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Host immunity plays a central role in the regulation of anti-tumour responses during
checkpoint inhibitor therapy (CIT). The mechanisms involved in long lasting remission
remain unclear. Animal studies have revealed that the microbiome influences the host
immune response. This is supported by human studies linking a higher microbial richness
and diversity with enhanced responses to CIT. This review focuses on the role of diet, the
microbiome and the microbiome-derived metabolome in enhancing responses to current
CIT in solid tissue cancers. The Western diet has been associated with dysbiosis,
inflammation and numerous metabolic disorders. There is preliminary evidence that
lifestyle factors including a high fibre diet are associated with improved responses to
CIT via a potential effect on the microbiota. The mechanisms through which the microbiota
may regulate long-term immunotherapy responses have yet to be determined, although
bacterial-metabolites including short chain fatty acids (SCFAs) are recognized to have an
impact on T cell differentiation, and may affect T effector/regulatory T cell balance. SCFAs
were also shown to enhance the memory potential of activated CD8 T cells. Many
therapeutic approaches including dietary manipulation and fecal transplantation are
currently being explored in order to enhance immunotherapy responses. The
microbiome-derived metabolome may be one means through which bacterial metabolic
products can be monitored from the start of treatment and could be used to identify
patients at risk of poor immunotherapy responses. The current review will discuss recent
advances and bring together literature from related fields in nutrition, oncology and
immunology to discuss possible means of modulating immunity to improve responses
to current CIT.
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INTRODUCTION

Checkpoint inhibitor therapy (CIT) has revolutionized cancer
treatment paradigms to date, but much progress remains to be
made. In fact, 60-70% of patients do not respond to single agent
immunotherapy (1-3). Clinicians are in need of predictive
biomarkers in order to successfully identify patients who are
most likely to have a long-lasting treatment response (4). Novel
therapeutic targets designed to boost responses to existing CIT
would enhance and expand therapeutic efficacy and application.
Animal studies have confirmed that both spontaneous tumor-
specific T cell responses as well as subsequent responses to CIT
are microbiota dependent (5, 6). Clinical studies have
corroborated these findings with compelling evidence that
microbial richness and diversity is associated with a durable
response to immunotherapy (7).

Diet remains the major determinant of microbial composition
and a high quality diet that is rich in fibre has been associated with
improved immunotherapy responses (8). The following review
will focus on new developments relating to diet, the microbiome
and the microbiome-metabolome with respect to augmenting
immunotherapy responses. We will discuss dietary manipulation,
use of pre and pro-biotics and fecal transplantation and their
potential impact on the outcomes of checkpoint inhibitor
therapy. The microbiome-derived metabolome is a new area
under investigation and warrants discussion as both a potential
novel predictive biomarker and a target for enhancing responses
to treatment (9, 10).

DIET AND RESPONSES TO CHECKPOINT
INHIBITOR THERAPY

The microbiome is defined as the trillions of bacteria, viruses and
fungi colonizing most surfaces of the human body (11). Diet
remains the major determinant of the composition of the gut
microbiome and a variation in nutrients can induce significant
changes within a 24-hour period (12, 13). The standard western
diet (WD) which is typically characterized as a high fat, high
carbohydrate and low fibre diet. influences the microbiota in
many ways including increased bile acid secretion into the
gastrointestinal tract, generation of bile-tolerant organisms,
dysbiosis and decreased downstream production of short chain
fatty acids (SCFA) (14-17) (Figure 1).

The intestinal microbiota is a key regulator of immune
response during both health and disease (18). For example, the
composition of the gut microbiota is known to differ significantly
between agrarian and western societies and may provide an
explanation for the dramatic rise of allergic and autoimmune
disease states in western countries (15, 17, 19-21).

De Filippo et al. (2010) showed that children residing in the
remote African community of Burkina Faso (BF) had
significantly altered gut microbial composition, compared to
those residing in European cities (EU) (19). Key changes for
children from BF included enrichment in Bacteroidetes and
depletion of Firmicutes (p < 0.001) together with significantly

higher SCFA production (p < 0.001) compared to EU children.
Shigella and Escherichiae were also significantly under-
represented for BF children. These findings have been
attributed to the predominantly plant-based, high-fibre diet
that is consumed in rural Africa (19). The health benefits of a
high fibre diet have been apparent over many years of research
and have been typically associated with increased SCFA
production driving regulation of immunological tolerance and
promoting gut homeostasis. The impact of diet on checkpoint
inhibitor therapy responses is presently under investigation in
view of research supporting the importance of the microbiome as
a regulator of immune response (8).

Initial data from a study of 113 melanoma patients undergoing
CIT confirmed that a high fibre diet was associated with
increased microbial richness and highest odds of response (8).
Whole grains, fruits and vegetables were associated with a
‘responder’ microbial signature, whilst sugars and processed
meat had a negative association (8). Patients who were
following a high fibre diet were five times more likely to
respond to CIT, compared to patients on a low fibre-diet
(OR =5.3,95% CI: 1.02 - 26.3) (8).

At present, there are no specific dietary guidelines for patients
undergoing immunotherapy and evidence for dietary approaches
remains preliminary. Multiple publications over the past 10 years
have suggested that dietary fibre and specifically SCFA are key
regulators of T cell homeostasis (22-30) (Table 1). These early-
stage findings from Spencer et al. appear to support the concept
that fibre is immunomodulatory (8).

IMPACT OF SHORT CHAIN FATTY ACIDS
ON IMMUNITY AND T CELL FUNCTION

SCFA including acetate, butyrate and propionate are the bacterial
metabolites of fermented fibre and are known regulators of T cell
differentiation and function (22-31) (Figure 1). Exactly how a
high fibre diet enhances checkpoint inhibitor therapy, which relies
on CD8+ T cell infiltration into the tumor requires further
investigation. Pre-clinical studies suggest that the effects of SCFA
on T cell differentiation may depend on the immunological
context and the concentration of the relevant SCFA (27, 29).
Park et al. (27) showed that T cell differentiation is affected by the
local cytokine milieu and that SCFA could promote either effector
or regulatory T (Treg) cell development. Kesphol et al. (29)
showed that the effects of butyrate on T cell differentiation were
in fact dose dependent. Physiological concentrations of butyrate
could promote Treg production, whereas higher butyrate
concentrations could enhance development of IFNy producing
Tregs or conventional T cells. SCFA have also been shown to
enhance generation of macrophage and dendritic cell precursors
via systemic effects on bone marrow haemataopoiesis (30). Most
recently, Bachem et al. (31) showed that the microbiota could
affect CD8+ T cell function. In particular, butyrate was shown to
enhance the memory potential of activated CD8+ T cells (31).
Enhancing immunotherapy responses through use of dietary
fibre and its impact on SCFA production requires further study,
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FIGURE 1 | The impact of diet on the microbiota and systemic immunity. Diet has an impact on the host microbiota with the western diet being linked with
dysbiosis. Conversely, diets that are high in fibre have been associated with bacterial diversity in the microbiota , which is postulated to support appropriate T cell

differentiation. These patients are likely to experience enhanced responses to CIT.

although this would be a straight forward and risk averse
intervention. Elucidating the mechanisms through which fibre
may enhance treatment responses is likely to be a more complex
question that may be addressed further through study of the
microbiome-derived metabolome in humans (9, 10).

ANTIBIOTICS IMPAIR IMMUNOTHERAPY
OUTCOMES

Dysbiosis and perturbation of gut flora is a known consequence of
antibiotic use (32). Infection and antibiotic use are common
occurrences during the course of cancer treatment. There is now
a well-documented association between antibiotic use and poor
therapeutic outcome. Patients with antibiotic exposure have
impaired treatment responses, including decreased response
rates, shorter progression free and diminished overall survival

(33-38). There is a wide variation in the cited overall survival
times for solid tissue cancers treated with CIT for groups with and
without antibiotic exposure (34). Nonetheless, the impact of
antibiotics appears to be clinically significant and detrimental. In
a large, retrospective study of 568 stage III and stage IV melanoma
patients, the authors confirmed that the antibiotic exposed group
had a significantly worse OS of 27.4 months, compared to 43.7
months for the antibiotic-unexposed group (hazard ratio 1.81,
95% confidence interval 1.27-2.57, p < 0.001) (38). At this stage,
mechanistic studies are lacking and most of the available data is
retrospective (33). There is also a possibility that patients requiring
antibiotic therapy are potentially a more unwell group in terms of
susceptibility to infection and compromised immunity leading to
suboptimal treatment outcomes (33). Further clinical trials are
awaited to determine which interventions could be implemented
to improve clinical outcomes for patients who find themselves in
this common scenario.
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TABLE 1 | Summary of studies implicating short chain fatty acids as modulators
of T cell differentiation and function.

Study Summary of study findings

Arpiai et al. (23) -

- De novo generation of Tregs was potentiated by
propionate

Butyrate induced the differentiation of Treg cells in

vitro and in vivo

Short chain fatty acids regulate the size and function of the

colonic Treg pool

SCFAs could promote T-cell differentiation into effector or

regulatory T cells to promote either immunity or immune

tolerance depending on immunological milieu.

Kesphol et al. (29) - Lower butyrate concentrations facilitated differentiation

of Tregs in vitro and in vivo

Butyrate facilitated extrathymic generation of Treg cells

Furusawa et al. (24)
Smith et al. (25)

Park et al. (27)

- Higher concentrations of butyrate promoted IFN-y-

producing Tregs or conventional T cells

SCFA enhance the memory potential of antigen-

activated CD8" T cells

- Butyrate promoted memory potential of activated CD8"
T cells, enhanced metabolism and promoted long-term
survival as memory cells.

Bachem et al. (31) -

THE MICROBIOME AND REGULATION
OF RESPONSES TO CHECKPOINT
INHIBITOR THERAPY

In 2015, landmark pre-clinical mouse studies confirmed that the
anti-tumor effects of CTLA-4 and PD-L1 blockade were
facilitated by commensal intestinal flora (5, 6). Sivan et al.
(2015) studied two groups of genetically similar mice from two
different commercial sources (The Jackson Laboratory (JAX) and
Taconic Biosciences (TAC)) with distinct microbiota
composition (5). At baseline, JAX mice and TAC mice were
noted to have significantly different rates of spontaneous
melanoma growth. This was attributed to differences in
spontaneous immunity between the two groups. High intra-
tumoral CD8 T cell infiltration was associated with low
melanoma growth (JAX mice), whilst low intra-tumoral CD8 T
cell infiltration was associated with accelerated melanoma
growth (TAC mice) (5). These differences in T cell immunity
were shaped by the composition of the microbiota. Fecal
microbiota transplant (FMT) of JAX mice (via oral gavage) to
TAC recipients was sufficient to augment CD8+ T cell infiltration
into tumor, and slow the melanoma growth rate to the same
extent as treatment with an anti-programmed-death-ligand-1
antibody (anti-PD-1 Ab). Bifodobacterium were identified as
being critical to antitumor immunity and could mediate
therapeutic effects by enhancing host antitumor T cell
responses including peripheral T cell induction, CD 8+ T cell
infiltration into tumor and dendritic cell activation, which led to
enhanced CD8+ T cell priming. Interestingly, Vetizou et al
(2015) (6) found that responses to CTLA-4 blockade were
dependent on the presence of Bacteroides. In this study,
therapeutic responses to anti-CTLA-4 mAb were tested in
germ free and antibiotic treated mice. The anti-tumor effects of
anti-CTLA-4 mADb were significantly compromised in these two

groups but could be re-established following colonization with B.
fragilis (6).

Since 2015, multiple clinical studies have supported the
findings that the efficacy of CIT is microbiota dependent (7,
39-42). Whilst a single, consistent microbial ‘responder’
signature has not been identified, microbial richness with a
high alpha diversity has been key findings associated with CIT
responsiveness (7). Alpha diversity refers to the ecological
richness of a given microbiome sample (43) as opposed to beta
diversity, which is the diversity of microbes between two different
samples. Bacterial species that have been associated with a
treatment response have included taxa within the
Ruminococaceae family of the Firmicutes phylum (44). A lack
of response has been associated with bacterial taxa within the
Bacteroidales order of the Bacteroidetes phylum (44).
Investigators have noted that there is an absence of definitive
overlap between responder microbial signatures as described in
various clinical studies, suggesting that efficacy may not rely
entirely on a specific strain of bacteria but more likely on how the
microbiome interacts with the immune system via the
production of metabolites. It is likely that a favorable
microbiome can lead to enhanced antigen presentation and
effector T cell function leading to improved local anti-tumor
responses and systemic immunity (7). Historically, tumor
infiltration with CD8+ T cells has been associated with a
favorable prognosis, which is in agreement with recent findings
in immunotherapy (45-48).

The microbiota is an exciting therapeutic target that could be
of enormous value. Mouse studies have demonstrated the role of
FMT as a means of altering the microbiota to successfully effect
tumor control. Whilst FMT is an established technique for
treatment of refractory C Difficile infection (CDI), it is not a
standard technique for other dysbiotic states (49). Further study
is needed to investigate the mechanisms through which FMT is
able to reconstitute a functional gut microbiome in the CDI
setting. There may be unique ecological factors during CDI that
render FMT effective, whereas in other dysbiotic states, such as
ulcerative colitis, results have not been as great. Other more
practical issues with FMT will include presence or absence of
facilities to carry out the procedure, our lack of understanding of
what constitutes an ideal donor and the obvious difficulties with
standardization of fecal donor specimens (50). Clinical trials
(NCT03353402; NCT03341143) are presently underway using
fecal donor material from complete responders and a phase I trial
has been completed (NCT03353402) confirming safety of this
procedure in a small group of patients (51). We suggest that the
fecal and serum microbiome-derived metabolome will provide
greater insight into the functional metabolic products of specific
microbial communities and will be able to quantify these,
providing researchers with new therapeutic applications.

Probiotics are defined as live organisms that are taken orally
in order to provide health benefits to the host. Conventional
probiotics are available over the counter and usually contain
limited bacterial strains. Probiotics have been associated with
detrimental effects during checkpoint inhibitor therapy including
lower microbiome diversity (8). Whilst murine models have
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confirmed the proof of principle in that certain commensals
appear essential to immunotherapy responses, the complexity of
the microbiome in humans is such that it would be unrealistic to
re-create a responder phenotype with conventional probiotics. In
an elegant study, Suez et al. (2018) randomized healthy human
volunteers to treatment with broad spectrum antibiotics followed
by either watchful waiting, FMT or treatment with an 11-strain
probiotic cocktail (52). FMT resulted in rapid reconstitution of
indigenous microbial flora, whereas probiotics resulted in
significant delays to reconstitution of normal flora that lasted
up to 5 months post probiotic cessation. At present, patients on
CIT should be cautioned against the use of probiotics as they
appear to be detrimental in this setting.

THE MICROBIOME-DERIVED-
METABOLOME

The metabolome is a relatively new concept that describes the
metabolites in a biological system. Metabolomics is performed
utilizing mass spectrometry based techniques and can look at the
end metabolic products of gut bacteria (either fecal or serum
samples). These may represent the metabolic end products of the
bacteria that are present. As the ideal ‘microbial’ responder
signature has not been identified, there is a possibility that
different bacterial communities may ultimately exert similar
immunologic outcomes through common metabolic end
products, such as SCFA.

Investigators have assessed the role of the microbiome-derived
metabolome in patients undergoing anti-PD-1 therapy and have
found that those who were classed as good responders had higher
levels of SCFA, compared to patients who had early progressive
disease (9, 10). Nomura et al. (2020) assessed serum and
fecal metabolites in 52 patients with mixed solid tissue cancers
undergoing single agent immunotherapy (9). Fecal concentrations
of acetic acid, propionic acid, butyric acid, valeric acid (p =0.05 -
0.002) and plasma isovaleric acid (p < 0.01) were associated with
significantly prolonged progression free survival times (9). Botticelli
et al. (2020) showed that non-small cell lung cancer (NSCLC)
patients (n = 11) who had early disease progression within 3
months of starting nivolumab had fecal samples that were
characterized by low levels of SCFAs (propionic, butyric, acetic,
valeric acids), compared to long-term responders (progression free
survival > 12 months) (10). In contrast to these studies, a separate
group, which looked at (mostly melanoma) patients undergoing
anti-CTLA-4 Ab monotherapy (n = 85) found that elevated levels
of SCFAs were associated with disease progression (53). In this
study, low baseline butyrate and propionate were associated with
longer PES (p=0.0015 and p =0.0029 respectively). Much larger
studies with a single-tumor focus looking at both single agent
and combination immunotherapy are required to confirm
these findings.

We postulate that the microbiome-derived-metabolome
is a predictive biomarker of response and may be able to
identify patients who are at greater need of early intervention
(e.g. dietary) in order to augment immunotherapy responses.

Serial monitoring of the microbiome-metabolome may also be
possible during a patient’s treatment in order to assess levels of
SCFA as a guide to immunological response.

A therapeutic application is a theoretical possibility.
Metabolites can be more readily quantified and regulated
compared to complex bacterial ecosystems and may be easier
to manipulate in order to induce an immune response. SCFA
administration has been utilized in the setting of dysbiosis with
autoimmune bowel disease (54). Whilst results have not been
favorable to date, the exploration of this approach has not been
complete (54).

DISCUSSION

The advent of CIT has led to a new exploration of the host-tumor
relationship and has raised many questions over what drives an
effective host immune response. We now know, perhaps
unsurprisingly, that both animals and humans with better
baseline systemic and anti-tumor immunity go on to have
better responses to CIT.

A key question is how to identify immunotherapy responders
and more importantly, how to improve clinical outcomes for the
non-responders. We have a range of different targets that could
be manipulated although we are still awaiting the results of
multiple studies that will direct our approach.

The function of the immune system is inextricably linked to
the microbiota and we have clear evidence that perturbation of
bacterial ecology through antibiotics has functional implications
for immunotherapy, whereas potential enhancements could be
achieved through nutritional manipulation.

Clinicians and scientists continue to search for a consistent,
responder microbiome signature, although it is likely that there is
more than one microbial profile that may be associated with
good anti-tumor immunity. Microbial communities ultimately
exert their effects through metabolic end products such as SCFA
and different congregates of micro-organisms may produce the
same beneficial metabolites.

Preliminary findings suggest that fibre is emerging as a
modulator of immune response and this may not be surprising
given the plethora of health benefits that have been associated
with a plant-based, high-fibre diet. Further mechanistic studies
are needed to define the immunomodulatory role of fibre, given
the fact that it has traditionally been associated with Treg
induction and immunological tolerance. Recent mouse studies
have confirmed that SCFA including butyrate have activity in
enhancing CD8+ T cell memory function and this has helped to
shed light on the complex role that SCFA have in immune
regulation (31).

FMT is presently under study as a technique for enhancing
tumor control by introducing a responder microbiome. It is
certainly appealing as a means of replacing an entire microbiota
with one from a known immunotherapy-responder. Whilst this
technique been successful in the setting of refractory CDI, it is
unclear whether this FMT will gain traction in the immunotherapy
setting, given its inconsistent results in other dysbiotic states.
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The microbiome-derived-metabolome is a new concept that
refers to measurement of the metabolic end products of the
microbiome in either serum or feces. Metabolites, such as SCFA
can be quantified and may have a potential application as a
predictive biomarker and as a target for manipulating the host
immune response. Furthermore, the adaptive mature of the
microbiome-immune cross talk suggests that metabolite-based
therapeutics might offer attractive new therapeutic avenues to
enhance the immune response to CIT and provide a positive
feedback signal to the microbial ecosystem, possibly extending
the duration of therapeutic benefit.

The future may hold baseline microbiome and microbiome-
metabolome profiling of patients at baseline as well as at several
time points throughout their immunotherapy treatment.
Correlation of the metagenomic and metabolomic aspects of
the microbiome is required in order to have a better functional
understanding of the human immune response during CIT.
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