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Gliomas are the most common and lethal primary malignant tumor of the brain. Routine
treatment including surgical resection, chemotherapy, and radiotherapy produced limited
therapeutic effect, while immunotherapy targeting the glioma microenvironment has
offered a novel therapeutic option. PDIA5 protein is the member of PDI family, which is
highly expressed in glioma and participates in glioma progression. Based on large-scale
bioinformatics analysis, we discovered that PDIAS expression level is upregulated in
aggressive gliomas, with high PDIA5S expression predicting poor clinical outcomes. We
also observed positive correlation between PDIAS and immune infiltrating cells, immune
related pathways, inflammatory activities, and other immune checkpoint members.
Patients with high PDIAS high-expression benefited from immunotherapies. Additionally,
immunohistochemistry revealed that PDIA5 and macrophage biomarker CD68 were
upregulated in high-grade gliomas, and patients with low PDIAS level experienced
favorable outcomes among 33 glioma patients. Single cell RNA sequencing exhibited
that PDIA5 was in high level presenting in neoplastic cells and macrophages. Cell
transfection and co-culture of glioma cells and macrophages revealed that PDIAS in
tumor cells mediated macrophages exhausting. Altogether, our findings indicate that
PDIAS overexpression is associated with immune infiltration in gliomas, and may be a
promising therapeutic target for glioma immunotherapy.
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INTRODUCTION

Gliomas are the most common primary malignant tumor of the
central nervous system in adults and are responsible for most of
the deaths caused by primary brain tumors (1, 2), among which
glioblastoma multiforme (GBM) is the deadliest subtype.
Comprehensive therapy including surgery, radiotherapy, and
chemotherapy fails to achieve satisfactory therapeutic effect,
and poor survival of GBM patients is associated with the high
infiltration of tumor cells and persistence of chemotherapy-
resistant cells (3, 4). Recent studies demonstrate that
infiltration of immune cells into tumor regions contributes to
the development of metastasis and resistance to cancer therapies
in gliomas (5, 6). Therefore, to explore other effective treatment
options, more work on immunotherapy targeting the glioma
microenvironment is being conducted (7-9), and single cell
sequencing is providing a new approach to identify immune
biomarkers of gliomas (10). Currently, human gliomas are
diagnosed using morphological and molecular biomarker
criteria according to the 2016 World Health Organization
(WHO) classification of central nervous system (CNS) tumors
(11). Therefore, further exploration of novel biomarkers to
dissect glioma subtypes may help to clarify the molecular
mechanisms and promote therapeutic strategies.

Protein disulfide isomerase (PDI), first discovered in 1963, is
a 57-kDa dithiol-disulfide oxidoreductase with isomerase and
chaperone functions (12, 13). The human PDI gene family
currently comprises 21 genes, which have different biochemical
characteristics, but share a common structural feature, the TRX-
like domain. PDI family proteins are largely expressed in the
endoplasmic reticulum (ER) (14, 15), where they play an
important regulatory role in protein homeostasis, but also may
participate in tumor progression. Previous studies have shown
that PDI family protein overexpression correlates with the
occurrence, invasion, and metastasis of a variety of malignant
tumors (16-20). Consequently, PDI family proteins are likely
prognostic factors and therapeutic targets for related tumors (21,
22). Two recent studies have demonstrated that the PDI family
may serve as potential prognostic signature in gliomas (16, 23),

Abbreviations: GBM, glioblastoma multiforme; WHO, World Health
Organization; CNS, central nervous system; PDI, protein disulfide isomerase;
ER, endoplasmic reticulum; PDIA5, protein disulfide isomerase A5; PDIR, protein
disulfide isomerase-related protein; UPR, unfolded protein response; CGGA,
Chinese Glioma Genome Atlas; TCGA, The Cancer Genome Atlas; GEO, Gene
Expression Omnibus; LGG, low grade glioma; IHC, immunohistochemical;
scRNA-seq, single-cell RNA sequencing; OS, overall survival; DSS, disease
specific survival; HRs, hazard ratios; CI, confidence intervals; PFI, progression-
free interval; CNVs, somatic copy variations; ESTIMATE, Estimation of Stromal
and Immune cells in Malignant Tumor tissues using Expression; GSVA, gene set
variation analysis; GEP, gene expression profile; CYT, cytolytic activity; PCA,
principal component analysis; GSEA, gene set enrichment analysis; GO, gene
ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ROI, region of
interest; IDH, isocitrate dehydrogenase; MGMT, O6-methylguanine DNA
methyltransferase; CL, classical; ME, mesenchymal; NE, neural; PN, proneural;
CE, control enhanced; BLCA, bladder urothelial carcinoma; CESC, cervical and
endocervical cancers; KIRP, kidney renal papillary cell carcinoma; LUSC, lung
squamous cell carcinoma; MESO, mesothelioma; THCA, thyroid carcinoma; Treg,
regulatory T cells; MDSCs, myeloid-derived suppressor cells; OPCs,
oligodendrocyte precursor cells.

and PDIAG6 (17), P4HB, and PDIA3 (24) have all been proven to
be involved in glioma progression. Moreover, high P4HB level
contributes significantly to temozolomide resistance (25).

Protein disulfide isomerase A5 (PDIA5), also known as
protein disulfide isomerase-related protein (PDIR), is a
member of the PDI gene family and also exhibits chaperone-
like activity. PDIAS5 was first identified in 1995 and was found to
be expressed in the brain, liver, kidney, and lungs (26). In
gliomas, PDIA5 had significantly increased expression in
gliomas compared with normal brain tissues (16).

Currently, the role of PDI proteins in tumor progression
mainly lies in their ability to improve tumor apoptosis resistance
(19, 27), while other molecular mechanism remains largely
unclear. PDIA5 regulates the unfolded protein response (UPR)
signaling pathway by activating ATF60. (28), whereby UPR
regulates tumor cell survival. Other research has found that
PDI inhibition could impair tumorigenic T cells and enhance
normal T cell function (29). Based on the aforementioned
findings, we speculated that PDIA5 correlated with
histopathology grades and immune infiltration of gliomas, and
could be a potential prognostic molecule.

In the present study, we comprehensively analyzed the PDIA5
expression pattern in gliomas. We conducted large-scale
bioinformatics analyses, using gene expression data
downloaded from existing databases, including single cell
RNA-sequencing databases. We also performed PDIA5 over-
expression and siRNA on U251 then co-culturing with HMC3 in
vitro to mimic the infiltration of residential immune cells in
glioma microenvironment. Additionally, we systematically
evaluated the prognostic value of PDIAS5 in gliomas. PDIA5
was found to be upregulated in gliomas and related to the
suppressive tumor microenvironment by recruiting M2
macrophages, indicating that PDIA5 might be a potential
prognostic biomarker or therapy target in the clinical
treatment of gliomas.

MATERIALS AND METHODS

Ethics Statement

The experiments were undertaken with the understanding and
written consent of each subject. The study methodologies
conformed to the standards set by the Declaration of Helsinki,
and the study methodologies were approved by the Ethics
Committee of Xiangya Hospital, Central South University.

Clinical Specimens and Data Collection
Archived paraffin embedded glioma tissues (WHO grades I-1V)
were collected from patients (n= 31) who underwent surgery in
the Department of Neurosurgery, Xiangya Hospital of Central
South University. Normal brain tissue samples (n = 3) were
gathered from severe traumatic brain injury patients who
underwent partial resection of the normal brain.

We obtained data for 1,013 samples from Chinese Glioma
Genome Atlas (CGGA) database (http://www.cgga.org.cn/) and
672 samples from The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/). PDIAS5 expression data in
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different radiographical regions of normal brain and GBM were
obtained from the Gill dataset (30). RNA-seq data about specific
tumor anatomy in GBM was downloaded from the Ivy
Glioblastoma Atlas Project (http://glioblastoma.alleninstitute.
org/). Single-cell expression matrices were acquired from the
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.
gov/geo/) GSE138794 (31), and eight single-cell RNA
sequencing (scRNA-seq) datasets including both low grade
glioma (LGG) and GBM were selected for analysis. Data of
immunotherapeutic cohorts was downloaded from IMvigor210
(http://research-pub.Gene.com/IMvigor210CoreBiologies) (32)
and GSE78220 in GEO (33).

Survival Analysis in Kaplan-Meier Plotter
Kaplan-Meier Plotter (https://kmplot.com/analysis/) was used to
evaluate the correlation between PDIA5 and survival in across
cancer types (34). Briefly, the patient samples were divided into
two cohorts according to the cut-off expression of the gene (high
vs. low expression) for the purpose of assessing prognostic value
of PDIA5. We analyzed the relationship of PDIA5 expression
with overall survival (OS) and disease specific survival (DSS) in
each available cancer type (total number = 33). Hazard ratios
(HRs) with 95% confidence intervals (CI) and log-rank P values
were calculated.

Bioinformatics Analysis

The cut-off point was calculated using the R package survminer
for OS, progression-free interval (PFI), and DSS. Somatic copy
number variations (CNVs) and somatic mutations were
downloaded from the TCGA database. CNVs associated with
PDIA5 expression were analyzed using GISTIC 2.0 (35).
Correlation analysis of PDIA5 was performed for gene
expression profiles available in the TCGA and CGGA datasets
using the R language. ESTIMATE (Estimation of Stromal and
Immune cells in Malignant Tumor tissues using Expression)
algorithm was performed as previously reported (36) to evaluate
the presence of stromal cells and the infiltration of immune cells
in tumor samples. Gene set variation analysis (GSVA) analysis
was performed as described in the previous study (37). Briefly,
the differential expression in immune cell lineages, GO terms of
immune related biological process and inflammatory metagenes
from TCGA and CGGA samples were analyzed via GSVA.
Besides, T cell-inflamed gene expression profile (GEP) levels,
cytolytic activity (CYT) was also analyzed through GSVA as
described by Ye et al. (38).

Single-Cell RNA Sequencing

scRNA-seq was performed as described in previous studies
(39, 40). The single-cell data expression matrix was processed
with the R package Seurat. First, the data was normalized
using the “NormalizeData” function, then the function
“FindVariableGenes” was used to identify 2,000 highly variable
genes. Next, “FindIntergrationAnchors” and “Integratedata”
functions were used to merge eight glioma sample datasets.
Afterward, the “RunPCA” function was performed and a K-
nearest neighbor graph was constructed based on principal
component analysis (PCA) using the “FindNeighbors”

function, and then the “FindClusters” function was used to
alternately combine cells together at the best resolution.
Finally, “UMAP” was used for visualization. The “Single R” R
package was used to identify the cell types. We chose a glioma
dataset in GEO (GSE84465) and data in the Human Primary Cell
Atlas Data as a reference. “FeaturePlot” and “VInPlot” were used
to further visualize gene expression. Single-cell pseudotime
trajectories reconstruction and analysis was conducted using
Monocle according to Pang et al. (41). Briefly, Single cells were
projected onto low-dimensional space and ordered into a
trajectory with branch points and cells in the same segment of
the trajectory were classified as having the same “state”.
Additionally, functional annotations by gene set enrichment
analysis (GSEA) for PDIAS5 in each ‘state’ was constructed.
Gene ontology (GO) enrichment analysis and pathway analysis
based on Kyoto Encyclopedia of Genes and Genomes (KEGG)
was also carried out.

Immunohistochemistry

Immunohistochemical (IHC) staining was performed as
previously described (42). Briefly, sections were obtained from
formalin-fixed, paraffin-embedded tissues of normal brains and
different grades of human gliomas (WHO grades I-1V). After
antigen retrieval and blocking endogenous HRP activity, the
slides were blocked with 10% normal goat serum and incubated
with primary antibody (anti-PDIA5 antibody human reactivity
(D225376, 1:200, Sangon Biotech, China), anti-CD68 E11
human reactivity (SC-17832, 1:400, Santa Cruz, US) at 4°C
overnight. Then the signal was visualized using standard
protocols. For negative controls, sections were incubated with
antibody dilution solution. Slides were counterstained with
hematoxylin, and representative images were obtained using an
Olympus inverted microscope. H-score of each sample
was calculated.

Cell Transfection and

Co-Cultured Organoids

U251 VCT/PDIAS5 and U251 siNC/siPDIA5 were co-cultured
with HMC3 GFP in 3D condition. In brief, PDIA5 over
expression and Vector (VCT) plasmids were transfected via
Lipofectamine 3000 (Invitrogen, US). Simultaneously. siNC
and siPDIA5 RNA transfections were performed via RNA Max
(Invitrogen, US). Two days post-transfection, tumor, and HMC3
GFP cells were genteelly digested and counted at 5x10’/each, then
mixing in 200 pl organoids medium. U251 VCT/PDIA5-HMC3
GFP and U251 siNC/siPDIA5-HMC3 GFP in organoids medium
were divided and planted 40 ul/droplet. Three days post-
plantation, droplets were monitored and imaged by EVOS
M5000 (Invitrogen, US). The second timepoint of monitoring
was scheduled at 10 days post-plantation. Diameter and region of
interest (ROI) (Image], US) of organoids were measured.

Statistical Analysis

Correlations between continuous variables were assessed via
Spearman correlation analysis, while between rank variables
were analyzed by Kendall test. The Student t-test, one-way
ANOVA, and Pearson’s chi-squared test were used to evaluate
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differences in variables between groups. The survival probability
was analyzed using Kaplan-Meier survival curves and the
statistical significance was evaluated by the log-rank test. All
statistical analyses were performed using R (version 3.6.1, https://
www.r-project.org/). The Bonferroni correction was applied to
correct nominal p-values in the subgroup analysis of checkpoint
inhibitor immunotherapy reference to Hoshida et al. (43). A P-
value < 0.05 was considered statistically significant. All statistical
tests were two-sided.

RESULTS

Clinical and Molecular Characteristics of
PDIAS in Gliomas

The flow diagram of this study was shown in Figure 1A. PDIA5
expression in GBM and LGG tissues was higher than in normal
tissues (Figure 1B). We found no significant correlation between
gender and PDIA5 expression in CGGA dataset and TCGA
dataset (Supplementary Figure S1A), and PDIAS5 level was
significantly higher in recurrent gliomas and secondary
gliomas compared to primary gliomas in the CGGA dataset
(Supplementary Figure S1B). Additionally, when compared to
complete remission/response, PDIA5 expression levels were
significantly elevated in patients who experienced progressive
disease in response to therapy, whereas no differences were
found between other groups (Supplementary Figure S1C).

It is well-known that several molecular biomarkers, such as
isocitrate dehydrogenase (IDH) mutation, 1p/19q codeletion
status and O6-methylguanine DNA methyltransferase
(MGMT) promoter methylation are related to the malignancy
of gliomas (3, 44). Therefore, these molecular biomarkers were
also included into the analysis in addition to WHO grade. PDIA5
expression level was higher in GBM (WHO grade IV) compared
to LGG (WHO grade II and grade III) (Figure 1C), and it was
elevated in malignant histopathologic gliomas (Supplementary
Figure S1D). In the CGGA dataset, we found that the expression
of PDIA5 was higher in the IDH wild-type compared to IDH
mutant tumors among different WHO grades (Figure 1D). We
also found that the PDIA5 expression level was positively
associated with 1p/19q non-codeletion status in LGG patients
(Supplementary Figure S1E). Moreover, PDIA5 expression was
upregulated in the MGMT promoter non-methylated samples of
pan-glioma patients (Supplementary Figure S1F). In summary,
our results revealed that PDIAS5 expression is upregulated in
aggressive gliomas.

Currently, molecular subclasses provides a new perspective to
predict disease outcomes (45), and gliomas can be classified into
four subtypes: classical (CL), mesenchymal (ME), neural (NE),
and pro-neural (PN), among which CL and ME subtypes are
more aggressive (46). We detected PDIA5 expression in GBM
and pan-gliomas samples from the TCGA dataset and found that
increased PDIA5 expression was associated with the CL and ME
molecular subtypes (Supplementary Figure S1G). Additionally,
we evaluated the distribution of PDIA5 expression in GBM and
normal tissues using radiographic methods. PDIA5 was found to

be highly expressed in control enhanced (CE) regions (Figure
1E), which represented tumor cell infiltration. Furthermore, in
the IVY GBM dataset, high PDIAS5 level was enriched in
hyperplastic blood vessels, microvascular proliferation, and
peri-necrotic zones compared with other areas (Figure 1F).

Protein levels of PDIA5 were examined via IHC staining in
the gliomas and normal brain tissue samples from Xiangya
Hospital (n=34). Demographics and clinical characteristics of
these patients are shown in Supplementary Table S1. The
expression of PDIA5 was higher in GBM (WHO grade IV)
compared to LGG (WHO grade II-IIT) and normal brain tissues
(Figures 1G, H). Notably, glioma patients with low PDIA5 level
experienced favorable outcomes among the glioma patients
(Figure 1I). These results suggest that PDIA5S is significantly
increased in gliomas and high PDIA5 expression may play an
important role in invasive processes of gliomas.

Multifaceted Prognostic Value of

PDIAS in Cancers

Since PDIA5 is overexpressed in tumor tissues, we set out to
investigate the prognostic value of PDIA5 across cancer types.
Patients with high levels of PDIA5 expression experienced shorter
OS in bladder urothelial carcinoma (BLCA), cervical and
endocervical cancers (CESC), kidney renal papillary cell
carcinoma (KIRP), lung squamous cell carcinoma (LUSC),
mesothelioma (MESO), and thyroid carcinoma (THCA) (Figures
2A-G), and those patients with higher PDIA5 expression levels also
experienced shorter DSS (Figure 2H, Supplementary Figures
S2A-F). These findings revealed that high PDIA5 expression
predicts poor clinical outcomes in multiple cancers.

We further assessed the prognostic value of PDIA5 in glioma
patients from TCGA and CGGA. Among pan-glioma, LGG, and
GBM in the TCGA dataset, patients with higher PDIAS5 levels
presented shorter OS (Figure 2I), DSS (Supplementary Figure
$2G), and PFI (Supplementary Figure S2H) compared to
patients expressing low levels of PDIAS5, with the exception of
GBM which was not statistically significant for OS. Similarly,
high PDIA5 expression was significantly associated with poor
prognosis in the CGGA dataset (Supplementary Figure S2I).

Subsequently, we analyzed the effect of PDIA5 on the
prognosis of gliomas in the context of different molecular
biomarkers and treatments. Regardless of whether IDH was
mutated, 1p19q was co-deleted, and MGMT promoter was
methylated, low PDIA5 expression was related to a favorable
outcome (Supplementary Figures S3A-F), and the same results
were obtained in the analysis of chemotherapy and radiotherapy
(Supplementary Figures S3G-I). Analysis of the prognostic
significance of PDIA5 in different types of gliomas under the
2016 WHO classification of CNS tumors demonstrated that
patients with low PDIAS5 expression experienced longer OS
regardless of the subtypes (Supplementary Figures S3]J-R).

PDIA5 Expression Is Correlated With
Distinct Genomic Alterations

To explore the relationship between PDIA5 expression levels and
specific genomic alterations in gliomas, CNVs and somatic
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Xiangya Hospital. *P <.05, **P <.01, **P <.001, ns. p>.05.

FIGURE 1 | Clinical and molecular characteristics of PDIA5 in gliomas. (A) The flow diagram of this research. (B) Expression of PDIA5 in multiple human cancers
from the The Cancer Genome Atlas (TCGA) dataset. GBM, glioblastoma multiforme; LGG, brain lower grade glioma; OV, ovarian serous cystadenocarcinoma; ESCA,
esophageal carcinoma; PAAD, pancreatic adenocarcinoma; COAD, colon adenocarcinoma; KIRC, kidney renal clear cell carcinoma; READ, rectum adenocarcinoma;
HNSC, head and neck squamous cell carcinoma; LUSC, lung squamous cell carcinoma; BRCA, breast invasive carcinoma; TGCT, testicular germ cell tumors;
DLBC, lymphoid neoplasm diffuse large B-cell ymphoma; SKCM, skin cutaneous melanoma; BLCA, bladder urothelial carcinoma; THYM, thymoma; UCEC, uterine
corpus endometrial carcinoma; UCS, uterine carcinosarcoma; PRAD, prostate adenocarcinoma; CHOL, cholangiocarcinoma; LIHC, liver hepatocellular carcinoma;
STAD, stomach adenocarcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; SARC, sarcoma; LUAD, lung adenocarcinoma;
PCPG, pheochromocytoma and paraganglioma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; KICH, kidney chromophobe; THCA,
thyroid carcinoma; ACC, adrenocortical carcinoma. (C) The expression levels of PDIA5 increased with WHO grade in the Chinese Glioma Genome Atlas (CGGA) and
TCGA datasets. (D) PDIAS expression was upregulated in isocitrate dehydrogenase (IDH) wild-type compared with IDH mutant gliomas in CGGA and TCGA
datasets. (E) PDIA5 expression levels in different radiographical regions of glioblastoma multiforme (GBM) and normal brain from the Gill dataset. (F) PDIAS
expression was detected in different locations in the IVY GBM dataset. CT, cellular tumor; HBV, hyperplastic blood vessels; IT, infiltrating tumor; LE, leading edge;
MVP, microvascular proliferation; PAN, pseudopalisading cells around necrosis; PNZ, perinecrotic zone. (G) Representative images of IHC staining for PDIAS in
normal brain tissue and different WHO grades of glioma [scale bar=625um (upper), 50um (lower)]. (H) Quantification (H-score) of PDIA5 IHC staining in normal brain
(n=38) and different pathological grades of gliomas (n=31). (I) Kaplan-Meier survival curves comparing the high and low expression of PDIA5 in glioma patients from

mutations from the TCGA dataset were analyzed. CNV was
investigated between high PDIA5 expression group (n=158) and
low PDIAS expression group (n=158). Amplification of chr7 and
deletion of chrl0 consistently appeared in gliomas with high
PDIAS5 expression. Additionally, 1p/19q codeletion more
frequently occurred in gliomas with low PDIA5 expression
(Supplementary Figure S4A), and 63 and 30 significant
genomic events were discovered in the high and low PDIA5
groups respectively (Supplementary Figure S4B). In the high
PDIA5 group, focal amplification peaks, including driver
oncogenes such as PIK3C2B (1q32.1), PDGFRA (4q12), EGFR
(7p11.2), and CDK4 (12q14.1) were found accompanied by focal
deletion peaks for tumor suppressor genes such as CHD5
(1p36.31), CDKN2A/CDKN2B (9p21.3), and PTEN
(10923.31). In the low PDIA5 group, 4q12 amplification peak
was observed, but the G score was evidently lower than the high
PDIA5 group. Moreover, 19p13.3 amplification peak was also
detected, while deletion peaks occurred in 1p32.3, 14q24.2, and
19q13.41. In regards to somatic mutations, mutation in TP53
(41%), TTN (25%), PTEN (23%), and EGFR (22%) were
identified in the high PDIAS5 group, while IDH1 (89%), CIC
(45%), and FUBP1 (22%) were detected in the low PDIA5 group
(Supplementary Figure S4C).

We also analyzed the correlation between PDIA5 expression
and PDIA5 gene copy number, and found that GBM with PDIA5
copy number loss expressed significantly lower levels of PDIA5
mRNA (Supplementary Figure S5A). Moreover, in
combination analysis of LGG and GBM, we observed PDIA5
expression was higher in the PDIA5 copy number gain group
relative to the other two groups (Supplementary Figure S5B).
These results suggest that PDIA5 expression may be controlled
by chromosomal changes in gliomas.

PDIAS Is Involved in Immunity Pathways
and Inflammatory Activities in Gliomas
Previous studies have shown that the extent of immune
infiltration in the tumor microenvironment is closely related to
prognosis (47), and the aforementioned results support that
PDIA5 could be a prognostic signature across cancers.
Therefore, we analyzed the correlation between PDIAS5
expression and immune infiltration using ESTIMATE, and

discovered positive correlation between PDIA5 expression and
stromal score, immune score, and ESTIMATE score in pan-
glioma (Figure 3A) and GBM patients (Figure 3B).

Then we continued to conduct correlation analysis between
PDIA5 and immunity pathways in gliomas using GO
(Supplementary Table S2). In GBM patients, PDIA5 was
positive associated with regulation of B cell mediated immunity,
positive regulation of regulatory T cell differentiation, T cell
apoptotic process, T helper2 cell differentiation, negative
regulation of CD4 positive alpha beta T cell activation, regulation
of T cell differentiation, positive regulation of T cell cytokine
production, T helperl cell differentiation, negative regulation of
activated T cell proliferation, negative regulation of T cell receptor
signaling pathway, T helper1 cell cytokine production, macrophage
inflammatory protein 1 alpha production, fibroblast activation, and
natural killer cell mediated immune response to tumor cells in both
CGGA and TCGA datasets (Figures 3C, D). Similar results were
obtained from the analysis of pan-glioma patients (Supplementary
Figures S5C, D). These findings indicate that PDIA5 may take part
in regulating the tumor immune environment of gliomas.

Inflammation response is another essential component of the
tumor microenvironment (48). Consequently, we analyzed the
association between PDIAS5 and seven inflammatory metagenes.
PDIA5 expression was positively correlated with interferon,
STATI1, MHC-I, MHC-II, HCK and LCH, but negatively
correlated with IgG in GBM patients from the CGGA dataset
(Figure 3E). In the TCGA dataset, PDIA5 was positively
correlated with MHC-I, HCK and LCH, and negatively
correlated with IgG (Figure 3F). Additionally, in pan-glioma
patients, there was a positive correlation between PDIA5
expression and six metagenes other than IgG (Supplementary
Figures S5E, F). These results suggest that PDIA5 is likely to be
enriched in signal transduction of T cells and antigen presenting
and activation of macrophages, but negatively associated with B
lymphocytes in gliomas.

PDIAS Is Relevant to Stromal and Immune
Cell Infiltration in Gliomas

To investigate the specific mechanism of PDIA5 overexpression
promoting immune infiltration, we further explored the
correlation between PDIA5 expression and detailed immune cell
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FIGURE 2 | Kaplan-Meier survival curves comparing high and low expression of PDIAS in different cancers. OS of bladder urothelial carcinoma (BLCA) (A), cervical
and endocervical cancers (CESC) (B), kidney renal papillary cell carcinoma (KIRP) (C), lung squamous cell carcinoma (LUSC) (D), mesothelioma (MESO) (E), and
thyroid carcinoma (THCA) (F). Correlation of PDIAS expression with OS (G) and DSS (H) in 33 types of cancer. OS, overall survival. DSS; disease specific survival.

patients with high expression of PDIAS, and blue curve represents low PDIAS.

() Kaplan-Meier analysis of OS based on high vs. low expression of PDIA5 in pan-glioma, LGG, and GBM patients in the TCGA dataset. Red curve represents

types in 33 cancer types, and found that PDIA5 was positively
correlated with multiple immune cell infiltrates in most
cancers including GBM, LGG, and others (Supplementary
Figure S6A).

We then examined the relationship between PDIAS5 and 28-
immune cell lineage genes in GBM and pan-glioma, and found
that the vast majority immune cells, including various types of T
cells, B cells, macrophages, myeloid-derived suppressor cells
(MDSCs), neutrophils, and natural killer cells, were enriched in
the high PDIA5 group of GBM (Figures 4A, B) and pan-glioma

(Supplementary Figures S6B, C). Taken together, these results
suggest that high PDIA5 expression level was relevant to stromal
and immune cell infiltration in the tumor microenvironment
of gliomas.

We also assessed the difference in the expression value of 22
immune cells between high and low expression of PDIA5 group
in both CGGA and TCGA dataset using CIBERSORT, and
discovered that the differences in macrophages was statistically
significant, with M2 macrophages being the most significant
(Supplementary Figures S7A, B). Positive correlation was also
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FIGURE 3 | PDIA5 is associated with immunity pathways and inflammatory activities in GBM. PDIAS expression was positively correlated with immune score,
stromal score, and ESTIMATE score in pan-gliomas (A) and GBM patients (B). Correlation of PDIA5 and immunity pathways in CGGA (C) and TCGA (D) datasets.
The relationship between PDIA5 and inflammatory activities in the CGGA (E) and TCGA (F) datasets. Expression values are z-transformed and are highlighted in red

for high expression and blue for low expression as indicated in the scale bar.

found in the correlation analysis of PDIA5 and macrophage
biomarkers (Supplementary Figures S7C-F). Consequently, we
detected macrophage biomarker CD68 in gliomas and normal brain
tissue samples from Xiangya Hospital using IHC staining and found
that the number of CD68 positive cells was positively correlated
with the WHO grade of gliomas (Figures 4C, D). Moreover, a
positive relationship was observed in correlation analysis between
PDIA5 and CD68 in gliomas patients from TCGA dataset

(Supplementary Figure S8A). Similarly, the positive correlation
between PDIAS5 and CD68 was also displayed in the IHC staining
samples from Xiangya Hospital (Figure 4E). Finally, patients with
high PDIA5 and CD68, high combined expression of PDIA5 and
CD68 group, and high ratio of PDIA5 to CD68 group experienced
shorter OS (Supplementary Figures S8B-D). The above findings
verify the positive correlation between PDIA5 and macrophage,
especially M2, infiltration in gliomas.
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FIGURE 4 | Correlation between PDIAS expression and immune cell infiltration in gliomas. Correlation of PDIA5 and 28-immune cell lineage genes in glioblastoma
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Neoplastic Cells and Macrophages Exhibit

High PDIA5 Expression in scRNA-Seq

of Gliomas
To further elucidate the immune infiltrating role of PDIA5, we

also analyzed the expression of PDIAS5 in gliomas using scRNA-
seq. The representative merged image showing the data from 8

glioma samples is displayed in Supplementary Figure S8E. Eight
clusters of cells, including neoplastic cells, oligodendrocyte
precursor cells (OPCs), astrocytes, macrophages, oligodendrocytes,
vascular endothelial cells, neurons, and T cells were identified
from the eight glioma samples (Supplementary Figure SS8F).
The expression of PDIAS5 in all eight clusters of cells is visualized
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in Figure 5A. We subsequently analyzed the expression level of
PDIAS in the 8 glioma samples. PDIA5 was richly expressed in
neoplastic cells, macrophages, and OPCs (Supplementary Figure
S8G). Additionally, the analysis of the expression level of PDIA5
in different cell clusters further confirmed that PDIA5 was
highly correlated with neoplastic cells, macrophages, and OPCs
(Figure 5B).

We further analyzed the Single-cell pseudotime trajectories
and functional annotations of neoplastic cells and macrophages
in gliomas. In both neoplastic cells and macrophages, a trajectory
was reconstructed by Monocle, which mainly contained two
branch points (denoted “1” and “2”) and grouped cells into five
states (Figures 5C, D). High PDIA5 expression level was
observed in state 3 and 4 of neoplastic cells, and particularly
higher in state 4 and 5 of macrophages. We further identified 100
genes with branch-dependent expression for branch point 1 of
neoplastic cells, the differentially expressed genes before and after
branch point 1 and related clustering are visualized in
Supplementary Figure S9A. The top 12 genes are shown in
Supplementary Figure S9B. Moreover, 100 differentially
expressed genes with branch-dependent expression for branch
point 2 of macrophages were also ascertained (Supplementary
Figure S10A). The top 12 genes are displayed in Supplementary
Figure S10B. GSEA for neoplastic cells and macrophages for
PDIAS in each “state” is shown in Supplementary Figures SOC
and S10C, respectively. Notably, PDIA5 in state 4 of macrophage

was uniformly positively correlated with immune pathways.
Finally, the results of GO enrichment analysis (Supplementary
Table S3, $4, §5) and KEGG pathway analysis (Supplementary
Table S6, S7, $8) in regards to PDIA5 in neoplastic cells and
macrophages is shown in Supplementary Figures S9D-F and
S10D-F.

PDIAS in Tumor Cells Mediates

Tumor Cells Proliferation and
Macrophages Exhausting

Accumulating evidence of the correlation between PDIA5 and
macrophages in glioma microenvironment drove us to investigate
the in-depth mechanisms involved in the interconnection among
PDIAS5, glioma cells, and macrophages. Microglia, the common
consensus of residential immune cells in cerebral
microenvironment performances essentially as functional
macrophages. To investigate PDIA5 functions in glioma, the
PDIA5 over-expression plasmid (VCT/PDIAS5 plasmid) and
siRNA (siNC/siPDIA5) were generated and transfected into
U251. Subsequently, PDIAS5 relative U251 lines were co-cultured
with HMC3 GFP. The dimension of organoid was increased in co-
culturing with U251 PDIAS5 at 10 days post-transplantation, while
dramatically decreased in co-culturing with U251 siPDIA5 (Figure
6A). Statistical evaluations of GFP ROIs presenting the HMC3
viabilities was dynamic in co-culturing with U251 siPDIA5

PoIAS

and PDIA5 (right).

PDIAS

Oligodendrocyte
L] Astocyte
Vascular
Macrophage
OPC

T cells

[-] Neoplastic

[=] Neuron

FIGURE 5 | scRNA-seq results for PDIA5 in gliomas. (A) The cells were categorized into eight clusters (left). Scatter plots of PDIA5 expression distribution of
different cell clusters (right). Gray areas represent the whole cell clusters. The red dots represent cell with PDIAS expression. (B) Violin plot of PDIA5 expression
distribution of different cell clusters. (C) The single-cell trajectory of neoplastic cells contains four main branches. Cells are colored based on state (left), pseudotime
(middle), and PDIAS (right). (D) The single-cell trajectory of macrophages contained four main branches. Cells are colored based on state (left), pseudotime (middle),
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comparing significantly to co-culturing with U251 PDIA5 (Figure
6B). Histological sections demonstrated cell types of co-culturing
organoids (Figure 6C). In co-culturing with U251 siPDIA5, HMC3
was obviously monitored comparing to other organoids.
Accordingly, these results demonstrated that PDIA5 high glioma
cells functionally promoted tumor cell proliferation and exhausted
immune cells (HMC3). Furthermore, knock-down PDIA5
presented the malignant behavior decreasing of glioma cells in
immune cells exhausting.

Immunotherapy Is More Practical for High
PDIAS Patients

In recent years, immunotherapies, which target the immune
checkpoint molecules including CTLA-4, PD-1, and PD-L1/2
have offered new treatment opportunities and improved survival
in hard-to-treat tumors (7, 8). To assess the correlation between
PDIA5 and immune checkpoints, we selected several well-known
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immune checkpoints, including LAG3, HAVCR2 (TIM-3),
CD274 (PD-L1), CD276 (B7-H3), CD80, PDCD1LG2 (PD-L2),
PDCD1 (PD-1), and IDOL1 for correlation analysis. In CGGA
dataset, PDIA5 expression was positively associated with CD276,
CD274, PDCD1LG2, and HAVCR2 in pan-glioma and LGG
patients, and positively correlated with CD276, PDCD1, CD274,
PDCD1LG2, and HAVCR2 in GBM patients. In TCGA datasets,
there was positive correlation between PDIA5 and CD276 or
PDCDI1LG2 in pan-glioma patients, and PDIA5 expression was
positively associated with CD276, PDCD1LG2 and HAVCR2 in
LGG patients. However, in GBM patients, PDIA5 only
demonstrated a strong positive correlation with CD276
(Figures 7A, B). Altogether, our results imply that PDIA5 has
positive correlation with clinically relevant immune checkpoint
molecules in gliomas.

Subsequently, we investigated whether PDIA5 could predict
glioma patients’ responses to checkpoint inhibitor
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FIGURE 6 | PDIA5 high expression tumor cells exhausted immune cells (HMC3) activation. (A) PDIAS relative U251 lines were co-cultured with HMC3 GFP in organoids
medium and monitored and quantified at 3/10 days-post droplets implantation (exposure time: 1.95 ms). (B) GFP ROI per dimension measurements valued the viabilities of
HMGCS in each co-culturing (exposure time: 0.888 ms). (C) HE stained co-cultured organoids demonstrated cell types. Note: figure panel pairs in (A=C) represent images
captured at differing magnifications; magnification scale bars: panel (A, B) 4xamplification: 750 um; panel (C) 10xamplification: 200 um. **P <.001.
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immunotherapy in anti-CTLA-4 and anti-PD-1 based on CGGA
and TCGA datasets, and found that compared with low PDIA5
group, high PDIA5 group was expected to respond better to
immunotherapies (Figure 7C). Previous work indicates that GEP
and CYT are able to enhance anti-tumor activity and associated
with the response to PD-1 inhibitor (49, 50). Therefore, we
further explored the relationship between PDIA5 and GEP as
well as CYT. PDIA5 was found to be positively associated with
GEP and CYT (Figures 7D, E).

Then we continued to analyze the predictive value of PDIA5
regarding the response of anti-PD-L1 (IMvigor210) and anti-
PD-1 (GSE78220) therapy for urothelial cancer and metastatic
melanoma cohorts, respectively. In the anti-PD-L1 cohort
(IMvigor210), we observed that patients with high PDIA5
experienced significant clinical survival benefits (Figure 8A).
The significant treatment strengths and response to anti-PD-L1
immunotherapy in high PDIA5 group compared to the low
PDIAS5 group were also verified (Figures 8B-E). In the anti-PD-
L1 cohort, the percentages of complete response (CR) and
progressive disease (PD) were 19.35 and 39.44% in the high
PDIAS group, respectively, and 6.7 and 58.64% in the low PDIAS5
group, respectively. And the proportion of high PDIA5
expression in CR group and PD group were 35.93 and 11.56%,
respectively. Additionally, the high PDIA5 group exhibited high
expression of CD274 (PD-L1), which resulted in good response
to anti-PD-L1 therapy (Figure 8F). Similarly, notable favorable
outcome of the high PDIA5 group was also observed in the anti-
PD-1 cohort (GSE78220) (Figure 8G). The frequencies of CR,
PD, and partial response (PR) were 15.99, 42.25, and 41.77% in
the high PDIA5 group, respectively, and 0%, 77.53, and 22.47%
in the low PDIA5 group, respectively (Figure 8H). And the
proportion of high PDIAS5 expression in CR group, PD group,
and PR group were 100, 84.35, and 94.84%, respectively (Figure
8I). The difference is not statistically significant possibly due to
the small sample size. The above findings suggest that patients
with high PDIAS5 have high anti-tumor immune activity and may
benefit from immunotherapies.

DISCUSSION

Based on large-scale bioinformatic analysis, we are the first to
comprehensively analyze PDIA5 expression profiles in gliomas
according to the WHO grading system, histopathology,
molecular biomarkers, and molecular subclasses. PDIA5
expression levels were elevated in malignant gliomas ground
on the above different categories. PDIA5 overexpression was also
found in the areas of infiltrating tumor cells according to
radiology imaging. Importantly, our results show that high
levels of PDIA5 expression predict poor outcomes based on
survival analysis of different subgroups.

Genomic alterations in gliomas are able to predict disease
classification and prognosis (51). In CNV analysis, we found
focal amplification peaks for oncogenes in the high PDIA5 group
and focal deletion peaks for tumor suppressor genes. Several
common somatic mutations in GBM including TP53, TTN,

PTEN, and EGFR (52), were also present in the high PDIA5
group. These results suggest that high PDIA5 expression plays an
important role in glioma infiltration. Investigating the detailed
mechanism of PDIA5 promotion of glioma development may
help to develop new therapeutic strategies.

High-grade gliomas progress rapidly, and cause short survival
of patients, among which GBM harbors the most severe
malignancy. The role of the immune microenvironment in the
progression of gliomas has become increasingly well-known (53).
Previous research has shown that the tumor immune
microenvironment influences gene expression of tumor tissues
and the degree of stromal and immune cell infiltration contribute
notably to prognosis (54). Stromal score, immune score, and
ESTIMATE score, which are based on ESTIMATE algorithm,
were shown to be negatively correlated with the prognosis of
GBM (47), glioma, oligodendroglioma, melanoma (55), and
gastric cancer (56). In our research, we found these three
ESTIMATE algorithm scores were increased along with
PDIAS, indicating that high expression level of PDIA5 is
positively correlated with immune infiltration in gliomas.

Infiltrating immune cells in glioma tumor microenvironment
are comprised of microglia/macrophages, CD4+ T cells,
regulatory T cells (Tregs), MDSCs, and granulocytes, among
which microglia and MDSC are the most frequent (53),
contributing to ineffective immune activation in GBM (57).
Our results revealed that multiple immune cell types were
enriched in high PDIA5 patients. And the correlation between
PDIA5 and T cells as well as macrophages in gliomas was
presented in the subsequent specific analysis.

So far, no previous studies have focused on the interaction
between PDIA5 and tumor immunity, but a few studies on PDI and
immune cells have demonstrated that PDI can elicit CD8+ T-cells in
leishmaniasis (58, 59). Caorsi et al. have shown PDIA3 induced
proliferation of autologous CD4 and CD8 T cells in colorectal
cancer, accompanied by PDIA3-specific Thl effector cell
accumulation in tumor tissue (60). Besides, the other member of
PDI family has also been identified to be relevant to the activation
and function of macrophages (61). Most of the functions of PDIA5
remains unclear, but the b-type domain of PDIA5 has a binding
region for PDIA3 (62), suggesting the possibility that PDIA5 may be
related to some biological functions of PDIA3. However, basic
research is needed to further investigate the specific interactions
between PDIA5 and the immune system in gliomas.

Gliomas, especially GBM, can escape anti-tumor immunity
and cause severe T cell dysfunction, which includes the apoptosis
of effector T cells and the activation of Tregs (63). Our
correlation analysis of immune pathways showed that PDIA5
was positively associated with the differentiation of regulatory T
cell and the apoptotic process of T cells, while negative correlated
with CD4+ T cell activation and proliferation. Besides, the
investigation about inflammatory activity suggested that
PDIA5 was also enriched in the biological process of T cells.
The above indicating that PDIA5 may be associated with
abnormal T cell function in gliomas.

Additionally, growing evidence have identified that tumor-
associated macrophages (TAMs) played a key role in the

Frontiers in Immunology | www.frontiersin.org

February 2021 | Volume 12 | Article 628966


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Zhang et al.

PDIAS Associated With Immune Infiltration

FIGURE 7 | Immunotherapy is more practical for high PDIA5 patients. Correlation between PDIA5S and immune checkpoint members in pan-gliomas, low grade
glioma (LGG), and glioblastoma multiforme (GBM) from the Chinese Glioma Genome Atlas (CGGA) (A) and The Cancer Genome Atlas (TCGA) (B) datasets.

(C) Submap analysis of the response of anti-CTLA-4 and anti-PD-1 therapy in the CGGA and TCGA datasets. low_b, or high_b was the value obtained from low_p,
or high_p multiplied by 8 (2 *4) based on Bonferroni correction, respectively. (D) The relationship between PDIA5 and T cell-inflamed gene expression profile (GEP)
level in the CGGA and TCGA datasets. (E) The relationship between PDIA5 and cytolytic activity (CYT) in the CGGA and TCGA datasets. **P <.001.
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progression and metastasis of tumor cells (64-66). As the result
of the impact of metabolites of malignant cells, TAMs in the
tumor microenvironment make corresponding metabolic
changes, leading to functional reprogramming of TAMs which
includes the M2 polarization of macrophages, and alterations of
cytokines and angiogenic factors secretion. These above changes
are conducive to the migration and invasion of tumors (67, 68).
Our immunohistochemistry results found that the number of
macrophages increased with the WHO grade of gliomas, which
was consistent with previous studies. Further analysis attested
the positive correlation between PDIA5 and macrophage,
especially M2, infiltration in gliomas. Therefore, we deduced

that high expression of PDIA5 may induce macrophage
associated immunity, and contribute to M2 polarization of
macrophage in gliomas.

To learn more about the role of PDIA5 in macrophage
associated immunity and malignant cell proliferation of
gliomas, scRNA-seq analysis and gain of function as well as
loss of function assay were performed. To date, scRNA-seq has
exhibited great potential in screening therapeutic targets for
antitumor immunity. Several studies have analyzed the gene
expression of immune cells in gliomas using scRNA-seq data.
Goswami et al. identified CD73 as a specific immunotherapy
target which enhances the antitumor immune response to
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immune checkpoint therapy in GBM using scRNA-seq (69), and
Cheng et al. identified 31 genes that could be biomarkers for
GBM tumor cells based on single cell sequencing (70).
Additionally, pseudotime trajectories analysis is capable of
capturing and dissecting transcriptional changes in cells during
glioma progression. Therefore, it can be used to evaluate the
relationship between genes and development of specific cell
lineages in gliomas (41). In the present study, using scRNA-seq
data, we found that high PDIAS5 expression existed in neoplastic
cells and macrophages of gliomas, further research on
pseudotime trajectories and functional annotations emphasized
the correlation between PDIA5 and macrophage infiltration as
well as progression in gliomas. Moreover, cell transfection and
co-culture of glioma cells and macrophages based on organoids
revealed that PDIAS5 in tumor cells mediated glioma cells
proliferation and macrophages exhausting, which further
confirmed the crucial role of PDIA5 in regulating immune
activity in the tumor microenvironment of glioma.

Nevertheless, the overexpression of PDIA5 resulted in the
ultimate exhaustion of macrophage in our in vitro experiments,
which was contrary to the findings that PDIA5 was positively
correlated with macrophage infiltration in our previous
bioinformatic analysis. This phenomenon can be attributed to the
fact that the glioma cells with high expression of PDIA5 secrete
certain cytokines to recruit M2 macrophages, which interact with
glioma cells (67) and potentially ended with apoptosis and
degradation. And the consumed macrophages can be
continuously replenished from the peripheral blood and resident
microglia in brain in vivo (68), while the number of macrophages in
the co-culture system is constant, eventually led to the exhaustion of
macrophages. Therefore, the high level of PDIA5 expression in
gliomas indeed contribute to recruiting macrophages and probably
mediating the polarization of macrophages to M2. Taken together,
our findings demonstrate that PDIA5 overexpression correlates
with immune infiltration and inflammation in gliomas, which may
lead to poor prognosis in glioma patients.

Immune checkpoint refers to specific molecular interactions at
the interface between T cells and antigen presenting cells, and
exhibits the ability to inhibition T cell function (63). Targeting
immune checkpoint, which enhances anti-tumor immune
responses, has brought about remarkable clinical advances and
offered new targets for tumor therapy (7). Each immune checkpoint
has its own unique molecular characteristics, and several immune
checkpoints may interact with each other. The prominent PD-1/
PD-L1 axis, can promote invasion of GBM cells in brain tissue (71).
Additionally, PD-1 has also proven to be correlated with other
immune checkpoints including IDO1, LAG3, TIM-3, and B7-H3
(72). Li et al. found that glioma patients had higher TIM-3
expression on peripheral innate immunocytes, which further
contributed to immune disorders (73). B7H3 has been reported
to play a pivotal role in cell differentiation and carcinogenesis of
glioma by Zhangetal. (74), And PD-L2, another ligand of PD-1, can
evade antitumor immunity through modulating T cell response and
proliferation in gliomas (75). We found tight correlations between
PDIA5 and B7-H3, PD-L2, and TIM-3, suggesting that PDIA5
probably plays a synergistic role with those immune checkpoints in

the progression of glioma. Further predictive analysis based on the
existing databases showed that patients with high PDIA5 had high
anti-tumor immune activity and were more likely to benefit from
immunotherapies in gliomas as well as other tumor types,
indicating that inhibition of combined PDIA5 and these immune
checkpoints could improve the clinical management of gliomas.

Hsowever, there are still some limitations regarding this study,
which are expected to be improved on in subsequent studies. Firstly,
the relationship between PDIA5 and B cells is unclear or even seems
tobe contradictory in different analyses relative to macrophages and
T cells. Despite the negative association between PDIA5 and IgG
indicate PDIA5 inhibition of IgG activity, which might only
represent part of the B cells, PDIA5 promotion of malignancy
attract more immune cells including B cells in the tumor
microenvironment of gliomas. Secondly, the high anti-tumor
activity and poor clinical outcomes are another discrepancy
among patients with high PDIAS5. Prior evidence implicated that
high PD-L1 contributed to immunosuppression but enhanced the
response rate to anti-PD-1 therapy in metastatic melanomas and
breast cancer (76, 77). The authors suggested that pre-treatment
high level of PD-L1 may be related to its role in immune dysfunction
and T cell exhaustion, while the increased PD-LI level in on-
treatment patients was caused by the reinvigoration of T cells.
And the loss of PD-L1 inhibition effect on T cells was due to the
interaction between PD-L1 and PD-1 blocked by anti-PD-1
therapy. Similar interplay patterns potentially exist between
PDIA5 and certain immune checkpoint, like PD-1 and CTLA-4,
giving rise to better responses to checkpoint inhibitor
immunotherapy. Generally, existing data regarding the action
mechanism of PDIA5 to interfere with the immune system is
relatively lacking, and more wet experiments are needed to
further interpret the role of PDIAS5 in gliomas immunology.

In summary, our findings demonstrate that PDIAS is
upregulated in multiple types of malignant gliomas, and has
multifaceted prognostic value in cancers. It is particularly
noteworthy that PDIA5 overexpression correlates with immune
infiltration and is associated with poor prognosis in glioma patients.
And patients with high PDIAS5 are more likely to benefit from
immunotherapies. Overall, these findings indicate that PDIA5
could be a promising target for glioma immunotherapy.
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