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Mesenchymal stromal cells (MSCs) are the most commonly tested adult progenitor cells in
regenerative medicine. They stimulate tissue repair primarily through the secretion of
immune-regulatory and pro-regenerative factors. There is increasing evidence that most
of these factors are carried on extracellular vesicles (EVs) that are released by MSCs, either
spontaneously or after activation. Exosomes and microvesicles are the most investigated
types of EVs that act through uptake by target cells and cargo release inside the
cytoplasm or through interactions with receptors expressed on target cells to stimulate
downstream intracellular pathways. They convey different types of molecules, including
proteins, lipids and acid nucleics among which, miRNAs are the most widely studied. The
cargo of EVs can be impacted by the culture or environmental conditions that MSCs
encounter and by changes in the energy metabolism that regulate the functional
properties of MSCs. On the other hand, MSC-derived EVs are also reported to impact
the metabolism of target cells. In the present review, we discuss the role of MSC-EVs in
the regulation of the energy metabolism and oxidative stress of target cells and tissues
with a focus on the role of miRNAs.

Keywords: mesenchymal stem cell, miRNA, mitochondrial metabolism, extracellular vesicle,
mitochondrial dysfunction
INTRODUCTION

Mitochondria are complex organelles that play a central role in energy metabolism, biosynthetic
processes and control of stress responses. Mitochondrial function or ability to generate energy
through OXPHOS (oxidative phosphorylation) is vital for cell homeostasis. Mitochondrial
dysfunctions are a hallmark of many diseases including metabolic disorders, cardiomyopathies,
neurodegenerative diseases and cancer, tightly associated with programmed cell death (apoptosis).
The regulation of mitochondrial metabolism is therefore essential to maintain tissue
homeostasis (1).
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Mesenchymal stromal cells (MSCs) have been shown to
impact mitochondrial function [for review, see (2)]. MSCs are
multipotent adult progenitor cells first identified in the bone
marrow (BM) (3). In addition to BM, MSCs have been described
and isolated from several tissues, including adipose tissue,
umbilical cord, placenta, or dental pulp (4). The International
Society for Cellular Therapy (ISCT) proposes three criteria to
define MSCs: i) their adherence to plastic, ii) their
immunophenotype CD105+, CD73+, CD90+, and CD45-,
CD34-, CD14-, or CD11b-, CD79a- or CD19-, HLA-DR-, and
iii) their capacity to differentiate into osteoblasts, adipocytes and
chondrocytes (5). MSCs express varying levels of tissue factor
(TF/CD142) depending on the tissue source, which may trigger
instant blood-mediated inflammatory reaction (IBMIR) and
should be checked before clinical application when
intravascular delivery is intended (6). MSCs are also
characterized by their paracrine function: i) they support
survival and differentiation of hematopoietic stromal cells, ii)
induce cell proliferation and iii) have anti-fibrotic, anti-
apoptotic, pro-angiogenic, anti-bacterial and anti-inflammatory
functions (7). Although MSCs from different tissue sources share
similar properties, they may display differences in their
differentiation potential or trophic capacity (8, 9). They are the
most commonly used cells in tissue engineering and regenerative
medicine by promoting tissue repair through different
mechanisms and function by both cell contact-dependent and
independent mechanisms. It is generally assumed that a large
share of their effector function is primarily mediated through
both cell surface presentation or extracellular secretion of both
cell-bound and soluble trophic and immunomodulatory factors
(10, 11). These factors can be secreted as single factors or
contained within extracellular vesicles (EVs), which are loaded
with a complex cargo and mediate their effector functions after
entrapment by target cells (12).

EVs are a heterogeneous family of vesicles characterized by a
lipid bilayer. On the basis of their biogenesis and size, they are
classified into three major subtypes: exosomes (<150 nm)
released from the endosomal compartment, microvesicles or
microparticles (>150 nm) produced by budding from the
plasma membrane and apoptotic bodies originating from
disassembling apoptotic cells (13). EVs are major actors in
extracellular communication via the delivery of their cargo
either by fusion with the plasma membrane of target cells or
by endocytosis and release into the cytosol (14). EVs contains
proteins, lipids and nucleic acids, including mRNA, lncRNA,
miRNA, whose identity and quantity vary according to the
parental cell and the physiologic environment [for review, see
(15)]. MiRNAs are small noncoding RNAs acting as post-
transcriptional regulators of gene expression. The role of
miRNAs in the therapeutic function of MSC-derived EVs has
been widely investigated and demonstrated in a number of
diseases [for review, see (16)]. miRNA can target genes
involved in mitochondrial function. In this review, we propose
to discuss the impact of MSC-EVs on mitochondrial metabolism
and the role played by miRNAs in this regulation.
Frontiers in Immunology | www.frontiersin.org 2
MITOCHONDRIAL METABOLISM

The Mitochondrial Organelle: Structure
and Function
Mitochondria are found in most eukaryotic cells and are the cell
energy-producing organelles. There are up to 2,000 per cell
(according to cell type), and are preferentially located in
adenosine triphosphate (ATP)-consuming cellular areas. They are
small organelles (0.5 to 1 µM) surrounded by a double membrane;
eachmembrane being composed of a phospholipid bilayer (17). The
two membranes, the outer (OMM) and the inner mitochondrial
membrane (INM), delimit three media: the extra-mitochondrial
medium (cytoplasm of the cell), the mitochondrial intermembrane
space (IMS), and the mitochondrial matrix (Figure 1).

Mitochondria contribute to the cellular respiration processes
through ATP production. ATP is the ubiquitous energy molecule
used in a very large number of cell metabolic reactions [for
review, see (18, 19)]. Apart from their involvement in ATP
production, mitochondria play also a key role in cell signalling,
differentiation, cell death, and control of cell growth (20).
Mitochondria have their own genome, transcription and
translation systems, but they also require proteins encoded by
the nucleus to be functionally active (21). Mitochondria are
therefore in the core of several biological processes, but are also
involved in mitochondrial dysregulation-based diseases.

Mitochondrial Metabolic Pathways
The main role of mitochondria is to produce energy through
ATP release following a series of chemical reactions, better
known as the TriCarboxylic Acid cycle (TCA) or Krebs cycle
(Figure 1). ATP is also generated from fatty acid metabolism and
b-oxidation, OXPHOS and amino acid metabolism (Figure 1).
In aerobic organisms, cellular energy mostly derived from
glycolysis that converts glucose into pyruvate in the cytoplasm.
Pyruvate enters mitochondria where it is converted into acetyl-
CoA by pyruvate dehydrogenase (PDH) and then into citrate
during the first step of TCA. TCA cycle is composed of ten steps
catalyzed by eight different enzymes that produce nicotinamide
adenine dinucleotide hydrogenase (NADH) and flavin adenine
dinucleotide (FADH2) that are oxidized by the respiratory chain
or OXPHOS to produce ATP. OXPHOS consists of the electron
transport chain (ETC), which includes a series of protein
complexes in the IMS: NADH-dehydrogenase (complex I),
succinate dehydrogenase (complex II), ubiquinone, bc1
complex (complex III), cytochrome c and cytochrome c
oxidase (CYTC, CCO; complex IV) and ATP synthase
(complex V). ETC generates a proton gradient, which drives
the synthesis of ATP. During OXPHOS process, mitochondria
generate reactive oxygen species (ROS), which participate
to cell homeostasis, primarily by the genesis of hypoxia-
inducible factors (HIF) (22–24). However, ROS accumulation
induces mitochondrial damage and dysfunction leading to
cellular modifications.

A part from glycolysis, acetyl-CoA can be produced by the
breakdown of lipids (b-oxidation) or proteins (amino acid
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metabolism) (25). Fatty acid oxidation occurs in mitochondria
after fatty acids have crossed mitochondrial membranes under the
form of fatty acyl-CoA (Fa-CoA) that is converted into acyl-
carnitine by carnitine palmitoyltransferase 1 (CPT-1) in the OMM
(26). In the mitochondria, carnitine palmitoyl transferase 2 (CPT-
2) removes carnitine from the acyl-carnitine and regenerates
acetyl-CoA. During b-oxidation, Fa-CoAs are subsequently
cleaved into two carbon segments to synthesize acetyl-CoA. As
the final product of b-oxidation, acetyl-CoA takes part in other
reactions, primarily TCA cycle and de novo lipid synthesis.

Several pathways of the amino acid metabolism are located in
mitochondria. Amino acids are either ketogenic (lysine and
leucine), glucogenic (glycine, serine, glutamine…), or both
(tyrosine, tryptophan…). Depending on their carbon skeleton,
ketogenic amino acids are converted into acetyl-CoA or
acetoacetyl-CoA, while glucogenic amino acids are converted
into glucose, pyruvate or a TCA cycle intermediate. In this
pathway, glutaminase converts glutamine to glutamate, which
is further catabolized in TCA cycle (21).

Mitochondria-Related Pathologies
The role of mitochondria in multiple other functions, notably Ca2+

homeostasis, ROS generation and apoptosis, has been shown (27).
Mitochondria are therefore in the centre of cell homeostasis and
their dysfunctions are associated to pathological conditions (28, 29).
Mitochondrial disorders are characterized by defective oxidative
phosphorylation and mainly observed in energy-dependent tissues
such as skeletal muscle, heart, peripheral, and central nervous
system, eyes, kidney or endocrine glands. Dysfunctions include
Frontiers in Immunology | www.frontiersin.org 3
depolarization, ETC inhibition and network fragmentation that
impact secretion of metabolites, ROS production and affect cell
signalling pathways. Main causes are related to mitochondrial or
genomic DNA mutations, which alter the synthesis of ETC
enzymatic complexes (30), endoplasmic reticulum stress (31),
supercomplex destabilization (32) or mitochondrial protein
aggregates (33). Growing evidence has highlighted that oxidative
stress, characterized by overproduction of ROS, is also largely
involved in mitochondrial disorders. Overproduction of ROS
induces mitochondrial DNA mutation, ETC damage, membrane
permeability and Ca2+ homeostasis alteration (34). Current
treatment strategies investigate gene therapy of mitochondrial
DNA (mtDNA) (35) or stem cell transplantation (36). In this
context, MSCs have been reported to regulate oxidative stress and
redox imbalance and may be of therapeutic interest to counteract
mitochondrial disorders (28, 37). In addition, the energetic
metabolism of MSCs regulate their immunomodulatory function
and consequently their therapeutic properties (38).
MESENCHYMAL STROMAL CELLS AND
MITOCHONDRIAL METABOLISM OF
TARGET CELLS

The exact role of MSCs on the mitochondrial metabolism of
target cell is still unclear, but co-culture experiments clearly
demonstrated the antioxidant properties of MSCs (28). MSCs act
directly by reducing the oxidative stress (39) related to injury or
FIGURE 1 | Major metabolic pathways in mitochondria. ADP, adenosine diphosphate; ATP, adenosine triphosphate; CPT, carnitine palmitoyltransferase; FADH2,
flavin adenine dinucleotide; GLS, glutaminase; OXPHOS, oxidative phosphorylation; NADH, nicotinamide adenine dinucleotide hydrogenase; PDH, pyruvate
dehydrogenase; ROS, reactive oxygen species; TCA, tricarboxylic acid cycle.
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inflammation, or indirectly by upregulating the antioxidant
defences of target cells and altering cellular bioenergetics (37).

Mesenchymal Stromal Cells Improve the
Mitochondrial Function
The MSC potential to attenuate oxidative injury is based on the
dampening of ROS production and enhancement of
mitochondrial function (37). Reduction of ROS results from
the secretion of anti-oxidant components [superoxyde dismutase
(SOD), catalase, Glutathione S-transferases (GST),…], which re-
equilibrate the redox balance in the host cell (40).

Mesenchymal Stromal Cells Equilibrate
Mitochondrial Dynamics
Both fission and fusion processes are linked to mitochondrial
metabolism (28). Excessive mitochondrial fission is associated
with reduction in OXPHOS and the balance between fusion and
fission events is required to maintain cell homeostasis (41–44).
Mitochondrial fusion is not essential for cell survival, but for
normal development. MSCs can rescue aberrant morphology
from a fission- to a fusion-like state and restore OXPHOS, by 962
increasing metabolic capacities and ROS production (28). They
can induce expression of mitochondrial fusion genes [mitofusin
(mfn1, mfn2) and optic atrophy 1 (Opa1)] protecting cells
against environmental damages by improving respiration
parameters (45).

Mesenchymal Stromal Cells Minimize
Mitochondrial Injury
MSCs can protect injured cells from mitochondria-related
apoptosis and resulting oxidative damage by reducing release
of CYTC into the cytoplasm. They also secrete a series of
cytokines and growth factors, which upregulate anti-apoptotic
proteins (BCL-XL, BCL-2), downregulate pro-apoptotic proteins
(BAX, BAK, BAD) and CYTC and finally minimize
mitochondria injury (2).

Mesenchymal Stromal Cells Accelerate
Mitochondria Recovery
Mitochondrial recovery is a strategy for restricting mitochondrial
dysfunction and Sirtuin 3 (SIRT3) plays an important role in this
process. Through SIRT3 activation and upregulation of
peroxisome proliferator-activated receptor gamma coactivator
1-alpha (PGC-1a), mitochondrial biogenesis increases and ROS
production decreases (46, 47). MSCs can enhance PGC-1a
expression and normalise mitochondrial shape, density and
mass (46), thereby re-equilibrating the cell energetic metabolism.

Mesenchymal Stromal Cells Transfer
Mitochondrial Cargo
Mitochondrial transfer mechanisms betweenMSCs and recipient
cells are based on cell fusion, EV secretion, gap junctions or
tunnelling nanotubes (48). In the acute phase of lung injury,
internalized mitochondria were shown to increase ATP
concentration in recipient cells, leading to bioenergetics
restoration and cell protection (49). MSC mitochondrial
Frontiers in Immunology | www.frontiersin.org 4
transfer plays multiple roles, including tissue repair during
injuries, apoptosis prevention in endothelial cells during
ischemic stress or metabolic reprogramming (50, 51).
Horizontal transfer of mitochondria or mitochondrial DNA
between cells address therapeutic applications in MSCs
regenerative medicine (48).
ROLE OF MIRNAS IN MITOCHONDRIAL
METABOLISM

miRNAs: Synthesis, Mechanism,
and Function
MicroRNAs (miRNAs) are non-coding endogenous ˜22nt (18 –
25nt) RNAs, which form a large family of post-transcriptional
regulators. Within the nucleus, miRNA genes are transcribed by
RNA polymerases as long precursor pri-miRNAs (> 500 bases),
which harbour stem-loop structures (52). Maturation of miRNAs
starts by the nuclear cleavage of the pri-miRNA by the Drosha RNA
III endonuclease, which liberates a smaller pre-miRNA molecule.
Pre-miRNAs are then exported to the cytoplasm by a GTP-
dependent exportin (53). Once in the cytoplasm, pre-miRNAs are
cleaved by an enzyme of the DICER family to release a small
double-stranded RNA called “miRNA/miRNA duplex”. The
passenger strand is generally degraded. The miRNA major strand
binds to its mRNA target, which contains a perfectly
complementary seed sequence on its 3’ UTR end (52, 54).
MiRNAs act by post-transcriptional gene silencing or mRNA
degradation and are involved in major biological processes,
including cell metabolism (54–57). The process of miRNA and
pre-miRNA sorting in EVs remains elusive (58). MiRNAs can
diffuse through intracellular space to the plasma membrane and be
loaded by the Annexin A2‐dependent pathway (59, 60). MiRNAs
can also be transported by RNA-binding proteins (RBPs) toward
multivesicular bodies (MVBs) and be packed by budding-in process
(61) [for review see (62)]. Several studies indicated that miRNA
packaging in EVs could serve as a major mechanism of miRNA
transfer between cells. Of interest, there is increasing evidence for
the antioxidant role of miRNAs contained within MSC-EVs for
different therapeutic applications (12, 63) (Figure 2).

miRNAs Target Mitochondrial Metabolic
Pathways
Recent studies have shown that miRNAs are able to translocate
into the mitochondrial compartment and modulate
mitochondrial activities (30). A particular miRNA subset,
called mitomiR for mitochondrial microRNAs, is localized
within mitochondria and transcribed either from nuclear or
mitochondrial genome (64). Imported mature mitomiRs are
translocated after pre-miRNAs are processed by DICER (65).
Among mitomiRs, some have been described as specific
regulators of mitochondrial metabolism (66). As an example,
mir-149 targets Poly(ADP-Ribose) Polymerase-2 (PARP-2) that
activates SIRT1 and subsequently, increases mitochondrial
function and biogenesis via PGC-1 activation (66). MiRNAs
target directly or indirectly a number of key enzymes involved in
March 2021 | Volume 12 | Article 623973
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glycolysis regulation (67). One such example is miR-326 that is
overexpressed in metabolically active cancer cells and targets
Pyruvate Kinase M2 (PKM2) (68). Some miRNAs are involved in
the repair of damages induced by ROS (69). MiR-128a targets
Polycomb complex protein (BMI-1) involved in the
mitochondrial and redox homeostasis and cellular senescence
in a medulloblastoma model (70). In absence of BMI-1, ETC flow
is interrupted decreasing ROS generation. Other miRNAs, such
as miR-25, target genes that play crucial roles in Ca2+ uptake and
consequently, ROS production by targeting Mitochondrial
Calcium Uniporter (MCU) (71).

miRNAs and Oxidative Phosphorylation
MiRNAs can target OXPHOS either directly, by targeting
mRNAs of essential ETC factors and/or indirectly, by targeting
the biosynthesis pathways of essential cofactors (17). MiR-338
and miR-181c have been shown to target complex IV of
respiratory chain (COXIV) (21, 72). Overexpression of miR-
338 decreased COXIV levels and subsequently, oxidative
phosphorylation while miR-181c remodels COXIV by targeting
cytochrome c oxidase subunit 1 (COX1) mRNA (72, 73). ATP
synthase is a direct target of miR-101 and miR-127 (74). MiR-210
affects the cytoplasmic Iron Sulphur Cluster homologue (ISCU) and
blocks ETC (21). SIRT4, which modulates mitochondrial oxidative
capacity by targeting glutamate dehydrogenase (GDH), is regulated
Frontiers in Immunology | www.frontiersin.org 5
by miR-15b (75). Inhibition of miR-15b promotes mitochondrial
ROS and decreases mitochondrial membrane potential in a SIRT4-
dependent manner (76).

miRNAs and TriCarboxylic Acid Cycle
MiRNAs can target central biochemical reactions, shared by
many pathways. For example, the citrate synthase from the TCA
cycle is targeted by a set of miRNAs: miR-152, miR-148a, miR-
148b, miR-299-5p, miR-19b, miR-122a, miR-421, miR-494, and
miR-19a (77). As a result, 78 pathways including the purine
metabolism, pentose phosphate pathway, fatty acid biosynthesis,
as well as carbon, nucleotide and amino acid metabolisms are
affected (78). Another enzyme of TCA cycle, Aconitate hydratase
(ACO2), which metabolizes a-ketoglutarate, a product of
glutamine oxidation is targeted by miR-450 (79). MiR-450
decreases mitochondrial membrane potential and increases
glucose uptake (80).

miRNAs and Amino Acid Metabolism
Many miRNAs, including miR-23a/b (81), miR-137 (82), miR-153
(83) and miR192/204 (84), target glutaminase and modulate ROS
production. Another enzyme, Serine Hydroxyl-Methyl Transferase
(SHMT), which converts serine to glycine, is targeted by several
miRNAs, such as miR-193 and miR-642a-5p (85, 86). The
Phosphoserine aminotransferase (PSAT1) which catalyzes the
FIGURE 2 | Extracellular vesicle-mediated delivery of miRNAs into recipient cells. Mesenchymal stromal cell (MSC) released extracellular vesicles (EVs) that contain
miRNAs (EV-miRNAs). MiRNAs are taken up by the recipient cells via different mechanisms and act in the cytosol by interacting with targets. Akt1, protein kinase B;
CamKII, calmodulin-dependent protein kinase II; DRP1, Dynamin-related protein 1; Fa-CoA. Fatty acid coenzyme A; HADHB, Hydroxyacyl-CoA Dehydrogenase
Trifunctional Multienzyme Complex Subunit Beta; KEAP1, Kelch-like ECH-associated protein 1; Nrf2, NF-E2 p45-related factor 2; OXPHOS, oxidative
phosphorylation; PDH, Pyruvate dehydrogenase; PTEN, Phosphatase and tensin homolog; ROS, reactive oxygen species; SFRP, secreted frizzled-related protein;
SIRT, sirtuin; SOD, superoxydes dismutase; STAT, signal transducer and activator of transcription; TCA, tricarboxylic acid cycle; Wnt, wingless.
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reversible conversion of 3-phosphohydroxypyruvate (3-PHP) to
phosphoserine (3-PS) is also targeted by miR-340 (87) and miR-
29a-3p (Bony et al., submitted).

miRNAs and Fatty Acid Metabolism
Several miRNAs have been described to regulate lipid
metabolism. MiR-370, miR-148a, and miR-33 target CPT1A,
which is responsible for the translocation of fatty acids from the
cytosol to mitochondrial matrix, thereby reducing fatty acid
oxidation (88–90). MiR-696 regulates fatty acid oxidation by
targeting PGC-1a (91).

The regulation of mitochondrial proteins by miRNAs can
therefore modulate mitochondrial function suggesting that
targeting miRNAs might provide a new therapeutic approach
for the treatment of mitochondria-related diseases.
ROLE OF EXTRACELLULAR VESICLES-
MIRNAS ON MITOCHONDRIAL
METABOLISM REGULATION IN DISEASES

Role of Mesenchymal Stromal Cell-
Derived Extracellular Vesicles in the
Regulation of Mitochondrial Metabolism
Various studies have shown that EVs from different cell types can
release miRNAs in the cytoplasm of recipient cells where they
target mitochondrial metabolism pathways (92). Exposure to
EVs significantly increases the mitochondrial respiration,
especially through the increase of ROS production and ATP
production (93, 94). Notably, MSC-derived EVs (MSC-EVs) play
a central role in promoting mitochondrial function. Proteomic
and RNAseq analysis demonstrated that MSC-EVs contain
several proteins, genes, mRNA, and miRNA involved in
glycolysis such as GAPDH, Glucose-6-phosphate isomerase
(GPI), in the TCA cycle [2-oxoglutarate dehydrogenase
(OGDH)], and ETC (ATPase). In the rat model of pulmonary
arterial hypertension (PAH), MSC-EVs upregulated both PDH
and Glutamate Dehydrogenase 1 (GLUD1) gene expression in an
hypoxic environment and increased glucose oxidation by TCA
cycle (92). In a model of ischemia-reperfusion injury, umbilical
cord MSC-EVs were shown to contain manganese-dependent
superoxide dismutase (MnSOD), which decreased ROS levels
and prevented oxidative stress in hepatic tissue (95).

MiRNAs Loaded by Mesenchymal Stromal
Cell-Extracellular Vesicles Improve
Mitochondrial Dysfunction in Pathological
Conditions
Renal Diseases
Acute kidney injury (AKI) results from severe renal ischemia
reperfusion injury (IRI), a common clinical situation during
transplantation. Renal reperfusion induces oxidative stress,
characterized by increased ROS and/or reactive nitrogen
species (RNS) (96). MSC-EVs have been shown to alleviate
AKI through miRNA transfer to resident renal cells (97).
Frontiers in Immunology | www.frontiersin.org 6
miR-30
In a rat model of AKI, IRI caused a lower expression of miR-30-
b, miR-30-c, and miR-30-d in renal cells. MSC-EVs were shown
to protect kidney from IRI by inhibiting mitochondrial fission
through miR-30 transfer (98). Transfer of miR-30 mediated the
regenerative effect of MSCs by decreasing Dynamin-related
protein 1 (DRP1), which induces mitochondrial fragmentation,
and subsequently protecting kidney from ischemia (63).

miR-200a-3p
MSC-EVs have been reported to stimulate ATP production and
the antioxidant defense of tubular epithelia cells (TECs) through
activation of KEAP1-NRF2 signaling pathway (99). In vivo,
MSC-EVs were shown to significantly increase the expression
of the antioxidant NRF2 and SOD2, both at the protein and
mRNA level, while the pro-oxidant KEAP1 was decreased. By
investigating the miRNA profile of injured kidney cells, miR-
200a-3p was significantly increased after MSC-EV injection.
Importantly, EVs isolated from antagomiR-200a-3p-treated
MSCs failed to preserve in vitro the structural integrity of
mitochondria in TECs under oxidative damage. The authors
concluded that miR-200a-3p was shuttled by MSC-EVs to target
the KEAP1-NRF2 signaling pathway.

miR-222
In diabetes, hyperglycemia (HG) leads to the down-regulation of
COXIV in the ETC complex, leading to mitochondrial disorders
and renal tissue alterations. Transfer of miR-222 from MSC-EVs
to mesangial cells reduced STAT5A expression, leading to miR-
21 down-regulation (100). A previous study showed that miR-21
silencing enhanced mitochondrial function, by reducing ROS
production (101). Therefore, MSC-EVs rescued COXIV
expression in mesangial cells by miR-222 transfer and miR-21
down-regulation.

Cardiac Diseases
Cardiac stem cells (CSCs) have been reported to be largely
involved in cardiac regeneration and repair after injury [for
review, see (90)]. CSCs have emerged as a promising
therapeutic tool but their poor survival and engraftment
prevent their use. However, endogenous CSC function can be
improved by miRNAs released by MSCs-EVs after heart damage
(102–104).

miR-214
Previous studies indicated that miR-214 was up-regulated by
hypoxic stress to protect cardiac myocytes from damage (105). In
a hypoxic context, MSC-EVs were reported to decrease the
apoptotic rate of CSCs and the production of ROS mediated
by CaMKII activation, which is a direct target of miR-214 (106).
Transfer of miR-214 by MSC-EVs is likely one of the main
effector that protects CSCs from oxidative damage in
myocardial infarction.

miR-21
Mir-21 is another miRNA whose cardioprotective role has been
demonstrated (107). To mimic the pathophysiology of
cardiovascular environment, MSC-EVs were collected from
March 2021 | Volume 12 | Article 623973
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H2O2-treated MSCs and showed to contain higher levels of miR-
21 than EVs from non-treated MSCs. Actually, miR-21 up-
regulation in H2o2-treated MSC-EVs was shown to regulate the
apoptosis of CSCs through PTEN down-regulation and PI3K/
AKT activation.

Ovarian Cancer
In the 1920s, Otto Warburg described that cancer cells use higher
levels of glucose than normal cells, thereby leading to increased
lactate production (108). Since, this phenomenon of aerobic
glycolysis, called Warburg’s effect, has been observed in
different tumours, including, breast, lung, colorectal cancer and
glioblastoma (109) and the role of MSC-EVs in regulating
tumour metabolism has been investigated.

miR-1180
MiR-1180 was the most abundant miRNA detected in the
conditioned medium of MSCs that were able to stimulate both
glycolysis of ovarian cancer cells and chemoresistance to
cisplatin treatment (110, 111). Overexpression of miR-1180 in
MSCs resulted in the activation of Wnt signaling pathway and
expression of its downstream components (Wnt5a, b-catenin, c-
Myc…) responsible for glycolysis-induced chemoresistance.
Conversely, the supernatant of MSCs treated with miR-1180
inhibitors suppressed cell proliferation and ATP production in
cancer cells and restored their chemosensitivity. The effect of
MSC-EVs was associated with the down-regulation of Secreted
Frizzled-Related Protein 1 (SFRP1), a negative regulator of the
Wnt signaling pathway, by miR-1180. Thus, MSC-derived miR-
1180 stimulated cancer cell proliferation by stimulating
glycolysis-induced chemoresistance.

Liver Diseases
Previous studies have demonstrated that MSCs can reduce
inflammatory responses, hepatocyte apoptosis, liver fibrosis
and, enhance liver regeneration and functionality [for review,
see (101)]. This therapeutic effect of MSCs was attributed to their
capacities to secrete trophic factors (111, 112).

miR-122
MiR-122 has a critical role in liver function as being involved in
cholesterol biosynthesis, fatty acid synthesis and b-oxidation
(113). In normal conditions, miR-122 is one of the most
abundant miRNAs, but its expression is reduced in advanced
liver diseases. MSC-EVs from patients cannot prevent liver
impairment but miR-122-engineered MSCs can release EVs
containing high amounts of miR-122. Hepatic cells incubated
with miR-122-containing EVs expressed lower levels of miR-122
target genes, including Prolyl 4-hydroxylase subunit alpha-1
(P4HA1) involved in collagen synthesis and insulin-like
growth factor 1 receptor (IGF1R) (114). Mir-122 also repressed
SIRT6 leading to lower expression levels of acetyl-CoA
Frontiers in Immunology | www.frontiersin.org 7
acyltransferase (HADHB) and carnitine palmitoyltransferase I
(CPT1), involved in fatty acid synthesis and b-oxidation (115).
MiR-122 is therefore proposed as a key regulator of liver function
playing a central role in lipid metabolism and the regulation of
metabolic diseases.
CONCLUSION

In the current study, we described various miRNAs that are
expressed by MSCs and packaged in EVs and that directly or
indirectly regulate critical functions of mitochondria. MSC-
derived miRNAs are promising actors in regenerative medicine
and in therapeutics as they can modulate several pathways that
are altered in mitochondrial dysfunction-related diseases. Data
are still sparse but encouraging results have been reported.
Manipulating miRNA expression using miRNA mimics and
inhibitors may serve as potential therapeutic approach for
diverse diseases. A better understanding of miRNA biogenesis,
import and function is needed but should provide new insights
on the feasibility of this novel strategy for mitochondria-
associated disorders.
AUTHOR CONTRIBUTIONS

All authors contributed to the article and approved the
submitted version.
FUNDING

We gratefully acknowledge the Agence Nationale pour la Recherche
for support of the national infrastructure: “ECELLFRANCE:
Development of a national adult mesenchymal stem cell based
therapy platform” (ANR-11-INSB-005). The study was also
supported by the European Union Horizon 2020 Programme
(project RESPINE, grant agreement #: 732163). The materials
presented and views expressed here are the responsibility of the
authors only. The EU Commission takes no responsibility for any
use made of the information set out. Funding for staff exchange was
received by Programme Ulysses 2018 (project #: P41059WK).
ACKNOWLEDGMENTS

We acknowledge support from the Inserm Institute, the
University of Montpellier, and University Hospital of
Montpellier. We also acknowledge the Société Française
de Rhumatologie.
REFERENCES
1. Duarte FV, Amorim JA, Palmeira CM, Rolo AP. Regulation of

Mitochondrial Function and its Impact in Metabolic Stress. Curr Med
Chem (2015) 22:2468–79. doi: 10.2174/0929867322666150514095910
2. Zhao L, Hu C, Zhang P, Jiang H, Chen J. Mesenchymal stem cell therapy
targeting mitochondrial dysfunction in acute kidney injury. J Transl Med
(2019) 17:142. doi: 10.1186/s12967-019-1893-4

3. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal
and irradiated mouse hematopoietic organs. Exp Hematol (1976) 4:267–74.
March 2021 | Volume 12 | Article 623973

https://doi.org/10.2174/0929867322666150514095910
https://doi.org/10.1186/s12967-019-1893-4
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Loussouarn et al. MSC-EVs Regulate Metabolism via miRNAs
4. da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells
reside in virtually all post-natal organs and tissues. J Cell Sci (2006)
119:2204–13. doi: 10.1242/jcs.02932

5. Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, et al.
Mesenchymal stem versus stromal cells: International Society for Cell &
Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position
statement on nomenclature. Cytotherapy (2019) 21:1019–24. doi: 10.1016/
j.jcyt.2019.08.002

6. Moll G, Ankrum JA, Kamhieh-Milz J, Bieback K, Ringdén O, Volk H-D,
et al. Intravascular Mesenchymal Stromal/Stem Cell Therapy Product
Diversification: Time for New Clinical Guidelines. Trends Mol Med (2019)
25:149–63. doi: 10.1016/j.molmed.2018.12.006

7. Maumus M, Jorgensen C, Noël D. Mesenchymal stem cells in regenerative
medicine applied to rheumatic diseases: Role of secretome and exosomes.
Biochimie (2013) 95:2229–34. doi: 10.1016/j.biochi.2013.04.017

8. Keyser KA, Beagles KE, Kiem H-P. Comparison of mesenchymal stem cells
from different tissues to suppress T-cell activation. Cell Transplant (2007)
16:555–62. doi: 10.3727/000000007783464939

9. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative Analysis of
Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, or
Adipose Tissue. Stem Cells (2006) 24:1294–301. doi: 10.1634/stemcells.2005-
0342

10. Luz-Crawford P, Djouad F, Toupet K, Bony C, Franquesa M, Hoogduijn MJ,
et al. Mesenchymal Stem Cell-Derived Interleukin 1 Receptor Antagonist
Promotes Macrophage Polarization and Inhibits B Cell Differentiation. Stem
Cells (2016) 34:483–92. doi: 10.1002/stem.2254

11. Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J. Therapeutic
applications of mesenchymal stromal cells: paracrine effects and potential
improvements. Tissue Eng Part B Rev (2012) 18:101–15. doi: 10.1089/
ten.TEB.2011.0488

12. Park K-S, Bandeira E, Shelke GV, Lässer C, Lötvall J. Enhancement of
therapeutic potential of mesenchymal stem cell-derived extracellular
vesicles. Stem Cell Res Ther (2019) 10:288. doi: 10.1186/s13287-019-
1398-3

13. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of
extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like
vesicles, and apoptotic bodies. J Neurooncol (2013) 113:1–11.
doi: 10.1007/s11060-013-1084-8

14. Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis,
RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol
(2016) 36:301–12. doi: 10.1007/s10571-016-0366-z
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