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Pathogenesis of cytokine storm is poorly understood. In this article we propose a new
mechanism and suggest innovative therapeutic avenues for its prevention. We have
reported that particles of cell-free chromatin (cfCh) that are released from the billions of
cells that die in the body everyday can illegitimately integrate into genomes of healthy cells
to trigger dsDNA breaks. The latter leads to apoptosis and/or intense activation of
inflammatory cytokines in the affected cells. We hypothesise that a similar phenomenon
of dsDNA breaks and inflammation is involved in cytokine storm. The abundant cfCh
particles that are released from dying host cells following viral/microbial invasion initiate a
cascading effect of more cell death resulting in a vicious cycle of further DNA damage,
apoptosis and hyper-inflammation which culminate in cytokine storm. We propose that
this unrelenting vicious cycle of cellular DNA damage and cytokine storm may be the
underlying cause of high mortality from severe COVID-19. We discuss results of our
preclinical studies wherein we have shown that endotoxin induced cytokine storm in mice
can be reversed by three different agents that have the ability to inactivate cfCh. These
agents may be worthy of investigation in clinical trials to reduce mortality from COVID-19.
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INTRODUCTION

Cytokine storm is a condition characterized by an overwhelming
and uncontrolled inflammation with major implications for
global health (1). Cytokine storm is a critical component of the
current COVID-19 pandemic, and is associated with severity of
the disease and high mortality (2). In the worldwide flu
pandemic of 1918, cytokine storm was a major cause of high
death rate (3). Cytokine storm has also been described in other
pandemics such as H1N1 swine flu (4), H5N1 avian flu (5) and
severe acute respiratory syndrome coronavirus (SARS-CoV) (6).
It is associated with sepsis in general which affects 48.9 million
people worldwide every year of which 11 million die (7). Death
from sepsis accounts for 19.7% of all global deaths, especially in
poorer countries of the world (7). Several experimental studies
and clinical trials have suggested that cytokine storm correlates
directly with tissue injury, DNA damage and severity of the
disease (1). In spite of intensive research, pathogenesis of the
cytokine storm remains poorly understood, hindering
development of effective therapies.
CYTOKINE STORM: SUMMARY
OF CURRENT KNOWLEDGE

The innate immune response is activated by pattern recognition
receptors (PRRs) in response to pathogen-associated molecular
patterns (PAMPs) and/or damage-associated molecular patterns
(DAMPs) (8). Activated immune response triggers intracellular
signalling cascades in immune cells leading to production of
inflammatory cytokines by various cells including macrophages,
natural killer (NK) cells, dendritic cells, T cells, mast cells,
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endothelial and epithelial cells (8–10). The immune response is
highly regulated and sequentially and temporally orchestrated
(8). However, in certain pathological conditions, a profusion of
PAMPs or DAMPs are released in response to cell death and
stress (11–15). This causes hyper-stimulation of immune cells
leading to intense secretion of inflammatory cytokines which
results in the cytokine storm (13, 14). This hyper-inflammation
triggering cytokine storm can either be in response to PAMPs
which activates pathogen-induced hyper-inflammation, or to
DAMPs which are self-molecules derived from host cells itself
triggering auto-inflammatory response. Although it is widely
accepted that these DAMPs and PAMPs are key molecules that
trigger an inflammatory response (11–15), the precise nature of
these molecules has not been characterized (16–18).

Recently, there has been a spurt of publications associating
genomic stress and DNA damage in activation of inflammation
(19–22). According to these reports, DNA that accumulates in
the cytoplasm following DNA damage and/or microbial
infection, acts as DAMPs and activates the DNA sensing
GMP-AMP synthase-stimulator of interferon genes (cGAS-
STING)-mediated pathway (19–22). The latter triggers an
innate immune response by activating pro-inflammatory
cytokines (19–22). In addition to microbial DNA and self-
DNA from the nucleus, cGAS-STING pathway is also activated
by cytosolic mitochondrial DNA (mtDNA) (23, 24). The latter
has the potential to induce inflammatory responses and organ
injuries in various diseases including cancer (25), diabetes (26),
cardiovascular diseases (27) and trauma (28). Elevated levels of
mtDNA in circulation has also been reported to be associated
with severity of sepsis (29). Recent reports have also implicated
presence of cytoplasmic chromatin fragments (CCF) in immune
activation (30–32). CCF that are pinched off from nuclei during
GRAPHICAL ABSTRACT | Schematic illustration of a vicious cycle initiated by genomic incorporation of cfCh resulting in dsDNA breaks, apoptosis, and hyper-
inflammation which culminate in cytokine storm.
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cellular senescence (33) are recognized by cGAS to stimulate an
inflammatory response via STING (30–32). However, whether
presence of DNA and/or CCF in the cytoplasm has the potential
to trigger the cytokine storm or whether some other mechanism(s)
is involved in triggering hyper-inflammation remains unknown.
Thus, although the cytokine storm has been known for more than
a century (1, 3), and much has been reported on its pathological
consequences (1, 5), the trigger for the cytokine storm continues
to remain elusive, hindering the development of effective
therapies (34). Herein we put forward the hypothesis that cell-
free chromatin (cfCh) particles (nucleosomes) released from
dying host cells may contribute to the cytokine storm.
CELL FREE CHROMATIN (cfCh)
AS A NOVEL TRIGGER FOR THE
CYTOKINE STORM

Origin and Structure of Cell-Free
Chromatin (cfCh)
Ithasbeenestimated that 109–1012 cells die in thebody,primarilyby
apoptosis, every day (35).Apoptosis is characterized bynuclear and
chromatin condensation followed by fragmentation of DNA by
endogenous nucleases, especially caspase-3 and activated DNase
(36). Although not demonstrated, it is likely that cfCh particles are
also released following other forms of cell death such as necrosis,
NETosis, pyroptosis (37). In spite of the body’s best efforts to get rid
of cfCh (38, 39), a significant amount escapes into the extracellular
compartments as well as into the blood circulation (40, 41). cfCh in
circulation are cleared by the body by several mechanisms. These
include: 1) phagocytosis by macrophages (42); 2) degradation by
DNase I present in circulation (43), and 3) liver continuously
removing cfCh resulting in a turnover half-life of 10–15 min (38,
39). Low baseline levels of cfCh in healthy individuals play a critical
role in maintaining an efficient immune environment. However,
elevatedcfCh levels as seen invarious clinical conditionsmay lead to
runaway inflammation. These conditions have included
autoimmune diseases (44), severe infections (45), trauma (46),
burns (47), deep vein thrombosis (DVT) (48), cerebral stroke
(49), malignancy (50). Increasing cfCh levels positively correlate
with age (51).

The Hypothesis
Our hypothesis is based on our recent finding that cfCh particles
that are released from the hundreds of millions of cells that die in
the body daily to enter into the blood stream can illegitimately
integrate into genomes of healthy cells to damage their DNA by
inducing dsDNA breaks (52, 53). Such events may also occur
locally following cell death in tissues with release of cfCh which
integrates into genomes of bystander cells in the neighbourhood
(53, 54). Genomic integration of cfCh can have catastrophic
consequences, especially since the DNA damage is repaired by
the error-prone non-homologous end joining (NHEJ) mechanism,
which further accentuates genomic mutations in the form of
deletions, insertions, re-arrangements and chromosomal damage
which may often cause apoptosis of the cells. The hypothesis also
Frontiers in Immunology | www.frontiersin.org 3
incorporates our recent observation that dsDNA breaks resulting
from cfCh integration leads to intense activation of inflammatory
cytokines (54, 55). Since cell death is markedly increased following
viral or bacterial invasion, we hypothesise that illegitimate
genomic integration of cfCh particles that are released from the
dying host cells trigger a vicious cycle of more dsDNA breaks,
apoptosis and hyper-inflammation which culminate in the
cytokine storm (Graphical Abstract). We propose that the
abundant cfCh that arise following viral/microbial invasion act
as DAMPs and activate systemic inflammation. This proposal is
supported by reports that circulating levels of cfCh are markedly
elevated in patients admitted to ICU with severe sepsis (34). Since
the latter is usually associated with the cytokine storm (56), it leads
to the possibility that cfCh may be an important factor that
contributes to the cytokine storm in sepsis.

Can Cell-Free DNA and/or
Free Histones Explain the
Cytokine Storm?
Cell-free DNA (cfDNA) and free histones have been shown to
have pro-inflammatory properties (57, 58). However, the immune
stimulatory effects induced individually by cfDNA and free
histones are different when compared to that induced when they
are complexed in the form of cfCh (59). Furthermore, the question
as to whether naked DNA and/or free histones are indeed present
in circulation is in doubt. Apoptotic cell death results in
chromosomal condensation and fragmentation with release of
chromatin fragments and not of cfDNA or free histones (60). The
existence of cfCh in serum and/or plasma can be easily detected by
ELISA (61), while the demonstration of cfDNA requires DNA to
be extracted from plasma/serum using Proteinase-K treatment.
Therefore, the possibility that the isolated cfDNA has, in fact, been
derived from circulating cfCh cannot be excluded. Reports of the
existence of a direct and strong correlation between circulating
cfCh and cfDNA would support such a possibility (62). Similarly,
with respect to studies reporting immune-stimulatory effects of
free histones (59, 63, 64), the methodologies used to quantify
histones did not make a distinction between free histones and cfCh
(59). Therefore, whether the latter are present in circulation also
remains unclear (59). This uncertainty may have been put to rest
by our recent observations made in relation to lipopolysaccharide
(LPS) induced sepsis in a mouse model (65). Using confocal
microscopy of histological sections of mouse vital organs after
staining with fluorescent antibodies against DNA and histone H4,
we have shown that it is cfCh, and not free DNA or histones, that
are extruded from dying host cells following LPS treatment (65).
Therefore, it is likely that cfCh, rather than cfDNA or free
histones, is the agent responsible for initiating the cytokine
storm in severe infection.

cfCh in Circulation Integrate Into Genomes
of Healthy Cells
Although existence of circulating cfCh particles has been known
since 1990 (66), whether they have any patho-physiological role to
play in the host has only recently been addressed (51, 52).
Isolation of cfCh from sera of cancer patients followed by
examination under electron microscope revealed particles of
February 2021 | Volume 12 | Article 622738
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variable sizes (~10 nm >1000 nm) having a beads-on-a-string
appearance characteristic of chromatin (52). When cfCh particles
isolated from serum where fluorescently labelled and added to
cultured mouse fibroblast cells, numerous cfCh particles could be
detected in nuclei of recipient cells within 6h (52). The up-taken
cfCh rapidly associated themselves with chromosomes of host
cells which was followed by activation of an intense DNA damage
repair response (DDR) followed by their incorporation into the
host cell genomes (52). The activated DDR proteins included
H2AX, ATR, ATM, P-p53, P-p21, MDC-1, GADD-34, RAD-50,
NIBRIN, MRE-11, DNA-PKcs and DNA ligase IV (52). In
addition, apoptotic pathway proteins namely, JC-1, cytochrome-
C and caspase 3, were also activated (52) indicating that many of
the affected cells were destined to undergo apoptotic cell death.
Next generation sequencing detected tens of thousands of DNA
reads of human origin in single cell clones developed from the
cfCh treated mouse cells; while PCR amplification revealed
presence of multiple human Alu sequences (52). cfCh
integration resulted in dsDNA breaks as indicated by activation
of H2AX which was seen both in vitro and in vivo (52). A unique
mechanism was proposed by which cfCh particles integrate
themselves into genomes of healthy cells, and which is
facilitated by premature activation of DDR (discussed below).

cfCh Released From Dying Cells Integrates
Into Genomes of Bystander Cells
We have reported that cfCh released from dying host cells can
also integrate into genomes of surrounding healthy bystander
cells (54, 55). When human cancer cells were treated with
ionizing radiation and co-cultured with mouse fibroblasts,
human DNA (cfCh) signals could be detected in the nuclei of
mouse cells by FISH (55). Confirmation that cfCh had actually
integrated into the genomes was confirmed by detection of
multiple human Alu sequences in the mouse cells (55).
Bystander uptake and genomic integration of cfCh released
from dying cells was also shown to occur in distant organs
(55). When mice were delivered focused mini-beam irradiation
(20 Gy) to the umbilical region, intense activation of H2AX,
caspase 3, NFkB and IL-6 was detected in brain cells (55).

cfCh Integrates Into the Genome by a
Unique Mechanism
How does cfCh enter the cell and integrate themselves into the
genome? Our microarray studies have revealed that pathways
related to phagocytosis are maximally up-regulated as early as at
6h in mouse fibroblast cells in response to cfCh particles that are
released from co-cultured dying Jurkat cells (54). This finding
would suggest phagocytosis or pinocytosis to be one of the
important mechanisms by which the cell ingests extraneous
cfCh. Once inside the cell, cfCh particles integrate themselves
into the genome of the host cell by a mechanism which is unique
in being the opposite of the classical model of DNA damage and
repair (52). According to the classical model of DNA damage,
DDR is activated after the DNA damage occurs in response to
agents such as ionizing and UV radiation and radiomimetic
chemicals (67). According to the proposed new model, entry of
cfCh into the cell misleads the cell into perceiving them as broken
Frontiers in Immunology | www.frontiersin.org 4
fragments of its own chromosomes containing dsDNA breaks at
both ends (52). This prompts the cell to activate a premature DDR
much before any damage to DNA having actually occurred. The
activated DDR includes repair proteins such as DNA PKc, DNA
ligase IV which link up the multiple heterogenous cfCh fragments
into concatamers of different sizes. The latter, containing a mosaic
of multiple discontinuous DNA segments in the form of
conctamers, now form new substrates for incorporation into the
genome of host cells, by non-homologous recombination (NHR).
The resulting DNA damage is repaired by the error–prone NHEJ
mechanism (68) which creates further mutations in the form
of insertions, deletions, genetic rearrangements as well as
chromosomal damage (52). Thus, paradoxically, DDR which is
supposed to protect the integrity of the genome ends up damaging
it by its premature activation. The formation of intracellular
concatamers is supported by the argument that since the
threshold for detection of FISH signals is of the order of 30–50
kilo bases (69), presence of human DNA signals in mouse cells
detected by FISH indicates that relatively long human DNA
sequences, rather than discrete cfCh particles, incorporate
themselves into the mouse cell genomes. Genomic integration
of cfCh concatemers by NHR leads to intense activation of
inflammatory cytokines (discussed below).

Genomic Integration of cfCh Leads to
Somatic Mosaicism
Illegitimate genomic integration of cfCh, derived from the
billions of cells that die in the body every day may result in
dsDNA breaks and repair by NHEJ. These damaging events
occurring repeatedly throughout life may generate multiple
genomic polymorphisms which are likely to increase with age
(53). Rapid and cumulative effects of DNA damage may exceed
the adaptive capacity of the human genome in aging populations
which leads to increased mutagenesis and development of
various diseases, including cancer. This would be in
accordance with the exploding literature fueled by advances in
Next generation sequencing on the discovery of somatic
mosaicism in healthy cells (70, 71). Somatic mosaicism is
related to aging (72), cardiovascular diseases (73), Alzheimer’s
disease (74) and cancer (75). The above discussion would suggest
that approaches to retard aging would need to take into account
accumulating dsDNA breaks that result from life-long and
repeated genomic integration of cfCh.

cfCh Integration, dsDNA Breaks, and
Activation of Inflammatory Cytokines
The aforementioned co-culture experiment of irradiated dying
cancer cells of human origin with mouse fibroblasts, led to
activation not only of H2AX but also of multiple inflammatory
cytokines (54). The latter included NFkB, IL-6, TNF-a and IFN-g,
all of which were activated simultaneously by 6h (54), and their
activation coincided with point of the maximal induction of H2AX
(6h) (54). Co-activation of dsDNA breaks and inflammatory
cytokines suggested an interrelationship between the two, which
was further substantiated by microarray analysis which revealed
activation of multiple pathways related to inflammation
concurrently with those that accompany DNA damage and cell
February 2021 | Volume 12 | Article 622738
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cycle at 6h (54). Injection of irradiated dying cancer cells pre-
labelled with BrdU intravenously into mice led to uptake and
genomic integration of BrdU labelled cfCh particles into nuclei
of vital organs accompanied by activation of H2AX (54).
Genomic integration of cfCh led to intense activation of multiple
inflammatory cytokines to include NFkB, IL-6, TNF-a and IFN-g.
These experiments made the additional novel observation that
fluorescent signals of gH2AX co-localized strictly with those of
the transcription factor NFkB in the nuclei of vital organs (54). The
inactivated form of NFkB normally remains sequestered in the
cytoplasm (76) and trans-locates to the nucleus upon activation by
stressful stimuli such as DNA damage (77). Although several
nuclear translocation sites for NFkB have been described (78), the
finding that gH2AX and NFkB fluorescence signals co-localize has
led to the proposal that, following the catastrophic event of
integration of cfCh into the genome and the consequent dsDNA
breaks, NFkB is strongly activated, followed by its translocation
from the cytoplasm to the sites of cfCh integration (79, 80). This
finding indicated that inflammation might be a direct consequence
of dsDNA breaks inflicted by integration of cfCh (80). It also
suggests that cfCh acts as a major form of DAMPs. A schematic
model to represent the relationship between cfCh induced dsDNA
breaks and inflammation is given in Figure 1.

Inactivation of cfCh Can Prevent the
Cytokine Storm
We have identified several cfCh inactivating agents that can
prevent the cytokine storm (55, 65, 81). These have included 1)
anti-histone antibody complexed nanoparticles (CNPs) which
inactivate cfCh by binding to histones; DNase I which inactivates
cfCh by degrading its DNA component; and 3) a newly described
pro-oxidant combination of the well-researched nutraceuticals
Resveratrol and metallic Copper (R-Cu) which degrades cfCh
through the medium of free radicals. We have recently reported
Frontiers in Immunology | www.frontiersin.org 5
that these cfCh inactivating/degrading agents can reverse the
cytokine storm following endotoxin sepsis, chemotherapy and
radiation therapy in mice. Details of these studies are given in the
subsequent paragraphs.

Inactivation of cfCh Can Prevent the
Cytokine Storm in Endotoxin Sepsis
The International Sepsis Forum defines sepsis as “a life-
threatening condition that arises when the body’s response to
an infection injures its own tissues and organs” (82). This
definition implies that hyper-inflammation and immune
suppression in sepsis is a result of body’s own response against
the pathogen and not due to the pathogen per se (83). We have
recently shown in an endotoxin induced sepsis model that cfCh
particles that are released from dying host cells following viral/
microbial infection may be the agents that injure the body’s own
tissues and organs that leads to sepsis - a finding which would be
consistent with the above definition of the International
Forum (65).

Several studies have reported that not only PAMPs, but also
DAMPs, are recognized by pattern recognizing receptors (PRRs)
expressed on immune-reactive cells (84–86). DAMPs are nuclear
or cytoplasmic non-microbial molecules, released from the host
cells following tissue injury which includes histones, cfDNA,
chromatin, HMGB1, etc. (86). Clinical studies have shown a
positive correlation of levels of DAMPs, especially of histones
and nucleosomes, with sepsis severity (45, 87, 88).

In our study, sepsis was induced in mice by injecting
lipopolysaccharide (LPS), a bacterial membrane antigen, which
led to extensive cell death and copious release of cfCh particles
into extracellular spaces of vital organs and into the circulation
(65) (Figure 2). cfCh particles thus released followed by their
integration into genomes of surviving cells led to extensive
dsDNA breaks and apoptosis in cells of multiple organs viz.,
lung, liver, heart, brain, kidney and small intestine (65), as well as
those of immune related organs such as thymus and spleen. cfCh
integration and dsDNA breaks led to intense activation of
inflammatory cytokines CRP, IL-6, IL-1b, TNF-a, and IFN-g
in multiple organs as well as release of these cytokines in
circulation. The extensive DNA damage also led to immune
suppression, coagulopathy, fibrinolysis, thrombocytopenia,
multi- organ failure and death. All the above pathologies could
be abrogated by administration of the cfCh inactivating agents to
mice concurrently with LPS. This data provided strong evidence
for a relationship between cfCh integration, dsDNA breaks,
cytokine storm and sepsis.
Inactivation of cfCh Can Prevent the
Cytokine Storm Associated With
Chemotherapy and
Radiation Therapy
Cancer treatments involving chemotherapy and radiation therapy
are known to trigger intense activation of pro-inflammatory
cytokines (89, 90). The latter is thought to be activated by
unidentified molecules which act as DAMPs and stimulate
immune cells to release pro-inflammatory cytokines (91).
FIGURE 1 | Schematic illustration of activation of DDR and inflammation
following illegitimate integration of cfCh into the genome.
February 2021 | Volume 12 | Article 622738
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However, the nature of these DAMPs continues to remain
unidentified (17, 92). We have shown that, as in the case of sepsis,
cfCh released from chemo- or radio therapy induced dying cells are
the elusive DAMPs. Therapy induced cell death and cfCh release
triggers a cascading effect of more cell death leading to a vicious
cycle of further rounds of DNA damage, apoptosis and
inflammation which perpetuate and amplify the toxic effects of
Frontiers in Immunology | www.frontiersin.org 6
these cancer therapies (55, 81). We have further reported that
administration of the above three cfCh inactivating agents
interrupted this vicious cycle thereby preventing the toxic effects
of cancer treatment (55, 81). This reinforces the conclusion reached
above, with respect to endotoxin sepsis, that copious release of cfCh
particles following cell death resulting from chemotherapy and
radiation therapy act as DAMPs to trigger the cytokine storm.
FIGURE 2 | DNA damage, apoptosis and inflammation in multiple organs and tissues induced by LPS can be prevented by concurrent treatment with cfCh
inactivating agents. The above parameters were estimated at 72hrs following LPS treatment by indirect immuno-fluorescence. Mean (± SEM) values between
groups were compared using non parametric one-way ANOVA (Kurskal—Wallis test) with Dunn’s multiple comparison method at the significance and confidence
level of p = 0.05. MFI = Mean fluorescence intensity. Reproduced from ref (65).
February 2021 | Volume 12 | Article 622738
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Is Cell Free Chromatin Implicated in
Pathogenesis of COVID-19?
Pathogenesis of COVID-19 is not well understood. The disease
primarily affects the lungs leading to hypoxemic respiratory
failure, secondary bacterial pneumonia and direct tissue
damage. The disease is also associated with the cytokine storm
with excessive release of inflammatory cytokines which can cause
multi-organ damage (93). The other organs that are affected
include heart, nerves, brain, vessels, kidneys and skin. We have
already alluded to the potential role of cfCh in the cytokine
storm, but, currently, literature on direct measurement of cfCh
levels in COVID-19 patients is lacking. Elevated levels of cfCh in
these patients is to be expected since sepsis forms a major
manifestations of the SARS-CoV-2 viral infection (94), and
there is abundant literature to show that cfCh levels are
elevated in sepsis (45, 87, 88, 95). As the title of current article
suggests, and discussed extensively above, the cytokine storm is a
likely consequence of DNA and cellular damage inflicted by
cfCh. We propose that cfCh induced tissue/organ damage can
not only explain the aetiology of the cytokine storm, but also
help to explain the multi-organ injury that is associated with
COVID-19 as a direct consequence of cfCh induced cellular
DNA damage.
CONCLUSION AND FUTURE PROSPECTS

In this article we have proposed that inflammation may be a direct
consequence of dsDNA breaks inflicted by genomic integration of
cfCh released from dying host cells, and that cfCh may be the key
instigators of the cytokine storm (54, 80). cfCh particles released
from dying host cells following viral/microbial infection may
trigger a cascading effect of more host cell death leading to a
vicious cycle of further rounds of DNA damage, apoptosis and
inflammation which perpetuate and amplify the pathological
effects of the offending agent culminating in the cytokine storm.
Although, currently, literature on direct measurement of cfCh
levels in COVID-19 patients is lacking, we hypothesise that the
high mortality in severe COVID-19 may be due to the cytokine
Frontiers in Immunology | www.frontiersin.org 7
storm related sepsis. The latter being perpetuated by the vicious
cycle triggered by profuse release of cfCh particles that result from
Corona virus induced cell death. The implication of such a
suggestion is that, while eliminating the virus may result in
resolution of disease in asymptomatic or early symptomatic
COVID-19 patients, once the vicious cycle sets in, elimination
of the virus may not prevent death in patients with severe disease.
Indeed, a recent study has reported that effects of the cytokine
storm can persist for a long time after the virus has been
eliminated from the body (96). Furthermore, the observation
that elderly patients and those with underlying ageing related
co-morbidities such as diabetes (97) and cardio-vascular diseases
(98) are more prone to COVID-19 related complications, may be
attributable to elevated levels of cfCh in these conditions (51, 99,
100). We propose that treatment of severe COVID-19 should
include cfCh inactivating agents to prevent death, and that these
agents are worthy of investigation in clinical trials in patients
suffering from severe COVID-19.
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