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Host-directed therapies (HDTs) enhance the host response to tuberculosis (TB) infection

to reduce disease severity. For instance, the manipulation of lipid mediator production

diminishes the hyperactive immune response which is a known pathological feature of

TB that generates lung tissue damage. Non-steroidal anti-inflammatory drugs (NSAIDs)

and omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) are examples of

such HDTs. In this mini-review, we recapitulate the literature available on the effects of

NSAIDs and n-3 LCPUFA in TB as well as the immunological pathways underpinning

these effects. Many NSAIDs have a great deal of data describing their effects and safety

and in many jurisdictions are inexpensive, and sold over the counter in neighborhood

convenience stores and supermarkets. The potential benefits of NSAIDs in TB are

well-documented in pre-clinical studies. The reduction of pro-inflammatory lipid mediator

production by inhibiting cyclooxygenase (COX) pathways with NSAIDs has been found

to improve lung histopathology, bacterial control, and survival. Additionally, n-3 LCPUFA

and its novel bioactive metabolites produced by COX and lipoxygenase (LOX) have

been identified as safe and effective pro-resolving and antibacterial pharmaconutrients.

Nevertheless, heterogeneous results have been reported in pre-clinical TB studies.

Recently, the importance of the correct timing of NSAIDs and n-3 LCPUFA administration

in TB has also been highlighted. This mini-review will provide a better understanding of

the potential contribution of these therapies toward reducing inflammatory lung damage

and improving bactericidal activity, especially during later stages of TB infection. It further

highlights that clinical trials are required to confirm benefit and safety in TB patients.
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INTRODUCTION

Tuberculosis (TB) remains one of the leading causes of death
globally (1). Additionally, multi-drug resistant TB (MDR-
TB) and extensively drug-resistant TB (XDR-TB) patients are
burdened by long, costly treatments, with substantial adverse and
drug interaction effects and poor cure rates (2, 3). To facilitate
treatment, host-directed therapies (HDTs) have been under
investigation to augment traditional anti-tubercle treatment
regimes. HDTs attempt to modify the host’s immune response
to reduce tissue damage and indirectly aid bacterial killing,
therefore, it should not select drug resistance (4–7). The main
objectives of such treatments are to reduce treatment times,
post-treatment lung pathology and TB relapse rates (8).

Inflammation is important in host defense, but TB elicits
a hyperactive inflammatory response and is characterized
by chronic non-resolving inflammation. This exacerbated
inflammation results in lung tissue necrosis and cavitation,
also facilitating TB transmission (9, 10). Lipid mediators (LMs)
are hormone-like substances enzymatically produced from
polyunsaturated fatty acids (PUFA) via cyclooxygenase (COX),
lipoxygenase (LOX), and cytochrome P450 (CYP450) pathways.
A balance between pro-inflammatory and inflammation
resolving LM production is of utmost importance from the
initiation of the immune response to the resolution of TB
infection (11). The manipulation of LMs can be useful as part
of immunomodulatory therapy in TB and work synergistically
or additively with other standard treatments (12, 13). The use
of non-steroidal anti-inflammatory drugs (NSAIDs) has been
investigated in this regard (14, 15).

A recent meta-analysis of clinical trials showed that anti-
inflammatory medication and pharmaconutrition therapy
(vitamin D) may aid in inflammation resolution and
improved disease progression outcomes (16). Additionally,
the pharmaconutrient omega-3 long-chain PUFA (n-3 LCPUFA)
also modify LM production and may be an emerging therapy
to consider (17). In this mini-review, we aim to summarize the
literature available on the effects of NSAIDs and n-3 LCPUFA
in TB as well as the immunological pathways supporting
these effects.

CHRONIC NON-RESOLVING
INFLAMMATION IN TUBERCULOSIS

One of the key pathological features of TB is that immune cells
are recruited to pulmonary spaces, leading to the development of
lung granuloma and alterations in lung tissue (lesion formation)
(18–20). Granuloma formation is not only intended to separate
the TB-infected macrophages from surrounding healthy tissues,
but also to keep them in close contact with T cells (21,
22). However, under the direction of the TB pathogen, a
hyperactive and non-resolving host immune and inflammatory
response are elicited which eventually facilitate lung tissue
damage (9, 21). Cavity formation from liquefied granuloma
is the most destructive form of TB (21). This results partly
from the host’s exacerbated inflammatory response, where higher

concentrations of plasma IFN-γ, TNF-α, IL-17, and IL-1β
have been associated with cavitary TB (9). Unfortunately, in
14–100% of patients, cavities, scarring (fibrosis), and pleural
adhesions persist, contributing to persistent abnormal lung
function even after TB cure and the resultant lower quality of
life (23–27). Therefore, controlling the prolonged exacerbated
inflammatory response may benefit clinical outcomes. There is
also a close connection between cytokine and LM networks
in TB which will be discussed in more detail in the
following section.

LIPID MEDIATORS IN TUBERCULOSIS

PUFA are hydrolyzed from membrane phospholipids by
phospholipase A2, to release free fatty acids locally at the
site of infection or to be transported to the inflammatory
site extracellularly (28–31). Released fatty acids give rise to
LMs, by enzymatic pathways, to facilitate pro-inflammatory or
inflammation-resolving responses (28, 31). In Figure 1, the LMs
and their biosynthesis pathways are illustrated. Arachidonic
acid (AA) is the main substrate for LM synthesis owing to its
high concentrations in cell membranes (11). The LMs produced
from AA include the lipoxins (LX), 4-series leukotrienes (LT),
2-series prostaglandins (PG), hydroxyeicosatetraenoic acids, and
thromboxanes (TX) by CYP450, COX and LOX enzymes
(Figure 1) (32, 33). The LMs derived from AA mostly signal
pro-inflammatory responses, except for LX, which also display
anti-inflammatory and pro-resolving effects (20, 34, 35). The
n-3 LCPUFA eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA) also serve as precursors for LMs by COX and
LOX activity. These LMs are referred to as specialized pro-
resolving mediators (SPMs), including resolvins, protectins and
maresins that promote anti-inflammatory pathways and actively
contribute to inflammation resolution and tissue functioning
restoration (36–40).

Recent studies have highlighted the impact of TB infection
on systemic concentrations of different LMs, which persists
even after anti-TB treatment (41–43). Apart from the important
functions of LMs in the inflammatory response in TB, they
also influence TB pathogenesis (41, 42). As such, LMs play a
fundamental role in determining the fate of macrophages and
their phagocytic ability, as well as immune cell recruitment
(44, 45).

The functions of individual LMs in TB remain controversial
but more recent research suggests that the balance and timing
of the production of specific LMs during the TB disease course
are essential for good treatment outcomes (12, 41, 44, 46). For
example, the essential action of PGE2 in the innate immune
response of human TB and how a balance in PGE2/LTB4
prevents severe inflammation and immunopathology (44, 47).
Additionally, the AA-derived LXA4 has been positively correlated
with inflammation and bacterial burden in TB patients (41).
Furthermore, how PGE2, as well as other LM concentrations,
affect outcomes may vary during the different stages of TB
infection and, therefore, the specific roles of LMs may change
during the disease progression (47–49).
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FIGURE 1 | Lipid mediator biosynthesis pathways. In response to infection, polyunsaturated fatty acids are hydrolyzed from membrane phospholipids by

phospholipase enzymes to release free fatty acids for lipid mediator production. Arachidonic acid serves as a substrate to form lipoxins, 4-series LTs, 2-series PGs,

and TXs. The enzymes 5-LOX, 12-LOX, and 15-LOX produce LTs and lipoxins. Additionally, COX enzymes mediate the production of PGs and TXs. Eicosapentaenoic

acid serves as a substrate for the intermediate 18-HPEPE by either COX-2 or CYP450 enzyme activity. From 18-HPEPE the E-series resolvins (RvE1, RvE2, and

RvE3) are produced by 5- and 15-LOX. Eicosapentaenoic acid is also converted by 5-LOX to form the less inflammatory LTs. Docosahexaenoic acid is metabolized to

form the D-series resolvins and protectins by 5- and 15-LOX and the maresins by 12-LOX. COX, cyclooxygenase; CYP450, cytochrome P450; HDHA,

hydroxydocosahexaenoic acid; HpDHA, hydroxyperoxydocosahexaenoic acid; HEPE, hydroxyeicosapentaenoic acid; HpEPE, hydroxyperoxy-eicosapentaenoic acid;

LOX, lipoxygenase; LT, leukotriene; PG, prostaglandin; PLA2, phospholipase A2; Rv, resolvins; TX, thromboxane.

Although research on the role of LM production and its
manipulation as HDT in TB has focused mainly on AA-

derived LMs, there is a growing interest in SPMs in TB.

The plasma metabolomics of newly diagnosed human TB
patients has revealed a pro-resolving plasma LM profile,

including higher concentrations of the D-series resolvins (50).

Furthermore, Colas et al. (12) reported that a pro-resolving
LM profile (specifically resolvins) was correlated with 80-

day survival, whilst lower levels of SPMs were linked to
more severe disease in adults with TB meningitis (12).

The reasons for this is that, apart from their inflammation

resolving properties, maresins, resolvins and protectins have

been implicated to enhance phagocytosis and anti-bacterial
activity in TB (51). More studies are needed to describe the
role of SPMs in TB and their immunotherapeutic properties.

Nevertheless, the importance of LMs in TB regulation,

together with the connection between cytokine and LM

networks, accentuates the possibilities of LMs as immunotherapy
targets in TB (52, 53). However, a time-dependant approach
should be considered as the timing of the manipulation
of these pathways may influence outcomes in TB disease
(47, 48).

PRECLINICAL TRIALS ON
CYCLOOXYGENASE- AND
LIPOXYGENASE-MODULATING DRUGS IN
TUBERCULOSIS

The therapeutic effects of NSAIDs are mainly ascribed to their
ability to reduce the production of pro-inflammatory LMs
by inhibiting COX-1 and COX-2 activity (48, 54–56), but
inadvertently the metabolism of pro-resolving LMs are also
inhibited. In essence, they mitigate the conversion of AA to
PGE2 and TXA2, thereby reducing pain, inflammation, fever,
platelet aggregation and vasoconstriction (14, 48, 57). However,
the major effects of NSAIDs in TB are ascribed to reduced PGE2
production, as PGE2 may inhibit phagocytosis while promoting
bacterial growth and tissue damage in the late stages of TB-
infection (47, 48). Aspirin (acetylsalicylic acid) and ibuprofen
are frequently used NSAIDs (14). In murine models, low-
dose aspirin (3 mg/kg/day) lower lung pathology and improve
bacillary control thereby increasing survival (15, 58). This is
ascribed to its anti-inflammatory effects at both systemic and
local lung tissue level, together with lower neutrophil recruitment
(by increased LXA4 and reduced LTB4 production) and enhanced
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T-helper1-(Th1) cell responses (15, 39, 58, 59). Although aspirin
has been implicated in enhancing the antibacterial activity of
pyrazinamide, it may display an antagonistic effect on isoniazid
(55, 60). On the other hand, it seems that ibuprofen may
be a better anti-inflammatory agent option, displaying no
interference with anti-tuberculosis therapy in rodent models
(60). Furthermore, when provided in the absence of conventional
TB treatment, improvements in lung histopathology, survival
and bacillary load have been reported when administering
ibuprofen (80 mg/kg/day) in TB-infected mice (57).

Other NSAIDs displaying COX-inhibiting characteristics
include indomethacin and diclofenac. In an earlier study,
Hernandez-Pando et al. (61) found that when administering
5 mg/kg/day indomethacin to BALB/C mice with TB-induced
lung granulomas, the T cell imbalances, that are characteristic of
TB infection, were reversed and the harmful cell-mediated and
humoral immunity lessened (61). In an in vitro study in blood
samples of TB patients, COX-2 was found to be upregulated.
However, the COX-1/2 inhibitor indomethacin reduced cytokine
responses and T cell proliferation by modulating Th1 effector
and T regulatory cells (62). Additionally, indomethacin enhanced
the response to immunization with M. vaccae (63). Similarly,
diclofenac treatment has been shown to reduce lung lesions
and bacillary load and increase survival in murine models
(64, 65). The new generation NSAID celecoxib also selectively
inhibits COX-2 but has fewer side effects (44). It can increase
the sensitivity of bacteria to antibacterial treatment and reverse
MDR-TB (66, 67). This is ascribed to COX-2 regulating the
MDR protein 1 (MDR-1) gene expression. Therefore, the
administration of celecoxib blocks the MDR efflux pump and
increases drug accumulation (66).

In preclinical TB studies, COX inhibition by NSAID therapy
has also had some unfavorable effects. Both ibuprofen and
celecoxib treatment increased bacterial burden and ibuprofen
decreased survival in Mtb-infected mouse models (68). The
detrimental properties of NSAID therapy could be attributed to
its effects on the adaptive immunity impairing Th1 cell responses
and mitigating IFN-γ expression (68). However, it seems that
the infection route may influence outcomes as earlier preclinical
studies showing promising results infected mice intravenously
causing acutely high systemic bacterial loads and inflammation
(68). Furthermore, the timing of NSAID administration is
important. When administering ibuprofen to Mtb-infected mice
on day one following infection, lung pathology and inflammation
were increased which was linked to PGE2 inhibition early in the
onset of the disease. Conversely, inhibition later in the disease
(60 days after infection) reduced neutrophil inflow and, thereby,
lessened lung pathology (69). Therefore, COX inhibition may be
detrimental to host resistance early in TB infection (48, 70).

With regards to modulating LOX pathways, inhibiting 5-LOX
reduces lung pathology, whilst improving bactericidal activity
and survival rates (44, 49, 71). Furthermore, 5-LOX deficient
mice also show increased IFN-γ, IL-12 and nitric oxide synthase
mRNA levels since LX negatively regulates Th1 cell responses
(71). When 5-LOX deficient mice were treated with LTB4
susceptibility toward TB, lung inflammation and tissue damage
were worsened, demonstrating the key role of LTB4 on TB

progression and disease outcomes (44). Various LOX-inhibiting
therapies exist, such as selective redox-based inhibitors, iron
ligand inhibitors e.g., zileuton, and thiazoles e.g., Zeneca ZD2138,
but whether they can be successfully repurposed as HDT in TB is
to be determined.

CLINICAL TRIALS INVESTIGATING THE
USE OF CYCLOOXYGENASE-INHIBITING
DRUGS IN TUBERCULOSIS

There are several limitations when translating animal research
findings to humans, therefore, the success of the use of COX-
inhibiting therapy in preclinical trials prompted the initiation
of clinical trials. Observational research has caused concern that
NSAID use may increase the risk of the development of active
TB. In case reports and an unadjusted analysis of a case-control
study, NSAID treatment positively associated with an increased
risk of active TB (72–75). However, it is unclear whether this
association was causal or rather related to the fact that individuals
with subclinical, diagnosed, or undiagnosed active TB are known
to have increased NSAID use (75). Furthermore, in the case-
control study, COX-inhibition was not associated with active
TB in an adjusted analysis. The results were also not replicated
in rheumatoid arthritis patients where NSAID therapy was not
associated with the risk of active TB (75, 76). Supporting this, in
a phase 1 ex vivo study in healthy human whole blood inoculated
with Mtb, celecoxib did not affect whole-blood bactericidal
activity (77). Therefore, these findings should be interpreted
carefully and more controlled trials are required.

There is a paucity in randomized clinical trials exploring the
use of NSAIDs as an adjunct treatment during active TB. In
older studies, low-dose aspirin reduced some of the side effects
of pyrazinamide treatment in TB patients (78, 79). Aspirin has
also been investigated as adjunctive treatment in TB meningitis
patients, where different dosages of aspirin daily (81, 150, or
1,000mg) ensued fewer strokes and lower 3-month mortality
rates (80, 81). The beneficial effect was ascribed to aspirin
inhibiting TXA2 and increasing protectin concentrations in
cerebral spinal fluid (81). In 2019 a randomized controlled phase
2 trial of the efficacy and safety of using adjunctive ibuprofen in
XDR-TB (NCT02781909) was completed, however, the results of
this trial remain to be published. Two other trials are registered
in this regard including a phase 1 trial administering etoricoxib to
MDR-TB patients (NCT02503939) and a randomized controlled
clinical trial administering meloxicam to TB patients to
determine its ability to modulate or prevent TB-immune
reconstitution inflammatory syndrome (IRIS) (NCT02060006).
A third three site EDCTP-funded trial is about to start recruiting
randomizing drug sensitive and drug resistant TB patients to
ibuprofen, aspirin or placebo. NSAIDs have well-known side
effects (48). However, as is the case for most other anti-
inflammatory drugs, no serious adverse effects related to NSAIDs
have been reported in clinical trials in TB patients (14, 16).
Compared to traditional antibiotic treatment, NSAIDs are not
subject to bacterial resistance and some may even aid in
improving bacterial sensitivity to antibiotics (44). Nevertheless,
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FIGURE 2 | The effects of non-steroidal anti-inflammatory drugs and omega-3 long-chain polyunsaturated fatty acids in tuberculosis. COX, cyclooxygenase;

LCPUFA, long-chain polyunsaturated fatty acid; MDR, multi-drug resistant; NSAID, non-steroidal anti-inflammatory drug; n-3, omega-3; SPMs, specialized

pro-resolving lipid mediators.

the newer generation NSAIDs may be a safer option to consider.
Furthermore, the results of the clinical trials that are pending,
will provide greater clarity on the safety and efficacy of NSAID
therapy in TB (44). Prospective randomized clinical trials should
focus on the dosage, timing and duration that provide the best
results when administering NSAIDs adjunct to TB treatment.

FATTY ACID MANIPULATION AS
PHARMACONUTRITION THERAPY IN
TUBERCULOSIS

Apart from the possibility of using drug therapy to modulate
COX and LOX activity, a therapeutic nutritional approach
to alter the substrate for COX and LOX pathways may
be a promising way to get the same results with fewer
side effects. This could be possible through the use of n-3
LCPUFA as pharmaconutrition therapy. Previous studies on
the role of n-3 LCPUFA in TB are limited. Some of these
studies have raised awareness that supplementation may cause
an increased active TB susceptibility and reduced ability of
the host to control the infection (82–85). Bonilla et al.
(83) found that fat-1 mice with a genetically higher n-3
PUFA status were more susceptible to active TB and that
bacterial loads positively associated with n-3 PUFA levels.
The authors ascribed this to the macrophages of these mice
which were deficient in various important functions (83).
Supporting this, n-3 LCPUFA-fed Mtb-infected guinea pigs

had a higher bacterial burden when compared with their n-6
PUFA-fed counterparts (84, 85). In addition to these studies,
Bazinet et al. (86) found that n-3 PUFA supplementation in
piglets, increased the levels of antibodies in response to TB
immunization (86).

Contrasting with these results, n-3 LCPUFA supplementation

has been shown to lower bacterial load, compared with

n-6 PUFA-supplemented or control groups in Mtb-infected
mice (87). Recently, it was also found that EPA and DHA
supplementation initiated 1 week after Mtb infection induced
a more pro-resolving lung LM profile, and exerted both local
lung and systemic anti-inflammatory effects, whilst enhancing
bactericidal activity and improving anemia of infection in
C3HeB/FeJ mice (17). The reason for inconsistent findings may
be related to the timing of the administration of n-3 LCPUFA.
When administered after the initial inflammatory response to the
infection, beneficial effects were found, whilst providing it before
or early in Mtb infection worsened the outcomes. Differences
in EPA and DHA dosages may also have contributed, where a
higher EPA content seems beneficial (17, 87). Lastly, due to the
preclinical nature of the studies, the type and species of animals
used may have influenced results (83–85). The safety and efficacy
of n-3 LCPUFA as therapy adjunct to standard TB treatment and
how this compares to other anti-inflammatory treatments are
still to be determined in preclinical trials. However, preliminary
results from a TB mouse model study conducted by our group
show that n-3 LCPUFA does not interfere with the efficacy of
standard TB medication (unpublished data).
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Only two clinical trials have been conducted to ascertain
the effect of n-3 LCPUFA in TB. The first supplemented a
combination of fish oil (350mg n-3 PUFA), vitamin A (1,500
UI) and Zinc (10mg) with standard TB drug treatment, in
pediatric TB patients. The group receiving supplementation for
1 month had lower TNF-α concentrations and an improved body
mass index, compared with a group that received standard drug
treatment only (88). In the second trial, n-3 LCPUFA (300mg)
was supplemented in combination with Zinc sulfate (15mg)
once per day for 1 month in a small number (n = 20) of
adult Indonesian TB patients receiving standard TB treatment
(89). Supplementation caused non-significant, reduced sputum
smear conversion rates and mediated significant improvements
in body weight and CD4+ counts compared with the control
group (89). However, in both studies, the timing of the
initiation of supplementation was not mentioned and n-3
LCPUFAwas supplemented in combination with other nutrients.
Although there is a paucity in clinical trials on n-3 LCPUFA
supplementation in TB, it has been found safe in animal TB
models and clinical trials in other inflammatory diseases (17, 32).
As pharmaconutrition therapy, n-3 LCPUFA supplementation is
also safe for long term use and not subject to bacterial resistance
like antibiotics. Bearing in mind the side effects of other anti-
inflammatory drugs the nutritional modulation of inflammatory
pathways may be a safer approach. However, as clinical evidence
is lacking, future randomized clinical trials should provide n-3
LCPUFA as single pharmaconutrient adjunct to standard TB
treatment. Furthermore, the appropriate timing, duration and
dosage of such supplementation need to be investigated as
the manipulation of LM concentrations may produce different
outcomes depending on the stage of TB disease.

DISCUSSION

Published data suggest that LMs regulate inflammatory and
immune responses and that their roles vary at different
stages of the disease. For example, high concentrations of
PGE2 may worsen disease progression and down-regulate cell-
mediated immunity in later stages of TB infection (69). Altering
LM concentrations by modulating COX and LOX activity
is a novel HDT approach in TB. Figure 2 represents the
effects of NSAIDs and n-3 LCPUFA in TB as well as the
underlying mechanisms supporting them. Prescribing NSAIDs
as analgesic and anti-inflammatory medication is common
worldwide. These medications have shown promising results
in pre-clinical TB studies by inhibiting COX activity to
reduce the production of pro-inflammatory and sometimes
immunosuppressive LMs (14, 15, 60, 65, 90). This aids in
attenuating inflammation-induced tissue damage and improves
the antibacterial actions of the host with active TB. Additionally,
COX-inhibitors can aid in improving the concentrations of
certain drugs and drug sensitivity, by the manipulation of
MDR-1 (66, 77). Therefore, the synergistic effects of TB
treatment and NSAIDs may benefit TB outcomes (14, 55,
62, 91). Preclinical trials on NSAID therapy in TB have also
highlighted that the timing of administration is important,
where NSAIDs at later stages of the disease may be more
beneficial (48, 68, 69). Although favorable results regarding the

anti-inflammatory and antibacterial activity of COX-inhibition
therapy in TB have been found in preclinical trials, more
randomized controlled clinical trials are needed to determine
the efficacy and safety in patients with active TB (14, 15, 55,
57, 58, 60, 92). More definite recommendations are anticipated
upon completion and publication of clinical trials that are
currently ongoing.

Apart from beneficial effects, NSAIDs also carry well-
known side effects, such as the risk of gastrointestinal ulcers,
bleeding and renal injury (48). Another HDT option is n-3
LCPUFA which facilitate pro-resolving and anti-inflammatory
pathways by altering the membrane phospholipid fatty acid
composition of blood and tissue cells that are important in
immune responses (93–95). These fatty acids partially replace
AA in membranes as the substrate for pro-inflammatory LMs
(94, 96, 97). Furthermore, they also serve as precursors for
SPMs, which have inflammation resolving properties (36–40).
They alter immune cell recruitment by halting neutrophil
infiltration and lowering T cell proliferation (31, 32, 98).
Also, SPMs have direct effects to stimulate monocytes to
migrate and differentiate into macrophages for phagocytic
activity, and to enhance bacterial phagocytosis and killing (99–
102). The few available studies on n-3 LCPUFA in TB have
portrayed mixed results with some showing benefit concerning
bacterial killing and pulmonary inflammation (17, 83, 87),
whilst others reported harm (82–85, 103). A recent study in
Mtb-infected mice highlighted the importance of the timing
of n-3 LCPUFA supplementation, where supplementation after
the initial inflammatory response seems to be beneficial (17).
Preclinical studies combining n-3 LCPUFA with standard TB
drug treatment are still required. In the only two clinical
trials that have been conducted on n-3 LCPUFA therapy in
TB patients, a positive effect was found on sputum smear
conversion, body weight gain, inflammation resolution, and
CD4+ T cell count (88, 89). As n-3 LCPUFA were combined
with other nutrients in these clinical trials, more randomized
controlled trials are required to determine the correct dosage
and timing of supplementation in patients with active TB.
Another possible HDT in TB is LOX-manipulating therapy,
however, clinical trials on repurposing drugs such as zileuton are
still lacking.

CONCLUSION

Both NSAIDs and n-3 LCPUFA may help to reduce excessive
inflammatory lung damage and improve bactericidal activity,
especially during later stages of TB disease. However, more
human data, particularly randomized controlled clinical trials are
required to confirm the clinical benefit and safety of these HDT
approaches in patients with active TB.
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