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Crohn’s disease (CD) is a chronic relapsing disorder of the gastrointestinal tract and
represents one of the main entities of inflammatory bowel disease (IBD). CD affects
genetically susceptible patients that are influenced by environmental factors and the
intestinal microbiome, which results in excessive activation of the mucosal immune
system and aberrant cytokine responses. Various studies have implicated the pro-
inflammatory cytokines IL17 and IL23 in the pathogenesis of CD. IL23 is a member of
the IL12 family of cytokines and is able to enhance and affect the expansion of pathogenic
T helper type 17 (Th17) cells through various mechanisms, including maintenance of Th17
signature genes, upregulation of effector genes or suppression of repressive factors.
Moreover, IL17 and IL23 signaling is able to induce a cascade of pro-inflammatory
molecules like TNF, IFNg, IL22, lymphotoxin, IL1b and lipopolysaccharide (LPS). Here,
IL17A and TNF are known to mediate signaling synergistically to drive expression of
inflammatory genes. Recent advances in understanding the immunopathogenetic
mechanisms underlying CD have led to the development of new biological therapies
that selectively intervene and inhibit inflammatory processes caused by pro-inflammatory
mediators like IL17 and IL23. Recently published data demonstrate that treatment with
selective IL23 inhibitors lead to markedly high response rates in the cohort of CD patients
that failed previous anti-TNF therapy. Macrophages are considered as a main source of
IL23 in the intestine and are supposed to play a key role in the molecular crosstalk with T
cell subsets and innate lymphoid cells in the gut. The following review focuses on
mechanisms, pathways and specific therapies in Crohn’s disease underlying the IL23/
IL17 pathway.

Keywords: Crohn’s disease, anti-TNF therapy, IL17/IL23 axis, intestinal immunity, inflammation, resistance to
apoptosis, non-responder
CROHN’S DISEASE

CD representing one of the major forms of inflammatory bowel diseases (IBD), is a chronic
inflammatory condition affecting the gastrointestinal tract (1). The global annual incidence of IBD is
rising and it is estimated that the incidence of IBD in European countries is 3-8.5/100,000, and as many
as 2.2 million people in Europe suffer from IBD (2). All parts of the gastrointestinal tract can be affected
whereas the terminal ileum and the colon are the most frequent localizations (3). CD is thought to be the
result of the interaction between genetic susceptibility, environmental factors and the intestinal
org March 2021 | Volume 12 | Article 6229341
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microflora causing abnormalities in mucosal immune response and
altered epithelial barrier function (1, 4). CD is associated with
significant morbidity and has a marked impact on the patient’s
quality of life as the most common symptoms include abdominal
pain, diarrhea, rectal bleeding, weight loss, fever, and fatigue. Extra-
intestinal inflammation manifests frequently in the eyes, liver, skin
and joints, reflecting the systemic nature of this debilitating disease.
Moreover, the majority of patients eventually develop penetrating
or stricturing complications leading to repeated surgeries and
disability (5, 6). The pathogenesis of CD is complex. Recent
studies have greatly improved our understanding of the
pathophysiology of CD, leading to major advances in the
treatment and diagnosis of CD (7, 8). Earlier treatment goals
focused on reducing clinical symptoms, but in the course of time
and the development of new-targeted therapies, the initial goal of
achieving clinical remission, shifted to steroid-free remission,
endoscopic remission and mucosal healing, which have all
become an integral part of successful CD treatment (9, 10). The
first class of substances approved for the treatment of CDwere anti-
TNF antibodies (infliximab, adalimumab and certolizumab pegol).
In the next few years, antibodies against the integrin alpha4beta7
(vedolizumab) and interleukin 12 (IL12) and interleukin 23 (IL23)
through their common p40 subunit (ustekinumab) have been
approved for CD therapy (11, 12). Moreover, recently published
data demonstrate that the treatment with the selective IL23p19
inhibitors risankizumab or brazikumab leads to high response rates
in CD patients that did not respond to previous anti-TNF therapy
(13, 14). Although the aforementioned-targeted therapies have
achieved great clinical success, it was found that only a subgroup
of CD patients benefit from these treatments. In addition, there are
currently no clinically compatible predictive biomarkers for
individual guidance of drug therapy. Therefore, it is of utmost
clinical importance to gain a deeper understanding of the respective
modes of action of each therapeutic substance class to ensure that
each patient is provided with the most effective and appropriate
therapy (15, 16).
IL23 SIGNALING

IL23 is a heterodimer cytokine consisting of the p40 subunit
(shared with IL12) and the unique p19 subunit (IL23A) encoded
by the IL23 gene (17). IL23 belongs to the IL12 cytokine family
whereas the human p19 is a four alpha-helix protein with 70%
similarity to its mouse orthologue (18). The heterodimer
cytokine IL12 is built by the two subunits p40 (shared with
IL23) and p35. IL23 signals through its heterodimeric receptor
complex consisting of the two subunits IL12Rb1 and IL23R,
while IL12 signals through its heterodimeric receptor complex
consisting of the two subunits IL12Rb1 and IL12Rb2. The shared
p40 subunit of IL12 and IL23 signals through IL12Rb1 whereas
the unique subunit IL23p19 signals through IL23R and the
unique IL12p35 interacts with IL12Rb2 (19) (Figure 1).

IL23 binding to its receptor activates Janus kinase 2 (jak2) and
tyrosine kinase 2 (tyk2), which then phosphorylates the receptor
to form a docking site leading to the subsequent phosphorylation
Frontiers in Immunology | www.frontiersin.org 2
of signal transducer and activator of transcription 3 (STAT3) for
the p19 subunit and STAT4 for the p40 subunit. The initiation of
IL23R signaling leads to the activation of several pathways, which
are centrally involved in the pathogenesis of CD, for example P38
MAPK, PI3K-Akt or the NFкB pathway. This activation leads to
the release of CD associated cytokines like IL17A, IL17F or IL22
(20–22) (Figure 1).
IL23 IN CROHN’S DISEASE

Different studies have shown that a multitude of cytokines play an
important role in the development and perpetuation of CD. It has
been proven that IL23 in particular is mainly involved in the
pathogenesis of CD (23, 24). Genome-wide association study
(GWAS) have analyzed the polymorphism in the gene encoding
IL23R and linked it to the pathogenesis of IBD, indicating the
important role of IL23 in mucosal inflammation. In addition, the
elevated levels of IL23 in the mucosa of CD patients further
emphasizes its key role in the pathogenesis of IBD (25). IL23 is
mainly expressed by CD14+ intestinal macrophages that are key
players in mediating the perpetuation of inflammation by
infiltrating into the inflamed intestine in CD patients (26–28).
Dendritic cells and epithelial cells were also shown to produce IL23
(29). This is supported by a recently published study showing that
mucosal TNFR2-expressing CD4+ T cells circumvent anti-TNF-
induced apoptosis by coexpressing IL23R, which is activated by the
upregulated IL23 production of mucosal CD14+ macrophages.
Here, IL23 caused the activation of pSTAT3 in CD4+ mucosal T
cells, which results in resistance to apoptotic signals. The activated
T cells are characterized by the release of high amounts of Th1 and
Th17 cytokines. These TNFR2+IL23R+T cells expand and
accumulate in the mucosa of anti-TNF-refractory CD patients,
where they perpetuate chronic intestinal inflammation (28)
(Figure 2). These data imply that anti-TNF resistant patients
could benefit from therapies specifically targeting IL23.
THE ROLE OF IL23 IN THE
DEVELOPMENT OF TH17 CELLS

CD4+ helper T cells are pivotal players in the pathogenesis of CD
and, depending on the cytokine milieu, differentiate into
regulatory and effector T cells i.e. Th1, Th2, Th17, follicular
helper T cells (Tfh) and regulatory T-cells (Tregs). Until the
discovery of other T cell lineages, Th1 and Th2 were longtime
considered to be the only cells arising from progenitor CD4+
helper T cells (30). The Th1/Th2 paradigm offered a framework
for understanding the pathogenesis of IBD and several other
chronic inflammatory diseases. However, the distinguishing
proof of Th17 cells has greatly extended the understanding of
autoimmunity and inflammation and provided missing scientific
links that could not be solely explained by Th1 and Th2 cells.
Specific signal transduction mechanisms, several transcription
factors and milieu specific cytokine patterns are responsible for
the polarization of progenitor CD4+ helper cells (31). Distinct
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from the development of Th1 and Th2 cell lineages, Th17 cell
differentiation is prompted by the synergistic work of STAT3 and
the transcription factor retinoid acid related-orphan nuclear
receptor gamma (RORgt). The activation of RORgt causes the
expression of IL17 and IL23 receptor (IL23R), leading to the
production of IL23 by various immune cells, like dendritic cells
or monocytes/macrophages, which in return increases the
expression of RORgt and IL17 via STAT3 (32). The IL23R is
absent on naïve CD4+ helper T cells leading to the idea that IL23
alone is not able to induce Th17 cell development. Indeed, it was
shown that IL23 is especially important for maintenance and
expansion of the Th17 lineage via a positive feedback loop that
upregulates IL17, RORgt, TNF, IL1 and IL6. This positive
feedback is centrally involved in the expansion of pathogenic
pro inflammatory Th17 cells in CD (33–35) (Figure 3).
TH17 CELLS AND IL17 IN THE
PATHOGENESIS OF CROHN’S DISEASE

The IL17 cytokine family consists of six ligands, IL17A to IL17F
and is the key cytokine produced by Th17 cells. Besides IL17, Th17
cells also produce IL21, IL22, IFNg and TNF (36). The discovery of
Frontiers in Immunology | www.frontiersin.org 3
the IL23/Th17 pathway paved the way for a better and deeper
understanding of the pathogenesis of CD and the involved
immune cells leading to the successful development of novel
therapeutic substance classes targeting this specific pathway (37).
Several studies revealed that IL17 producing cells mainly
accumulate in the submucosa and muscularis propria of CD
patients (38). Flow cytometric analysis of mucosal cells further
demonstrated the increase of IL17 producing T cells in CD
patients compared to controls. Interestingly, some of these cells
also coexpressed IFNg, a more Th1 related cytokine. Subsequent
stimulation of these cells with IL12 elevated the expression of the
Th1 related markers Tbet and IFNg and decreased the Th17
related markers RORgT and IL17. These results clearly indicate
that IL17 producing T cells from CD patients can be polarized
from Th1 cells (39, 40). Animal models have also been used to
evaluate the role of Th17 cells in the pathogenesis of IBD. Zhang
and colleagues could demonstrate by using IL17RA knockout mice
in a trinitrobenzenesulfonic (TNBS) induced colitis model that
IL17 is essential for the development of colonic inflammation.
Accordingly the application of the IL17RA IgG1 fusion protein in
mice with TNBS-colitis significantly decreased colonic
inflammation and protected the mice from weight loss (41).
Studies in the dextran-sulfate sodium (DSS)-induced colitis
FIGURE 1 | IL23 signaling in Crohn’s disease. IL23 is a heterodimer consisting of the unique subunits p19 and p40, the latter is shared with IL12. IL23 signals
through its heterodimeric receptor complex consisting of the two subunits IL12Rb1 and IL23R whereas IL23R is the unique subunit and IL-12Rb1 shares the IL12
receptor complex. The IL23R complex signals through JAK kinase and STAT transcription factors. IL23 binding to its receptor activates Jak2 and Tyk2 kinases
which then phosphorylates the receptor to form a docking site leading to the subsequent phosphorylation of STAT3 for the p19 subunit and STAT4 for the p40
subunit. IL23R signaling activates several pathways leading to transcription of several effector cytokine genes in CD including IL17A, IL17F and IL22.
March 2021 | Volume 12 | Article 622934
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model revealed that IL17F deficiency leads to colitis reduction,
whereas IL17A deficiency resulted in a more severe course of the
disease (36, 42, 43). In line with this, a monoclonal antibody
against IL17A (secukinumab) failed to show therapeutic efficacy in
the treatment of CD, moreover a high rate of adverse events and
increased severity of the disease compared to the placebo group
was reported (43).
TH17 PLASTICITY AND ITS RELEVANCE
IN CHRONIC INFLAMMATION

Polarized T cells have the ability to change their phenotype and
repolarize towards various fates. This innate flexibility is termed
plasticity (44). The plasticity of cells can be influenced by several
Frontiers in Immunology | www.frontiersin.org 4
factors like the cytokine environment, metabolites or different
microbial components. The cytokine milieu drives T cell subset
development and also induces plasticity through the activation of
distinct and specific STAT molecules and multiple transcription
factors like FOS-like antigen (Fosl2) or interferon regulatory
factor (IRF4) (45, 46). The plasticity of Th1-Th17 has been
reported to play an essential role in the regulation of intestinal
immune responses (47). Several studies indicate that the
development of IBD is associated with both Th1 and Th17
cells. The accumulation of Th1 and Th17 cells in the mucosa
of IBD patients results in elevated IFNg and IL17 levels compared
to healthy controls. IFNg+ IL-17+ co-expressing cells are
considered to be Th17 cells that transform into Th1
lymphocyte progenitor cells, demonstrating the important role
of Th17/Th1 plasticity in the pathogenesis of chronic intestinal
FIGURE 2 | Model of IL23 mediated resistance to apoptosis of mucosal CD4+ T cells in anti-TNF refractory Crohn’s disease patients. In anti-TNF refractory patients,
TNFR2 bearing gut CD4+ T cells express the IL23R. Heightened production of IL23 from CD14+ macrophages leads to binding to the IL23R on CD4+TNFR2+ T
cells and induction of STAT3 activation. This activation leads to the expansion of CD4+IL23R+TNFR2+ T cells that are resistant to apoptosis induction by anti-TNF
antibodies, resulting in the perpetuation of mucosal inflammation.
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inflammation (48). IL23 signaling can drive the conversion of
Th17 to Th1 cells by shifting the secretion of IL17A to IFNg in
vivo (49). Here, IL23 may suppress IL17 expression and enhance
IFNg release through a STAT4/T-bet-dependent pathway,
particularly under conditions of decreased TGFb expression, a
sustained inducer of IL17A and IL17F (50). Moreover, a murine
model with CD4+ T cells lacking the IL23R has revealed that
IL23R signaling induces colitis, associated with the induction of
IFNg and IL17A co-expressing cells (51). Interestingly it was also
shown that Th17 derived Th1 cells express CD161, which is a
surface marker on Th17 cell progenitors (52). Studies have also
demonstrated that IFNg+ IL17+ coexpressing T cells from CD
patients express the IL23R and therefore are centrally involved in
the pathogenesis of CD (28). Therapies targeting IL17, IFNg or
IL23 might therefore also have an influence on Th17-dervied
Th1 cells. The above described research findings demonstrate
that Th17/Th1 cells play a pivotal role in the development and
pathogenesis of IBD.
IL23 AND IL17 RESPONSIVE CELLS

Different studies have demonstrated that the interaction with
IL23 and its receptor mainly leads to phosphorylation of STAT3,
building up a positive feedback loop that triggers gene expression
important for Th17 cell activation and effector functions (53).
IL23 is essential for the maturation and expansion of Th17 cells
in humans and mice and is indispensable for their initial
differentiation from naive CD4+ T cells to fully pathogenic
Th17 cells (54). These Th17 cells massively infiltrate the
inflamed intestine of CD patients, where they produce pro-
inflammatory cytokines like IL17 and thereby perpetuating the
Frontiers in Immunology | www.frontiersin.org 5
inflammatory process (55). Besides Th17 cells, a variety of innate
immune cells respond to IL23, including subsets of gd T cells,
natural killer T (NKT) cells, intrathymically primed “natural”
Th17 cells and innate lymphoid cells (ILC) (54). These innate
immune cell subsets are collectively referred to as “type 17 cells”
and are located in non-lymphoid organs where they are able to
respond immediately to tissue damage or pathogen invasion.
Stimulation of Th17 cells and type 17 cells with IL1b and IL23
induces local tissue inflammation, characterized by type 17
signature cytokines such as IL17, IL22 and GM-CSF (56).
Furthermore, it was shown that IL23 is able to induce IL17
expression in RAG – deficient mice (lacking B and T cells),
demonstrating that innate IL17 producing cells are an integral
part in IL17 based immune responses (57). Several publications
indicate that these IL23 dependent innate IL17 producing cells
are mainly found in the skin and mucous membranes where they
play a central role in homeostasis (58–60).

ILC3 cells express the transcription factor RORgt and are
important players in protecting against extracellular pathogens
in the gastrointestinal mucosa. IL23 responsive ILCs are located
in human mucosa-associated lymphoid tissue, for example the
intestinal Peyer’s patches (59). ILC3 cells are considered to be
responsible for gastrointestinal mucosal homeostasis in the
physiological state through moderate production of IL22, IL17,
and GMCSF. A dysregulation of ILC3 cells cause the
overexpression of the inflammatory cytokines IL22 and IL17.
Subsequently, neutrophils are recruited and cleave epithelial
cadherin and junctional adhesion molecule-like molecules
(JAMLs), resulting in elevated epithelial permeability (61).
Moreover, these cells have also been linked to the pathogenesis
of IBD, as they express the IL23R, leading to overproduction of
several effector cytokines like IL12, IFNg and IL17 by these cells
FIGURE 3 | IL23 in the development and activation of Th17 cells. In chronic inflammation, antigen-presenting cells like dendritic cells and macrophages are the main
producers of IL23, which promotes together with other cytokines like IL1, IL6 and TGFb the development of IL17 producing pathogenic Th17 cells. The differentiation
of Th17 cells is prompted by the synergistically working of STAT3 and RORgt leading to the upregulation of the IL23R on Th17 cells and the release of other pro-
inflammatory cytokines like IL17A, IL17F, IL6 or TNFa. This in turn leads to the production of IL23 mainly by macrophages. IL23 is on the one hand important for the
maintenance and expansion of the Th17 lineage and in addition acts mainly on macrophages in an autocrine manner.
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in an IL23 depending manner (62, 63). In line with these data,
Geremia and colleagues could demonstrate that IL23 responsive
ILCs accumulate in the mucosa of CD patients where they
produce inflammatory cytokines leading to intestinal
inflammation (23).

gd T cells are mainly found in mucosal and skin surfaces,
more precisely in the intestinal intraepithelial compartment, and
also show a broad expression of IL23R. They play a central role in
the mucosal barrier due to their expression of pattern recognition
receptors (PRRs) such as CLEC7A or TLR2 (64). Since
peripheral gd T cells are capable of recognizing both self- and
non-self-ligands, it is assumed that these cells can be separated
into two main categories of “antigen-experienced” and “antigen-
naïve” gd T cells (65). Recently, studies have demonstrated that
gd T cells are key innate IL17-producing cells in autoimmune
inflammation and infectious diseases (66, 67). After stimulation
with IL23, gd T cells start to secrete IL22, IL21 and IL17. Their
role in the pathogenesis of CD is not fully understood but studies
in several mouse colitis models suggest an important role of gd T
cells in this context and also in other chronic inflammatory
diseases (68).

CD1d- expressing NKT cells are mainly found in the human
intestine where they recognize lipids from commensal microbes.
Based on their T cell receptor (TCR) characteristics, NKT cells
are stratified into two main subsets, type I and type II NKT cells
(69). They are centrally involved in the regulation of intestinal
homeostasis and inflammation (70). After stimulation with IL23,
NKT cells produce large amounts of IL22 and IL17. Several
murine colitis models have indicated that the contribution of
NKT cells can be protective or pathogenic. Here, the kind of
inflammatory stimuli and lipid antigens play a crucial role in
determining the immune response (69). Various clinical studies
indicated reduced levels of type I NKT cells in the intestine and
peripheral blood of CD and UC patients (71, 72). In contrast,
another study revealed an accumulation of type II NKT cells in
the lamina propria of UC patients (73).

Thus, the discovery of the IL23/IL17 pathway has led to
fundamental changes in our understanding of cellular immunity
and essentially contributed to the development of clinical trials
and therapeutic strategies targeting the IL23/IL17 pathway
in CD.
THE IMPACT OF IL23R POLYMORPHISM
ON TH17 CELL FUNCTION

GWAS studies have revealed more than 200 risk variants
associated with IBD, most of them affect CD and UC. The
majority of disease-related single nucleotide polymorphisms
(SNPs) occur in non-coding regions of the genome (74, 75).
Interestingly, the variants in the IL23R are protein-coding and
are therefore an exception in contrast to the large portion of non-
coding risk variants. In 2006, a study by Duerr and colleagues
revealed a link between variants of the IL23R gene on
chromosome 1p31 and ileal Crohn’s disease (24). Especially
the coding variant R381Q has been linked with functional
Frontiers in Immunology | www.frontiersin.org 6
consequences to T cell immunity. CD patients carrying the
protective variant of the IL23R produce reduced levels of IL17
and IL22 after IL23 stimulation, resulting in lower frequencies of
circulating Th17 cells (76). It could further be shown that T cells
from these patients display a diminished IL23 mediated
phosphorylation of STAT3 and release less IL17 after exposure
to Borrelia burgdorferi, a strong inducer of Th17 responses (77).
A case-control study with 201 CD patients demonstrated that the
development of CD is associated with the IL23R variant G149R
(78). In contrast, further studies noted by using a candidate gene
approach that SNPs in IL23R leads to high activation of the IL23/
IL17 pathway, which was also linked with increased risk for CD
and UC (77). These insights in the gene polymorphism of IL23R
also affects the strategy of treatment. It was shown that IL23R
genotype status determine early response to infliximab (79).
Taken together, the recent years of research suggest that
disease protective variants of the IL23R are more associated
with reduced IL23R activity, whereas disease associated variants
are more linked to elevated IL23R signaling.
THERAPEUTIC APPROACHES
TARGETING IL23 AND IL17 SIGNALING

The recent finding of the critical role of IL23 and IL17 in the
pathogenesis of IBD and other immune-mediated diseases has
led to the development of new therapeutic approaches targeting
these cytokines and corresponding receptors (56, 80, 81). First
studies were conducted with anti-p40 antibodies (the shared
subunit of IL23 and IL12) such as briakinumab (82) or
ustekinumab (83). In another study, ustekinumab treated CD
patients with a moderate to severe disease course displayed an
increased rate of response and remission to ustekinumab
induction and maintenance treatment compared to the placebo
treated group (12, 84). Anti-TNF treated CD patients with severe
psoriasisform lesions and dermal Th17 cell infiltrates were
additionally treated with ustekinumab, leading to a remarkable
suppression of skin lesions (85). The promising results of
ustekinumab treatment emphasizes the important role of the
interaction of IL23/IL23R and IL17/IL17R in the pathogenesis of
CD. The blockade of the selective IL23p19 subunit (which is not
shared with IL12) allows normal Th1 responses that are
mediated by IL12. In contrast to directly antagonizing IL17
function, an IL23 blocking antibody should inhibit the IL23
dependent development and proliferation of pathogenic Th17
cells, which subsequently leads to the reduction of pro-
inflammatory cytokines associated with this cell type, such as
IL17, IL21 and IL22. Based on the clinical efficacy of IL23 specific
inhibitors in psoriasis, more recent studies evaluated the effects
of IL23p19 blockade in CD. Risankizumab is a humanized
monoclonal antibody targeting the p19 subunit. In a phase 2
trial, 121 patients with active CD were randomized to receive
different doses of risankizumab or placebo. After 12 weeks, a
significantly higher proportion of patients, which were treated
with 600mg risankizumab, achieved clinical remission in
comparison to the placebo group. Analysis of mucosal samples
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revealed that risankizumab treatment leads to the suppression of
various genes linked to the IL23/IL17 axis (13, 86, 87). The
treatment of risankizumab also leads to the maintenance of
remission at week 26 in treated CD patients (86). Brazikumab,
another p19 blocker, is a fully human IgG2 IL23 antibody and
was tested in a phase 2 study with active CD patients that failed
previous anti-TNF therapy (14). In this study, clinical
improvement of CD patients 8 and 24 weeks after initiation of
brakizumab therapy could be achieved in comparison to the
placebo treated group. In addition, patients receiving
brazikumab had greater reductions in serum IL22 levels than
placebo treated patients, again emphasizing the importance of
the IL23/IL17 axis in the pathogenesis of CD (14). Here, patients
with elevated baseline IL22 serum levels had a higher probability
of achieving clinical remission upon brazikumab treatment.

Further late-stage clinical studies targeting p19 are currently
being conducted (e.g. with the p19 neutralizing antibodies
risankizumab (13), brazikumab (14), mirikizumab (88) or
guselkumab (89)). The p19 antibody tildrakizumab has not yet
been tested in CD patients, but has proven therapeutic efficacy in
phase 3 trial in psoriasis patients (90). The oral peptide PTG-200
that selectively antagonizes the IL23R was well tolerated in a
phase 1 trial in healthy volunteers (91) and will be tested in CD
phase 2 trials. A summary of the pharmaceutical compounds can
be found in Table 1.

As mentioned above, blocking IL17 signaling directly in CD
patients might also influence the Th1 immune response,
including microbial defense. Two different strategies blocking
IL17 in CD patients with moderate to severe CD have been
evaluated. Secukinumab directly targets IL17A whereas
brodalumab blocks the IL17R subunit IL17RA. Secukinumab
therapy did not meet the primary endpoint but rather led to
worsening of disease and furthermore a heightened incidence of
severe adverse such as fungal infections were reported compared
to the placebo treated group (43). Similarly, brodalumab
treatment in CD was prematurely stopped as numerical
worsening of CD in the antibody treated group was found (92)
Interestingly, both antibodies show high efficacy in the treatment
of psoriasis (93–95) (Figure 4).

In contrast to IL23, different murine models of colitis suggest a
protective role for IL17A. It was shown that the neutralization of
IL17A in a dextran sodium sulfate (DSS) murine colitis model
Frontiers in Immunology | www.frontiersin.org 7
resulted in elevated tissue damage (96) and T cells, lacking IL17A
or IL17R, transferred into RAG-1 deficient mice, led to increased
severity of the colitis course (97). Interestingly, it was further
demonstrated that IL17A is able to promote epithelial barrier
function by regulating proteins like occluding, which is an
important tight junction protein. This protection leads to less
excessive gut permeability after epithelial injury in a colitis mouse
model (98). In this study, colonic IL23R+ gd T cells were the main
producers of gut-protective IL17A. Moreover, the protective effect
of IL17 was also present in the absence of IL23, indicating an IL23
independent release of protective IL17A from IL23R+ gd T in this
context (98). While several studies clearly could not demonstrate
any efficacy for neutralizing IL17A or IL17RA in CD, the current
understanding of the mechanism of IL17 mediated protective
effects in both mouse and man is still elusive.
JANUS KINASE (JAK) INHIBITORS IN IBD

Most pathways that are involved in IBD are characterized by the
massive production of pro-inflammatory cytokines by different
immune cells, leading to the inflammation of the mucosa or the
disruption of the intestinal barrier (99). JAKs are cytoplasmic
tyrosine kinases that transform extracellular processes into
various intracellular immune and inflammatory processes
(100). One central role of cytokines is the contribution to
transcellular signaling by activating the JAK signal transducer
and activator of transcription JAK/STAT pathway (101). The
IL23 signaling pathway includes the activation of members of the
JAK family of tyrosine kinases and the several downstream
transcription factors of the STAT family. IL23R signaling is
linked to Jak2 and Tyk2 leading to the phosphorylation of
STAT3 (Figure 1).

JAK inhibitors influence several inflammatory pathways and
are therefore a promising target for inflammatory diseases like
IBD. However, blocking JAKs in CD or UC patients showed
contradictory results (102).

Tofacinitib is a pan-JAK inhibitor that demonstrated efficacy
in patients with moderate to severe UC (103). In contrast,
Tofacitinib has not reached the primary endpoint in CD
patients leading to the discontinuation of clinical trials for the
treatment of CD patients with Tofacitinib (104, 105).
TABLE 1 | Targeted therapies directed against IL12, IL17, IL23 or their respective receptors.

Drug Route Target Current stage of development

Ustekinumab IV/SC p40 Approved for induction and maintenance therapy (12)
Risankizumab IV/SC p19 Phase 2 study (13)
Brazikumab IV/SC p19 Phase 2a study (14)
Mirikizumab IV/SC p19 Phase 2 study (88)
Guselkumab SC p19 Phase 2 study (89)
Briakinumab IV/SC p19 Phase 2b study (82); did not meet primary endpoint, halted development
Tildrakizumab SC p19 No Crohn’s disease data
PTG-200 Oral IL23R Phase 1 study (91)
Secukinumab IV IL17 Phase 2a study (43); worsening of disease, halted development
Brodalumab IV IL17R Phase 2a study (92); worsening of disease, halted development
IV = intravenous; SC = subcutaneous.
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Filgotinib has a 28-fold more selectivity for JAK1 compared
with JAK2 and is therefore regarded as a JAK1 inhibitor (106).
The efficacy of Filgotinib for the induction of remission in
moderate to severe CD patients was evaluated in the
randomized, placebo-controlled, multicenter phase II study
(107) and showed promising efficacy data.

Upadacitinib is an oral JAK1 selective inhibitor with a 74-fold
more selectivity for JAK1 over JAK2. The efficacy of Upadacitinib
for the induction and maintenance of remission in moderate to
severe CD patients was studied in a randomized, placebo-controlled
multicenter phase II trial (108) and similarly demonstrated
convincing signs of effectiveness. Subsequent studies will have to
clarify whether more specific JAK inhibition is able to achieve high
efficacy, while providing a convincing safety profile.

Altogether, JAK inhibitors represent an attractive therapeutic
category of molecules for targeting IL23 downstream. Therefore,
JAK inhibitors may represent an effective treatment for IBD,
although potential benefits in efficacy and safety for CD need
further evaluation.
CONCLUSION

The discovery of the IL23/IL17 axis has changed our fundamental
understanding of the pathology of chronic inflammatory diseases
Frontiers in Immunology | www.frontiersin.org 8
like CD and described a new way of how immune responses can
trigger intestinal tissue damage. Until the discovery of other T cell
lineages, Th1 and Th2 were longtime considered to be the only
cells arising from progenitor CD4+ helper T cells. It was shown
that IL23 is especially important for maintenance and expansion
of the Th17 lineage via a positive feedback loop that upregulates
IL17, RORgt, TNF, IL1 and IL6. This positive feedback is centrally
involved in the expansion of pathogenic pro inflammatory Th17
cells in CD. GWAS have analyzed the polymorphisms in the gene
encoding IL23R and linked it to the pathogenesis of IBD,
indicating the important role of the IL23/IL17 axis in
mucosal inflammation.

The current availability of the specific anti-p40 antibody
ustekinumab and the expected arrival of specific anti-p19
antibodies broaden our therapeutic armamentarium in the
treatment of Crohn’s disease, but inevitably leads us to the
questions which patients would likely benefit the most from
these compounds. Clinical trial results have indicated that prior
exposure to anti-TNF therapy seems to be associated with lesser
probability of responding to subsequent ustekinumab therapy in
comparison to anti-TNF naïve patients (12). We still await data
regarding respective effectiveness of p19 inhibitors in primarily
anti-TNF naïve patients, but upregulation of the IL-23R on
mucosal T cells of anti-TNF non-responders, rendering these
cells more responsive to increased IL23p19 production from
FIGURE 4 | Therapeutic approaches targeting IL23 and IL17 signaling. Ustekinumab and briakinumab specifically blocks the IL12/IL23 subunit p40 in CD patients
whereas risankizumab, brazikumab, guselkumab and mirikizumab selectively block the unique subunit p19. Activated Th17 cells produce large amounts of IL17.
Secukinumab directly binds to IL17A and thereby inhibits the interaction with the IL17 receptor (IL17R). Brodalumab directly binds to the IL17R causing an inhibition
of IL17 ligand binding (A and F) to their receptor.
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CD14+ mucosal macrophages, indicate the potential for anti-
IL23p19-specific therapies in anti-TNF non-responders (28,
109). Recent studies have shown that the mucosal cytokine
profiles shift during the course of disease (110). It could be
shown that early mucosal inflammation before endoscopic
recurrence showed an abundance of Th1-related cytokines and
TNF and slightly increased IL17A expression in the terminal
ileum. Transition from this stage to endoscopic recurrence was
marked by high levels of Th1 cytokines, marked increase in
IL17A, and induction of IL6 and IL23, while established lesions
were characterized by a mixed Th1–Th17 profile with low levels
of TNF (111). Furthermore, IL12p40 and Th1 cytokines
demonstrated higher mucosal expression in recently diagnosed
pediatric in comparison to patients with long-standing Crohn’s
disease (112). These data might indicate that anti-p40 blockade
might be particularly effective in early disease, while p19
inhibition might rather be positioned in the treatment of more
established lesions. Currently conducted head-to-head trials of
ustekinumab and p19 inhibitors might help us to determine the
optimal place of these substances in our treatment algorithm
(113). Clinical practice will also answer the important question
whether patients will still benefit from anti-IL23p19 antagonism
if they have previously failed to benefit from anti-IL12p40
antibody therapy, and vice versa (114). Even with the
upcoming availability of p19 inhibitors in addition to the
already available anti-p40 antibody, there is still the currently
unmet clinical need to establish predictive markers of response to
identify the subgroup of IBD patients that have a heightened
Frontiers in Immunology | www.frontiersin.org 9
probability of response to respective treatments (115). In
IL23p19 inhibitors, there has so far been only a report that
indicated that higher serum IL22 concentrations were associated
with a greater likelihood of response to brazikumab (14). These
findings must however be validated in subsequent studies and
other p19 inhibitors as well before they are able to enter daily
clinical practice. Only improved understanding of the mucosal
immune milieu and the development of biomarkers will enable
us to develop personalized approaches to treatment and future
algorithms for biological therapy in these patients.
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