerism, promote complementary

peripheral immunomodulatory functions and increase safety of BM infusions. Both HPC,

Marrow and vBA-MSC have potential use in current VCA and solid organ transplant (SOT)
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tolerance clinical protocols that are amenable to “delayed tolerance.” Current trials with

HPC, Marrow are planned with subsequent phases to include vBA-MSC for tolerance of

both VCA and SOT.

Keywords: immune tolerance, chimerism, bone marrow, vascular composite allograft, regulatory T cells, solid

organ transplant, mesenchymal stem cells, hematopoietic stem cell

INTRODUCTION

SOT has become standard of care over the last half century,
resulting in not only a significant life extension but also an
enhancement of quality of life (QOL) for end-stage organ
failure patients (1, 2). More recently, VCA has become a life
changing procedure for patients with severe deformities due
to traumatic injury or congenital defects (3). While short-term
outcome of transplant recipients using refined conventional
immunosuppressive protocols have steadily improved, long-
term outcome for the vast majority of patients has not
changed over the last decades of experience with transplantation;
chronic rejection nearly inevitably leads to organ loss and,
depending on the transplanted organ, also to patient death
unless a retransplantation is performed (4). Ten years after
transplantation only roughly 50% of all heart, liver and kidney
and 30% of lung and intestinal grafts are still functioning1.

The continuing negative impact of chronic rejection,
combined with the severe adverse effects of conventional
immunosuppressive regimens, has spurred intense research
into new and safer strategies to prevent allograft rejection.
While chronic allograft failure is associated with more frequent
hospitalization, higher morbidity and increased health care
costs, chronic immunosuppression (IS) is linked to side effects
that range from malignancy, infection, toxicities (kidney,
central nervous system, hematopoietic system) to cardiovascular
and metabolic diseases (5–15). Medication related adverse
effects, amount of pill-intake, combined with high costs of
immunosuppressive drugs, translate to high rates of patient
non-compliance/non-adherence. In kidney transplantation,
approximately one third of all patients lose their graft due to
non-adherence making it one of the leading causes of allograft
loss (16–18). Ultimately, the most desirable outcome and
often referred to as the “Holy Grail” of transplantation is the
establishment of transplant tolerance as this would abrogate the
need for chronic IS, thereby transforming organ transplantation
from a chronic treatment to a permanent cure (19). Tolerance
in the setting of organ and tissue transplantation not only
leads to improved QOL, it also eliminates drug-related side
effects, mitigates the impact of adherence and compliance,
substantially lowers health care cost, extends organ half-life, and
thereby addresses the ongoing critical issue of organ shortages
(10, 12, 13, 20–26).

Besides tolerance regimens, various alternative strategies to
inhibit rejection are in development to replace or reduce the
need for current mainstay IS drugs. These regimens seek to
shift the balance of lymphocytes in favor of regulatory T (Treg)

1UNOS https://unos.org/data/transplant-trends/ (accessed October 27, 2020)

cells over effector/memory T (Tem) cells, as opposed to pan-
T cell inactivation with calcineurin or mTOR inhibition (27,
28). Of particular note is the increasing number of exploratory
cell-based immunoregulatory and tolerizing therapies (29–37).
One such immunomodulatory protocol that is already in
clinical use utilizes unmodified deceased donor-derived BM cell
infusion following HLA-mismatched VCA using a Campath-
based induction regimen (38). Even though, only extremely
low levels of mixed chimerism were induced, the co-infusion
of BM cells after VCA allowed for a substantial reduction
of maintenance immunosuppression to a single-agent regimen
(32). In contrast to tolerance protocols were transient or stable
mixed chimerism-mediated Treg cell expansion and central
deletion of donor-specific Tem cells aremajor drivers of tolerance
[reviewed by (33, 36)], durable tolerance in the absence of stable
mixed chimerism involves contribution of the graft to long-term
promotion of donor-specific T cell suppression/depletion (39).

The vascularized BM component of VCA has innate
immunomodulatory properties; however, this is not sufficient
to fully tolerize recipients to the highly immunogenic skin
component of the composite tissue (29–31, 34, 36, 40). Over
120 upper extremity and >40 facial transplants have been
performed worldwide with positive outcomes, demonstrating
not only the immunological feasibility but also the potential
of this revolutionary life-enhancing modality to restore lost
functionality to traumatic injury victims (41, 42). Because
reconstructive transplantation addresses a life-changing, but
not life-saving, health issue, the risks of non-myeloablative
conditioning regimens required to promotemixed chimerism are
not warranted. Thus, obtaining durable tolerance in the absence
of auxiliary mixed chimerism is a challenge inherent to all forms
of transplantation but undoubtedly greatest to VCA (43–47).

Although superficially similar in that both approaches
administer hematopoietic cells, there are fundamental differences
with respect to safety and mechanisms between the mixed
chimerism-based approaches that are currently used in clinical
trials to promote tolerance in SOT and the immunomodulatory
approach in clinical use for VCA. Induction of tolerance through
mixed chimerism necessitates non-myeloablative conditioning
in the form of irradiation (total body, total lymphoid, or
thymic irradiation), cytotoxic agents (e.g., cyclophosphamide,
fludarabine) and cell-depleting agents [e.g., ATG, rituximab; (36,
48)]. Lack of conditioning prior to BM infusion in the VCA
tolerance protocol limits chimerism to extremely rare transient
events. While cytotoxic effects of conditioning are required to
induce tolerance, this toxicity limits its use and is responsible
for associated side effects (43–47). Lack of conditioning in
immunomodulation not only decreases toxic side effects, but
also largely prevents GvHD, which is another major safety
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concern with hematopoietic stem cell transplantation (HSCT)
for SOT (49). Additional strategies to augment BM infusion-
mediated immunomodulation in the absence of conditioning
to promote mixed chimerism are currently being explored as
described below.

Clinical Experience With BM-Derived
Products for Inducing Tolerance and
Immunomodulation
Currently, there are three U.S. centers (Massachusetts General
Hospital (MGH), Stanford University, and Northwestern
University) that are investigating clinical protocols for inducing
SOT tolerance (50). The protocols have been reviewed in detail
elsewhere (36, 46, 47, 51). Each of these protocols uses a whole
or fractionated BM-derived cell transplant to induce stable or
transient mixed chimerism. In order to induce tolerance, each
of these protocols relies on non-myeloablative conditioning to
prepare the BM niche for the engraftment of donor-derived
stem cells (52). Current successes in clinical trials using these
protocols to induce tolerance of SOT through mixed chimerism
have been achieved exclusively in the setting of living donor
kidney transplantation (39). Most of the current protocols use a
preconditioning regime which is implemented days before the
transplant; only one regime exists that starts concomitantly with
the transplantation. Due to logistic constraints the procedures
are presently limited to elective living donor procedures.
However, >80% of all transplant recipients receive grafts from
deceased donors. Hence, establishing tolerance protocols for
deceased donor organ transplantation would greatly expand
the number of patients who could potentially benefit from this
life-saving procedure.

VCA grafts are invariably from deceased donors, which are
also a source of high quality BM obtained from the donor
vertebrae that can be cryopreserved for subsequent infusion (32,
53, 54). In the absence of recipient conditioning, the goal of BM
infusion following VCA is to augment chimerism inherent to the
composite graft. The protocol used at Johns Hopkins to induce
immunomodulation in VCA recipients employs cryopreserved
BM that is infused 2 weeks after transplantation. The full
complement of mechanisms involved in augmentation is not
known but at least partially involves supplementation with
regulatory cell types and may additively involve alloreactive
clonal T cell exhaustion and deletion (55).

Toward Developing Clinical Delayed
Tolerance Protocols
The achievement of immunomodulation with BM infusion that
clinically translates into significantly reduced need for IS in VCA
demonstrates that (1) harvesting and cryostorage of deceased
donor BM is feasible, (2) cryopreserved deceased donor BM
can be safely infused, and (3) delaying infusion of previously
cryopreserved deceased donor BM over a significant period
following VCA still achieves desirable biological effects. This
suggests that delayed tolerance with deceased donor SOT may
be possible.

Feasibility of delayed BMT for tolerance in SOT in fact has
been demonstrated in rodent and non-human primate models
of solid organ and vascularized composite allotransplantation
(for details see Table 1). These new protocols paved the way
for the introduction of the term “delayed tolerance” which have
the distinct advantage of allowing for a recovery period to
stabilize graft function and enable inflammation resulting from
the surgical procedure as well as ischemia reperfusion injury
upon revascularization to subside which may enhance tolerance-
promoting effects of the BMT. However, the concomitant
increased risk due to expansion of alloreactive Tem cells during
the interim must be effectively reduced, which appears feasible
in non-human primates using an anti-CD8monoclonal antibody
(67, 68). This finding opens up the potential for banking deceased
donor BM for future transplantation to promote tolerance in
current as well as future SOT recipients.

Ethical Considerations of Translation and
Commercialization of Cell Products
Cell therapies are a rapidly growing field that have the potential
to significantly impact the practice of medicine, not only in the
field of transplantation but for a wide range of diseases (69).
Despite their immense potential, cell therapies are significantly
more complex in their mode of action and due to biological
variation and differences in quality of the starting material,
not as standardized as other pharmaceutical products (70).
In addition, ethical concerns exist regarding cell and tissue
sources and especially the use of altruistically donated cells
for commercialization. Similar to the US, European regulations
make it illegal to buy or sell human cells and tissues. Yet,
it is accepted to compensate for reasonable costs that arise
for procurement, processing and storage (71, 72). Ethical and
safety concern in the early 2000s led to the implementation
of regulations by the U.S. Food and Drug Administration
and European Medicines Agency regarding cell- and tissue-
based products and therapies (73–76). These regulations ensure
strict principles of cell and tissue procurement, product
development, processing, testing, distribution, and traceability
to maintain quality and safety. However, full compliance with
all implemented regulations result in significantly increased
production costs disqualifying many products that have been
produced by single institutions (77).

Development of a Genetically Diverse Bank
of Deceased Organ Donor Bone Marrow
Deceased donor BM represents a large, untapped source
of hematopoietic stem and progenitor cells (HSPCs). As
has also been demonstrated over the last few decades with
cryopreservation of cord blood, it is well-established that BM
remains biologically active following long-term cryopreservation
(78–81). The larger volumes of HSPCs that can be recovered from
a deceased donor compared to aspiration from living donors
allow for multiple HSCT procedures or repeat infusions in cases
of graft failure. The recovered BM can be precisely packaged,
tested for quality, and cryopreserved for subsequent on-demand
use. The cryopreserved units can be stored indefinitely (82), with
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TABLE 1 | Overview on delayed tolerance protocols in small and large animal models of solid organ and vascularized composite allotransplantation.

Author Organ Year Time delay Conditioning regime Citation

NON-HUMAN PRIMATE

Yamada et al. Kidney 2012 4 months TBI, TI, Atgam, anti-CD154mAb, anti-CD8mAb (56)

Lee et al. Kidney 2013 4 months TBI, TI, Atgam, anti-CD154mAb, LFA3-Ig (57)

Tonsho et al. Lung 2015 4 months TBI, TI, Atgam, anti-CD8mAB, anti-CD154mAb, anti-IL6RmAb (58)

Tonsho et al. Heart, Heart and Kidney 2016 4 months TBI, TI, anti-thymocyte globulin, anti-CD154 mAb, anti-CD8 mAb (59)

Huh et al. Heart and Kidney 2017 2 and 4 months TBI, TI, anti-thymocyte globulin, anti-CD154 mAb, anti-CD8 mAb (60)

Hotta et al. Kidney 2018 4 months TBI, TI, Thymoglobulin, Belatacept (61)

Oura et al. Kidney and Islet 2019 4 months TBI, TI, Atgam, Belatacept, anti-CD40mAb, LFA3-Ig (62)

Lellouch et al. VCA 2020 2 and 4 months TBI, TI, Atgam, anti-CD8mAB, anti-CD154mAb, anti-IL6RmAb (63)

MOUSE

Guo et al. VCA 2019 30 days TBI, anti-Thy1.2Ab, Cyclophosphamide (64)

RAT

Chen et al. Kidney, VCA 2012 2 months TBI, anti-αβTCRmAb, anti-CD8mAb, ALS (65)

Xie et al. Liver 2017 4 weeks TBI, anti-αβTCRmAb (66)

Ig, immunoglobulin; mAb, monoclonal antibody; TBI, total body irradiation; TI, thymic irradiation; VCA, vascularized composite allotransplantation.

the advantage over living donor registries of having essentially
no attrition.

Efforts are currently underway in collaboration with the
national Organ Procurement Organization (OPO) network in
the U.S. to build the first bank of cryopreserved deceased
donor BM. The U.S. OPO network provides an existing
refined infrastructure for procuring and transporting bone tissue
recovered from deceased donors. Approximately 10,000 deceased
donor organs are recovered each year in the U.S., with a further
40,000 donations, yielding approximately 30,000 organs and over
a million tissues recovered annually2. The high numbers of bones
recovered through this system each year supports the inventory
required to establish an integrated system of bone procurement,
recovery, and transport, linked to BM processing and banking
centers. It has been demonstrated that protocols can be developed
and enforced to maintain a favorable ischemic environment from
the point of bone procurement and recovery, through cross-
country shipping, to arrival at a BM processing center (83).
Through these efforts, banking of BM product (HPC, Marrow)
for transplantation is currently underway.

Protocols for isolation of HPC, Marrow from deceased
donor vertebral bodies were based on original work at
University of Pittsburgh and optimized at Johns Hopkins
University (32, 53, 54). Those protocols formed the basis for
the now fully good manufacturing practice (GMP) compliant
process that conforms to 21 CFR Part 1271 regulations and
is tested for release in a CLIA-certified laboratory using
fully validated testing procedures. Certain improvements to
the process were made to increase throughput and enhance
reproducibility as well as the aforementioned establishment of
logistical procedures for recovery and shipment of vertebrae
across large geographic regions. Donor eligibility requirements
were established to reduce the risk of adventitious agent
transmission (health screening and serological testing) as

2unos.org/data/transplant-trends/ (accessed October 27, 2020).

well as health status incompatible with functioning BM.
Finally, cryopreservation conditions were optimized and stability
validated to ensure functionality of each HPC, Marrow unit
released for transplantation. The result is a product with high
viability, high colony forming unit potential and the ability to
stably engraft irradiated mice following primary and secondary
transplants (manuscript in preparation).

Discovery and Clinical Development of BM
Compartment Mesenchymal Stem/Stromal
Cells (MSC) Not Recovered in HPC, Marrow
Our team has identified an abundant population of MSC
associated with the vertebral body (VB) bone fragment byproduct
of HPC, Marrow recovery. These MSC remain tightly adhered
to cancellous bone fragments and can only be released by
enzymatic treatment. We have determined that these vertebral
bone adherent MSC (vBA-MSC) are identical to BM-MSC when
cultured (84). The vBA-MSC population yields roughly 2,000x
the number of viable, low passage cells from one donor compared
with MSC recovered through aspiration from iliac crests of living
donors. This bank of vBA-MSCmatched to solid organ and VCA
donors is a unique resource that overcomes limitations of using
third-party MSC by reducing the risk of introducing additional
alloantigens and, thus, lowering the risk of sensitization and
alloimmune activation (85, 86). Furthermore, the abundance
of vBA-MSC allows for generating hundreds of billions of low
passage (i.e., P2) cells, allowing multiple infusions (Figure 1).

The potent immunoregulatory properties of MSC comprise
a spectrum of secreted and cell-bound molecules that modulate
a wide array of innate and adaptive immune responses. The
multifacetedmechanisms ofMSC immunomodulation have been
detailed in numerous reviews and, therefore, will only be briefly
introduced here. TheMSC secretome includes both freely soluble
factors as well as those encapsulated by extracellular vesicles.
Mechanisms include metabolic inhibition (e.g., indoleamine-
pyrrole 2,3 dioxygenase; IDO), immunomodulatory cytokines
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FIGURE 1 | Comparison of total numbers of low passage MSC obtained from

living and diseased donor BM. Sources were deceased donor vBA-MSC (DD

vBA-MSC) and deceased donor whole BM (DD wBM) and live donor aspirated

whole BM (LD wBM). Yields were calculated based on pilot manufacturing

runs with either 3 (wBM sources) or 7 (vBA-MSC) donors for each. Averages ±

SD shown.

(e.g., transforming growth factor-β ; TGF-β), and checkpoint
inhibitors (e.g., programmed death ligand 1; PD-L1). These
myriad factors inhibit T cell activation and proliferation, as well
as enhance proliferation of regulatory cells (85–88).

Preclinical studies have demonstrated the therapeutic
potential of MSC for inducing operational tolerance of SOT
and VCA (89–102), providing proof-of-principle for clinical
testing in the transplant setting (100, 103–108). The effect of
MSC infusion, including in humans and non-human primates,
is to skew the T cell population in favor of Treg over Tem
cells (97, 99, 109). Clinical studies of MSC-induced immune
tolerance of mismatched kidney transplants have demonstrated
safety and efficacy (103–108). In one small study of two kidney
transplant patients treated with minimal conditioning and
MSC found that levels of CD8+ Tem cells decreased without a
decrease in overall T cells (103, 106). Teff cells also demonstrated
hyporesponsiveness to alloantigen (110–112). A larger controlled
study found significantly higher levels of Tregs at 30 days in
the MSC treated cohort compared to the control group (109).
Thus, MSC beneficially modulate the ratio of Treg/Tem cells to
prevent rejection.

In addition to potentially facilitating graft survival through
ameliorating alloreactivity, MSC have demonstrated considerable
potential for suppressing GvHD which could be an unintended
consequence of SCT to induce tolerance (33, 46, 111, 113–126). In
fact, based on a wealth of clinical data, MSC are approved in some
countries for the treatment of steroid refractory GvHD and there
are strong indications that the cells could be used for prophylaxis
(121, 127–131). This potent immunomodulatory function of
MSC could mitigate the risk of immune tolerance protocols that
promote development of GvHD. However, evidence suggests that
this function of the cells is dependent on minimal passaging of
the cells, with over-expanded cells losing the ability to modulate
acute GvHD (132, 133). The large depot of donor-matched vBA-
MSCs facilitates minimal expansion to achieve doses required for
treatment in humans (Figure 1).

FIGURE 2 | Human MSC promote chimerism of limiting doses of congenic

murine bone marrow cells. Lethally gamma-irradiated (875 cGy) C57Bl/6

(CD45.2+) mice were 24 h later with either saline vehicle or one of three doses

of whole bone marrow (WBM) isolated from congenic BoyJ (CD45.1+) mice.

The WBM doses were either 2 × 104, 4 × 104 or 1 × 105 total nucleated cells

(TNC). At 24 and 72 h after irradiation, some groups of mice were also injected

with human vBA-MSC (passage 2) at a dose of 1 × 106. Bone marrow was

collected from mice surviving 30 days and analyzed for the level of chimerism

by flow cytometric analysis with antibodies specific for CD45.1 and CD45.2

surface proteins. The percentage of CD45.1+ chimerism for individual mice in

each group is indicated as well as the average per group (horizontal gray line).

P-values were determined by Student’s t-Test.

Another mechanism to minimize the risk of GvHD is titrating
down the HSPC graft to a minimal efficacious dose, which
correspondingly reduces the donor T cell load. MSCs have been
reported to facilitate and enhance engraftment of allogeneic
HSPC clinically, even after initial graft failure and rejection of
conventional stem-cell grafts (134). Preclinical studies suggest
that MSCs enhance mixed chimerism when co-infused with
HSPC (135) by migrating to the BM stroma to help establish
a favorable micro-environment within the hematopoietic niche
(136). This appears to minimize the number of HSPC required
for transplantation (137, 138). We have confirmed these findings
with vBA-MSC in irradiated non-immunocompromised mice
treated with limiting dilutions of congenic whole BM with and
without co-infusion, followed by a second dose at 48 h, of human
vBA-MSC (Figure 2).

Besides GvHD, engraftment syndrome (ES) that occurs in
7–90% of cases during neutrophil recovery after autologous
and allogeneic HSCT poses a potential limitation (139). It
is associated with fever, pulmonary vascular leak, rash, and
organ dysfunction and has also been described in combined
HLA-haploidentical BM and kidney transplant recipients.
In the described cases, ES manifested not only with fever
and fluid retentions but also with a marked acute kidney injury
(140), prompting speculations on an increased susceptibility with
freshly transplanted kidney grafts, especially in combination with
CNI treatment (141). Even though the exact pathophysiology
is unclear, ES is thought to be mediated by endothelial cell
injury, activated leukocytes, and proinflammatory cytokines.
The inflammatory nature of ES is underlined by the good
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response to treatment with corticosteroids (141, 142). As
vBA-MSCs have strong anti-inflammatory, antioxidative,
and immunomodulatory properties, co-administration could
potentially mitigate the risk or severity of ES after HSCT (143–
145). Thus, the combination of promoting BM chimerism and
the immunomodulatory functions of MSC suggest that their use
as an adjuvant to BM transplants will safely enhance induction
of immune tolerance.

Potential for Incorporating Deceased
Donor BM and vBA-MSC Into Current
Tolerance Protocols
Each of the current protocols for inducing tolerance in VCA
and SOT lend themselves to deceased donor BM augmentation
and BMT, respectively, with modification to accommodate donor
availability. Inclusion of vBA-MSC either prophylactically or
to treat GvHD is possible. Following BM isolation and quality
control testing, HPC, Marrow would be cryogenically preserved
until shipping under the same conditions for infusion into the
patient 14 days following surgery, as described previously (32).
Simultaneously, vBA-MSC could be prepared from the bone
fragments and expanded before cryopreservation and shipping
with HPC, Marrow.

In regard to SOT, the MGH delayed tolerance protocol
appears to be the most easily adaptable to HPC, Marrow,
providing that encouraging results in NHP and early clinical
trials in humans are repeated in future larger clinical trials (56–
58, 61, 62, 68, 146–148). Transplantation at 4 months following
SOT would allow more than enough time to prepare, qualify and
store HPC, Marrow as well as expanded vBA-MSC. It is well-
established that cryopreservation preserves cellular function for
decades so long as proper controls are implemented to prevent
transient warming events (82).

The Stanford protocol, which relies on an infusion of a
mixture of isolated mobilized peripheral blood-derived CD34+
and T cells could in theory be adapted to using HPC, Marrow
for selection of these cells (49, 149). The amount of HPC,
Marrow typically recovered from a full donor contains hundreds
of millions of CD34+ cell (53, 54, 83). We have adapted CD34
selection methods to develop a GMP process that has yielded
an average of 125 × 106 CD34+ cells from HPC, Marrow
recovered from three donors. Importantly, these methods can
be used on either freshly isolated or previously cryopreserved
HPC, Marrow; thus, providing flexibility in cell production.
The Stanford protocol infuses cryopreserved selected cells at
11 days after kidney transplant which would provide sufficient
time to prepare HPC, Marrow as well as over a billion very
early passage GMP vBA-MSC (Figure 1). Given that MSC are
commonly dosed at 1 × 106/kg, this would provide more than
adequate vBA-MSC for co-infusion as well as any additional
dosing if further expansion was not feasible. A company, Medeor,
has been established to demonstrate commercial potential of the
Stanford protocol and, according to their website3, a delayed
tolerance protocol for living donor kidney transplantation is in

3https://www.medeortx.com/our-pipeline.php/ (accessed October 27, 2020).

development. As of yet, efficacy has not been established using
this protocol with deceased donor kidney transplants.

The Northwestern tolerance protocol for kidney
transplantation differs by the use of full body non-myeloablative
conditioning with the goal of promoting full chimerism rather
than transient (i.e., MGH protocol) or durable (i.e., Stanford
protocol) mixed chimerism (150–154). The protocol uses an
engineered cell source, termed facilitating cells (FC), derived
from kidney donor mobilized blood collected at least 2 weeks
prior to transplant combined with HSPC to promote chimerism
(155, 156). Providing the protocol is amenable to a delayed
tolerance approach, deceased donor HPC, Marrow could
offer a distinct advantage for manufacture of FC given the
high abundance of BM cells available and the enhanced time
provided for manufacture and testing. To this end, we have
demonstrated that HPC, Marrow is amenable to manipulation
using a CliniMACS system (Miltenyi Biotec). As GvHD appears
to be a concern with this protocol, infusion of low passage
vBA-MSC could be advantageous.

Limitations of Current Tolerance Protocols
Despite clinical realization of tolerance and preclinical evidence
supporting the feasibility of delayed tolerance protocols as
outlined above, tolerance induction is still limited to a few
highly specialized centers (47). Widespread adoption is currently
hindered by the risks associated with complex recipient
conditioning regimes which have a variety of toxic side effects.
The most promising strategy of tolerance induction thus far is
the mixed chimerism approach, however, tolerance induction
efficacy is still limited. HSCT is also associated with a risk of
GvHD, which has been observed in protocols aiming for durable
chimerism in a small number of patients (36). To overcome these
hurdles, a concerted effort of clinicians, scientists, stakeholders
(e.g., insurance companies and hospitals), and funding agencies
is crucial. In recent years, transplant tolerance has regained
attention and a variety of new agents have been identified that
have the potential to make induction regimens significantly less
toxic, reduce associated risks of GvHD, and increase efficacy.
The realization of a deceased bone marrow bank, as outlined in
this review, is another step in the process of making transplant
tolerance a clinical reality for a larger number of patients.

Conclusions and Future Perspectives
Future broad success with BM and MSC induction of
tolerance and potent immunoregulation will have profound
effects on transplant patients. Achieving immune tolerance,
in particular, will alleviate the burden of life-long IS and
associated morbidity, avoid chronic rejection, and significantly
improve overall outcomes. Furthermore, it will overcome current
compliance and adherence-based limitations that negatively
impact graft survival due to subsequent subliminal rejection and
the development of donor-specific antibodies. Tolerance and
immunoregulation will be especially impactful for patients by
increasing accessibility to transplantation and through positively
shifting the risk:benefit ratio by reducing associated long-
term risk.
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In view of these potential opportunities and substantial
benefits, the establishment of a bone marrow bank for delayed
tolerance protocols marks a crucial step in making this resource
available for present as well as future transplant patients.
The complementary treatment with vBA-MSC could further
increase safety with the added potential of enhanced efficacy.
Furthermore, the ability of vBA-MSC to promote HSPC BM
engraftment would allow lowering of HPC, Marrow doses which
effectively extends the number of patients who receive organs
from a single donor that are able to benefit from this procedure.
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