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The HLA gene complex is the most important single genetic factor in susceptibility to most
diseases with autoimmune or autoinflammatory origin and in transplantation matching.
Most studies have focused on the vast allelic variation in these genes; only a few studies
have explored differences in the expression levels of HLA alleles. In this study, we
quantified mRNA expression levels of HLA class I and II genes from peripheral blood
samples of 50 healthy individuals. The gene- and allele-specific mRNA expression was
assessed using unique molecular identifiers, which enabled PCR bias removal and
calculation of the number of original mRNA transcripts. We identified differences in
mRNA expression between different HLA genes and alleles. Our results suggest that
HLA alleles are differentially expressed and these differences in expression levels are
quantifiable using RNA sequencing technology. Our method provides novel insights into
HLA research, and it can be applied to quantify expression differences of HLA alleles in
various tissues and to evaluate the role of this type of variation in transplantation matching
and susceptibility to autoimmune diseases.
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INTRODUCTION

The highly polymorphic human leukocyte antigens (HLA) are crucial in presentation of self, non-
self and tumor antigens to T cells, and play an important part in autoimmunity and infection
responses, as well as in organ and hematopoietic stem cell transplantation (HSCT). In the thymus
and bone marrow, the HLA molecules presenting self-derived peptides to maturing T- and B-cells
induce the central tolerance. The classical HLA genes are divided into two classes. HLA class I genes
including HLA-A, HLA-B, and HLA-C are expressed on the surface of all nucleated cells, whereas
the expression of class II genes; HLA-DR, HLA-DQ, and HLA-DP is restricted to professional
antigen presenting cells (1, 2). Recent studies have reported varying expression levels of HLA alleles
based on the quantitative polymerase chain reaction (qPCR) (3–9) and the mean fluorescence
intensity (MFI) (10, 11). The differential expression of HLA genes and alleles has been associated
with immunologically mediated diseases, such as Crohn’s disease (7) and HIV (11, 12), follicular
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lymphoma (9), lung cancer (13), ovarian cancer (14, 15), and the
outcome of HSCT through the increased risk of graft versus host
disease (GvHD) (5, 10, 16). In addition to allele-specific
differences in the constitutive expression, a recent study also
found HLA allele-specific expression to vary during T cell
activation (17). These differences in HLA expression may
partly explain the susceptibility to autoimmune diseases, tumor
invasion, and infections. In HSCT, the incompatibilities between
the donor and the recipient have made the expression differences
of HLA molecules an interesting target for finding permissive
mismatches. Although currently only qualitative HLA typing is
considered in donor selection, techniques based on RNA
sequencing (RNA-Seq) can be used to determine differences in
HLA expression that may influence the outcome of
the transplantation.

In the past years, next generation sequencing (NGS) has enabled
the rapid development of several novel high-throughput HLA
typing methods on different sequencing platforms (18–25). Unlike
genomic DNA based applications, RNA-Seq provides
comprehensive gene expression information in addition to HLA
allele calling. Several existing tools (26–29) have been developed to
perform HLA typing from short RNA-Seq reads using whole
transcriptome data. In addition, multiple existing computational
tools enable HLA expression quantification from RNA-Seq data. A
tailored gene quantification pipeline was applied to publicly
available RNA-Seq datasets to obtain expression estimates from
different cancer cell lines (30) and 56 normal tissues and cell types
(31). A different computational pipeline provided both gene-level
and allele-level expression estimates (32), and an alternate reference
was used to generate gene-level and haplotype-level estimates of
transcript abundance (33). Additionally, a method with capture
probes together with RNA-Seq was used to quantify HLA allele-
specific expression from 161 peripheral blood mononuclear cells
(PBMCs) and 48 umbilical cord blood cells (34). In comparison to
qPCR and fluorescence-based methods, RNA-Seq is less laborious
and time-consuming. However, it has its own challenges. With over
27,000 different HLA alleles reported by the IPD IMGT/HLA
database (Release 3.41.2, https://www.ebi.ac.uk/ipd/imgt/hla/), a
precise identification of HLA alleles from short-read NGS data is
challenging. The highly polymorphic and homologous nature of
HLA genes often leads to ambiguous results in the allele assignment.
Additionally, in HLA expression quantification short RNA-Seq
reads may cause bias by mapping to several HLA alleles or even
several genes (35). This may lead to a situation where many reads
aligning to multiple alleles are excluded from the analysis. There are
some ways to overcome this problem. One option to avoid multi-
mapping reads is to use longer sequencing reads to cover more
polymorphic positions between different alleles. Longer reads are
unlikely to align multiple positions and hence make the alignment
more accurate. Another is to use a sample-specific HLA reference in
the expression quantification step. A reference, which contains only
the known alleles will drastically reduce the number of alleles where
a read can align. In addition to RNA-Seq reads mapping to multiple
locations, PCR duplicates can also cause bias in the HLA expression
quantification. Several RNA-Seq methods have a PCR amplification
step in the library preparation protocol to expand the starting
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material. The problem is the potential differences in the
amplification efficacy, which may lead to overrepresentation of
some molecules (36, 37). By incorporating unique molecular
identifiers (UMIs) in the library preparation as molecular
barcodes, it is possible to distinguish PCR duplicates derived from
a single molecule in the data analysis step (38). The number of UMI
combinations must be high enough for all molecules in the starting
pool to receive a different UMI (39). Both five and ten nucleotides
long UMIs have proven to be efficient to correct the PCR-induced
artifacts, and to accurately count only the original transcripts from
RNA-Seq data (38, 40).

Here, we describe a highly multiplexed RNA-based
sequencing method using UMIs to quantify HLA gene- and
allele-specific expression from PBMCs of 50 healthy blood
donors. For accurate, high-throughput quantification of the
expression levels of HLA genes and alleles, we developed a
bioinformatics pipeline, written in R, based on counting of
UMIs to distinguish original transcripts from PCR copies.
MATERIALS AND METHODS

Samples and RNA Extraction
This study collected 50 healthy blood donor buffy coat samples
with a negative HIV, HBsAg, and HCV status, which underwent
an isolation of pheripheral blood mononuclear cells using Ficoll-
Paque™ Plus (GE Healthcare), Dulbecco’s Phosphate Buffered
Saline DPBS CTS™ (Gibco life technologies), Fetal Bovine
Serum FBS (Sigma) and SepMate™-50 tubes following the
manufacturer’s protocol (Stemcell Technologies). The use of
anonymized PBMCs from blood donors was conducted in
accordance with the rules of the Finnish Supervisory Authority
for Welfare and Health (Valvira). Cell count was measured from
a mix of 50 µl of cell suspension in DPBS with 2% FBS, 50 µl of
Reagent A100 lysis buffer, and 50 µl of Reagent B stabilizing
buffer using a NucleoCassette and a NucleoCounter® NC-100™

(all chemometec). Total RNA was isolated from fresh PBMC
samples containing 1–10 × 106 cells using RNeasy Mini kit and
Rnase-Free DNAse Set (both Qiagen) within 2h after PBMC
isolation. RNA samples were quantified and their purity was
assessed with the Qubit™ RNA High Sensitivity Assay Kit in
Qubit® 2.0 fluorometer (ThermoScientific). The RNA quality
was checked using an RNA 6000 Pico Kit (Agilent Genomics) in
a 2100 Bioanalyzer (Agilent Genomics) to obtain an RNA
Integrity Number (RIN) score.

Reverse Transcription by Template
Switching and Target Amplification
We used an adaptation of the STRT method to generate full
length complementary DNA (cDNA) molecules from RNA
transcripts (41). Briefly, the poly-A hybridization to the first
strand cDNA synthesis primer was performed in a 96-well plate
in a T100™ Thermal Cycler (Biorad) with 3 min at 72°C with 25
ng of RNA, 1% Triton™ X-100 (Sigma), 20 µM of STRT-V3-
T30-VN oligo, 100 µM of DTT (invitrogen, life technologies,
Thermo Fisher), 10 mM dNTP (Bioline), 4 U of Recombinant
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https://www.ebi.ac.uk/ipd/imgt/hla/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Johansson et al. HLA Allele Expression
RNase Inhibitor (Takara Clontech), 1:1,000 The Ambion® ERCC
RNA Spike-In Control Mix (life technologies, Thermo Fisher) in
a total volume of 3 µl. All oligos were from Integrated DNA
Technologies and are listed in Table S1. Reverse transcription of
the whole transcriptome was performed adding 3.7 µl of the RT
mix containing 5× SuperScript first strand buffer (invitrogen by
Thermo Fisher Scientific), 1 M MgCl2 (Sigma), 5 M Betaine
solution (Sigma), 134 U of SuperScript ® II Reverse
Transcriptase (invitrogen by Thermo Fisher Scientific), 40 µM
RNA-TSO 10bp UMI, 5.6 U of Recombinant RNase Inhibitor
immediately to each reaction. To complete the reverse
transcription and the template switching, the plate was
incubated 90 min at 42°C followed by 10 min at 72°C. In this
reaction, every transcript receives a unique distinct barcode.
After RT the cDNA was further amplified with 2× KAPA HiFi
HotStart ReadyMix (Kapa Biosystems), 10 µM ImSTRT-TSO-
PCR with a thermal profile consisted of an initial denaturation of
3 min at 95°C followed by 20 cycles of 20 s at 95°C, 15 s 55°C, 30 s
at 72 and one cycle of final elongation of 1 min at 72°C in a final
volume of 50 µl. Qubit™ dsDNA High Sensitivity Assay Kit
(Thermo Fisher Scientific) was used to measure the
concentration of all cDNA samples. The 3’ fragments of the
cDNA were released in a restriction reaction using SalI-HH
(New England Biolabs) according to the manufacturer’s
protocol. The concentration of DNA was measured using
Qubit™ dsDNA High Sensitivity Assay Kit and DNA integrity
and the size distribution were assessed with High Sensitivity
DNA Kit (Agilent Genomics). For HLA target enrichment one
TSO-specific universal forward primer and eight gene-specific
reverse primers with universal tails for amplicon sequencing
were used to amplify exons 1 to 8 in class I genes HLA-A, -B, and
-C or exons 1 to 5 in class II genes HLA-DRA, -DRB1, -DPA1,
-DPB1, -DQA1 and -DQB1.HLA-A, -B, and -C had one common
primer. All seven gene-specific primers were designed to fall
within a non-polymorphic region using the known sequence
diversity, as described in the international ImMunoGeneTics
IMGT/HLA database (http://www.ebi.ac.uk/imgt/hla/). The
amplification was performed in 96-well plates with 3 µl of
template cDNA, 10× Advantage 2 PCR buffer, 50×
Advantage® 2 Polymerase Mix (Takara, Clontech), 10 mM
dNTP (Bioline), 10 µM TSO forward primer and one of the
seven HLA gene-specific reverse primers in a total volume of 15 µl.
The PCR reaction consisted of an initial denaturation of 30 s at
98°C following three cycles of 10 s at 98°C, 30 s at 55°C, 30 s at
72°C and 27 cycles of 10 s at 98°C, 30 s at 71°C, 30 s at 72°C and
final elongation of 5 min at 72°C. To confirm the amplicon
lengths and non-specific amplification, 4 samples were selected
from each plate with the amplification performed using different
gene-specific primer. These samples were run on a 2% agarose
gel (Bioline) with 10× BlueJuice™ loading dye (invitrogen by
Thermo Fisher Scientific) in 0.5× TBE (Thermo Fisher Scientific)
with the GelGreen™ (Biotium) and visualized using the Quick-
Load 1kb DNA Ladder (New England Biolabs). DNA of the PCR
amplicons was quantified with the Qubit™ dsDNA High
Sensitivity Assay Kit and the fragment sizes analyzed with
Agilent’s High Sensitivity DNA Kit.
Frontiers in Immunology | www.frontiersin.org 3
Illumina Library Preparation and
Sequencing
For Illumina sequencing, all genes of 50 HLA amplicons were
multiplexed per sample. 50 cDNA and 50 HLA amplicon
libraries were prepared using the Nextera XT DNA Library
Preparation Kit (Illumina). For an optimal insert size and a
library concentration 600 pg of each cDNA and PCR amplicon
sample was tagmented for 5 min at 55°C using 5 µl of Nextera’s
Tagment DNA Buffer, 0.25 µl of Nextera’s Amplicon Tagment
Mix in a final volume of 10 µl. The transposone was inactivated
with 2.5 µl of Nextera’s Neutralize Tagment Buffer for 5 min at
room temperature. The dual indexing and adapter ligation took
place in a PCR reaction with 7.5 µl of Nextera PCRMaster Mix, 4
µl of nuclease-free water and 10 µM of i5 custom oligo and 10
µM of Nextera i7 N7XX oligo using a limited-cycle PCR
program: an initial denaturation 30 s at 95°C following 12
cycles of 10 s at 95°C, 30 s at 55°C, 30s at 72°C with a final
elongation step of 5 min at 72°C. After the amplification all 50
cDNA and HLA amplicons samples were pooled together into
two separate pools, one cDNA and one HLA amplicon pool.
These two pools were then purified twice using the Agencourt
AMPure XP beads according to the manufacturer’s instructions
first with 0.6× beads:DNA ratio and then with 1× beads:DNA
ratio and eluted in 30 µl. Qubit™ dsDNA High Sensitivity Assay
Kit was used to quantify DNA and HT DNA HiSens Reagent kit
and DNA Extended Range LabChip in LabChip GXII Touch HT
(all PerkinElmer) to assess the size distribution of the libraries. A
double size selection was performed with the Agencourt AMPure
XP beads according to the manufacturer’s instructions to remove
fragments over 1,000 bp (0.8× beads:DNA ratio) and under 300
bp (0.6× beads:DNA ratio). Prior to sequencing the DNA
concentration was assessed with Qubit™ dsDNA High
Sensitivity Assay Kit HT DNA HiSens Reagent kit and the
library size verified with HT DNA HiSens Reagent kit. The
two pooled and barcoded libraries were denaturated with 0.2 M
NaOH and diluted in the HT1 buffer to obtain a final library
concentration of 20 pM in 0.95:0.05 cDNA : HLA amplicon ratio.
The libraries were sequenced by using Illumina Nextseq
sequencer with 300 cycles (NextSeq 500/550 v2) kits generating
100 bp (read 1) and 200 bp (read 2) reads.

Data Analysis
Paired-end reads from cDNA and HLA amplicon libraries in
fastq format underwent an UMI extraction using the UMI-tools
(v0.5.11) (42), a quality control step using FastQC (43), and were
quality trimmed using trimmomatic (v0.35). Processed cDNA
library reads were aligned using HISAT2 (v2.1.0) (44) to the
human genome (GRCh38) and assigned to genes according to
the UMI-tools pipeline using featureCounts tool from the
subread package (v1.5.3) (45). Samtools (v1.4) were used to
sort and index BAM files and UMI-tools count tool to count
the number of unique UMIs per gene. The set of 50 count files
were then merged into a single count table using the Define NGS
experiment tool in Chipster (v3.12.2) (46).

To quantify HLA expression from RNA-Seq reads, we
implemented the strategy of assessing allele-specific expression by
February 2021 | Volume 12 | Article 629059
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aligning reads, using LAST (47), to sample-specific personalized
HLA references extracted from the IPD IMGT/HLA reference
database. The personalized HLA references, which contain the
reference sequences of all the HLA alleles specific for a sample,
were built based on the information from prior HLA typing. To
retain all reads that originate from the HLA region, alignment
results from separate alignment of R1 reads, R2 reads, and paired-
end alignment (using last-pair-probs) were combined. We selected
LAST to allow optimal alignment with a relatively “permissive”
initial step to collect all HLA originating reads. By changing the
default parameters, we opted LAST, and performed the more strict
read discrimination tasks in the latter steps. We used LAST with the
parameters -s 2 -T 0 -l 50 -a 100 -Q 1 -i1, with a long minimum
initial seed length of 50 to enforce strict long initial seedmatching (-l
50, the default last setting for this parameter was 1), and a very
prohibitive cost for opening gaps to decrease the chance of any read
with some similarity aligning to the references (-a 100, default 7).
This first alignment step filtered out reads that do not map to any of
the alleles in the personalized HLA reference for a sample. The set of
reads that aligned to any of the alleles in the personalized reference
were retained, and their UMIs and aligned portions along with their
base qualities were extracted from the LAST output file (in MAF file
format). UMIs were extracted from the read names of the aligned
reads. These aligned reads were processed further as described next.

The HLA aligning reads for a sample were first grouped by their
UMIs, and each UMI (i.e, reads having the same UMI or UMIs that
differ by at most 1 nucleotide, which are assumed to originate from
the same transcript) were then evaluated separately for assignment to
HLA alleles. The total number of UMI assignments or counts for
each allele represent the estimated allele-specific expression after
UMI deduplication. Prior to assigning the UMIs to HLA alleles, the
key polymorphic sites between the alleles in the personalized HLA
reference sequences were identified. First, by performing multiple
alignment of the sequences (using msa R package) (48), and then
obtaining the positions with high diversity (Shannon entropy index >
0.5) from the consensus matrix of the sequences (generated using
Biostrings v2.46.0 and ShortRead R packages) (49, 50). The
corresponding bases at the polymorphic sites were identified for all
alleles in the personalized reference. To assign each UMI to an HLA
allele, the result from the LAST alignment was processed further.
UMIs that have reads aligning to only one specific allele were
counted to that allele so that each UMI is counted just once. For
each UMI that has reads mapping to multiple alleles, the aligned
portions of the reads from LAST are re-aligned to the personalized
HLA reference sequences using overlap (end-to-end) alignment
(pairwiseAlignment function of Biostrings R package). Then, a
Bayesian based statistical model was used to assign the UMIs to
one of the reference alleles as follows. The UMI’s likelihood of
originating from each of the reference alleles, P(U|A), was calculated
based on how well the reads of the UMI, from the end-to-end
alignment, match the corresponding bases of each reference allele at
the key polymorphic sites with:

P(U jAi) =
1
no

n

k=1

p(bkjAik) where , n i s number o f key

polymorphic sites covered by reads of the UMI, bk is the
observed base at the key site k in U, Aik is the reference base at
Frontiers in Immunology | www.frontiersin.org 4
key site k for the reference HLA allele i, and U is the UMI. The
probability of the observed base at each key position given an
HLA allele was calculated as:

p(bkjAik) = f1−e, if bk=Aik
e=3, if bk≠Aik

, where e is base-specific sequence

error given by e=10^(-q/10) and q is the sequencing quality of
the base in phred score.

The likelihood was calculated as the sum of the probabilities
of the observed bases, p(b|A), assuming each covered key site (by
the reads of the UMI) contributes 1/n of the total likelihood,
which is considered to be an aggregate of only the key
polymorphic sites covered by the reads of the UMI, n. A
likelihood close to 1 suggests strong match between the UMI
and the reference allele. UMIs were then assigned to the HLA
reference allele with the highest likelihood, and counted once to
that allele (i.e, are de-duplicated upon counting). The R script of
this pipeline (HLAXPress), which implements the allele-specific
estimation analysis described above can be found at https://
github.com/dyohanne/HLAXPress.

After HLA expression quantification, a normalization of
Illumina cDNA and HLA amplicon reads took part. First,
HLA gene-specific counts resulting from the alignment of
cDNA reads to the human genome were removed and
replaced in the merged count table with HLA allele-specific
UMI counts derived from cDNA reads after the HLAXPress
pipeline. Second, read counts were normalized to counts per
million (CPM) using the cpm tool from the limma package
(v3.30.13) (51). For Illumina HLA amplicon libraries, UMIs of
each allele were normalized first by calculating unique UMI
proportions between alleles out of the total number of UMIs
per sample. Then, for each individual these proportions were
multiplied by the total number of CPM-normalized unique
UMIs of all HLA alleles in cDNA library.

Statistical Analysis
All statistical analyses were performed using GraphPad Prism
v8.4.2 (GraphPad Software). Statistical significance of gene-,
allotype, and haplotype-level expression were analyzed using
the non-parametric Kruskal-Wallis test or the Mann-Whitney
U test. In the gene-level expression analysis, the Kruskal-Wallis
test was followed by the Dunn’s multiple comparisons test. The
Spearman correlation coefficients were applied in the
comparison of allelic ratios between the datasets. In all tests, p-
values < 0.05 were considered statistically significant.

Software Availability
HLAXPress is freely available at https://github.com/
dyohanne/HLAXPress.
RESULTS

Method Development
To determine HLA gene- and allele-specific expression using
UMIs, we developed an RNA-Seq protocol (Figure 1) based on
the STRT method (40). Our method included an incorporation
February 2021 | Volume 12 | Article 629059
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of 10 bp UMI to the 5’ end of RNA transcripts using a template
switching oligo (TSO) in the first strand synthesis followed by
an amplification of the full-length complementary DNA
(cDNA). A pool of 10 bp UMI equaled to 1,048,576 unique
barcodes, which were implemented to improve the PCR
duplicate removal. To compare the HLA expression using the
full transcriptome and targeted HLA genes, the full-length
cDNA library was split, and processed in parallel in HLA
cDNA and HLA amplicon library preparation protocols. Nine
Frontiers in Immunology | www.frontiersin.org 5
gene-specific primers were designed as reverse primers to
enrich HLA genes together with a TSO primer from full-
length cDNA. Both libraries underwent tagmentation, dual-
indexing using PCR, and sequencing in a single run on
Illumina’s Nextseq 500 cycles kit.

Sequence Read Analysis and HLA Genotyping
Both, Illumina cDNA and amplicon library reads underwent an
UMI extraction (42), a quality overview step using FastQC (43),
FIGURE 1 | Experimental design of Illumina HLA RNA-Seq. In the library preparation process, mRNA is first transcribed into complementary DNA (cDNA) with
simultaneous integration of 10 bp unique molecular identifier (UMI) in RNA template switching oligo (rnaTSO) and further amplified. The full-length cDNA (FLcDNA) is
then divided and processed in parallel in Illumina’s cDNA and amplicon library preparation protocols. The amplicon library preparation included an enrichment of HLA
genes using gene-specific primers. Lastly, the full-length cDNA and HLA amplicons are tagmented, and sample-specific barcodes are added for multiplexing. The
method results 5’ end library molecules suitable for Illumina paired-end sequencing.
February 2021 | Volume 12 | Article 629059
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and preprocessing using Trimmomatic (52). After trimming,
55,100 to 1,583,520 reads for the cDNA library and 6,200 to
44,110 reads for the amplicon library remained for the mRNA
expression quantification. HLA typing using an ensemble
method (53) and Luminex SSOP-PCR (Method S1) assigned
52 different HLA class I alleles and 56 different HLA class II
alleles at 2-field level (Table S2). The number of different alleles
per gene were 14 (HLA-A), 24 (HLA-B), 14 (HLA-C), 2 (HLA-
DRA), 18 (HLA-DRB1), 4 (HLA-DPA1), 10 (HLA-DPB1), 11
(HLA-DQA1), and 11 (HLA-DQB1), and the heterozygosity rates
were 62%, 94%, 92%, 16%, 90%, 24%, 78%, 82%, and 89%,
respectively (Table 1). Based on the HLA genotyping
information we built personalized sample-specific HLA
references at 2-field resolution level for all 50 individuals.

Comparison of HLA Expression Quantification
Between Two Illumina Datasets
In the comparison of the correlation between Illumina cDNA
and Illumina amplicon data, we calculated the allele-to-allele
ratio from unnormalized unique UMIs for each heterozygous
allele pair among all 50 samples. The correlation of the allele
ratios (log2) between Illumina cDNA and Illumina amplicon
data was strong (r = 0.74, p < 0.0001; Spearman rank correlation)
with all nine HLA genes included in the analysis (Figure 2A).
This suggested that both datasets alone were able to identify the
expression difference between the two alleles. The correlation of
HLA class I genes and class II genes were r = 0.74 (p < 0.0001)
and r = 0.70 (p < 0.0001), respectively (Figures 2B, C). The gene-
level comparison of the allele ratios revealed that the strongest
correlation were in HLA-B (r = 0.83, p < 0.0001), HLA-C (r =
0.92, p < 0.0001), HLA-DPA1 (r = 0.91, p < 0.0001), and HLA-
DPB1 (r = 0.86, p < 0.0001) (Figures 2E, F, H, I). HLA-DQA1
and HLA-DQB1 showed a moderate correlation with r = 0.58 (p
< 0.0001) and r = 0.69 (p < 0.0001), respectively (Figures 2J, K).
The weakest correlations were in HLA-A (r = 0.44, p < 0.01) and
HLA-DRB1 (r = 0.43, p = 0.004) (Figures 2D, G).

Method Validation
To explore the accuracy our HLA RNA-Seq method, we
determined the gene- and allele-level mRNA expression of
HLA-C of five samples using qPCR (Method S2). The gene-
level comparison showed a high correlation (r = 0.9, p < 0.08)
between qPCR and our HLA RNA-Seq method (Method S2:
Figure S2). For the allele-level comparison, we chose four
Frontiers in Immunology | www.frontiersin.org
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samples with C*06:02~C*07:01 allele pairs and one sample with
C*04:01~C*07:01. Both HLA RNA-Seq and qPCR showed
similar expression patterns at allele-level mRNA expression in
C*06:02~C*07:01 allele pairs (Method S2: Figure S3). However,
in C*04:01~C*07:01, the expression difference between the alleles
was greater in qPCR than in RNA-Seq. This resulted from a
higher mRNA expression of allele C*04:01 in qPCR. Conversely,
the expression of C*07:01 was similar in both methods. We also
compared the gene-level mRNA expression between our method
and the previously published capture RNA-Seq method (34).
Figure S4 shows a high correlation (r = 0.9, p < 0.0009) between
these two methods indicating that our HLA RNA-Seq method
can accurately quantify HLA gene-specific expression from
RNA-Seq data using UMIs. We acknowledge that method-
related biases and experimental factors are possible causes of
variation in results between qPCR and RNA-Seq. Hence, further
studies in the future with several alleles and genes are required to
evaluate the comparability between these two methods.

HLA Gene-Specific Expression
An in-house software tool, HLAXPress, together with personalized
allele references counted the number of unique UMIs representing
the mRNA expression of HLA (Tables S3 and S4). HLAXPress
outputs a report with the UMIs per allele. For this reason, to
characterize the gene-specific expression, the allele-specific UMI
counts were first normalized to library size using the CPM method,
and then summed together to get the gene-specific UMI counts.
Figure 3 shows the expression profiles of nine HLA genes of 50
individuals using the cDNA data. Among the nine HLA genes, there
was a significant statistical difference (Kruskal-Wallis test p <
0.0001) in the gene-level expression comparison. The pairwise
comparison of the gene-specific expression between nine HLA
genes using a Dunn’s test is shown in Table S5. Among the class
I and class II genes, HLA-B and -C were expressed at the highest
levels. The average level of HLA-A gene expression was about 2
times lower compared to the expression ofHLA-C. In the HLA class
II HLA-DRA and -DRB1 genes were expressed at the highest levels
following -DPA1 and -DPB1. HLA-DQA1 and -DQB1 were
expressed at the lowest levels.

HLA Allotype Expression
To explore HLA allele-specific expression, the normalized unique
UMI values of different alleles were first grouped by combining
serologically equivalent alleles into HLA allelic lineages due to the
small sample size per allele. Figure 4 shows the expression profiles
of allelic lineages of eight HLA genes of 50 individuals. HLA-DRA
formed only one allelic lineage and hence was excluded from the
analysis. The results suggested that despite a high variation in allele-
level expression between individuals, the differences in the mRNA
expression between allelic lineages are significant. A Kruskall-Wallis
test showed a significant statistical difference in expression of allelic
lineages among seven HLA genes: HLA-B, -C, -DRB1, -DPA1,
-DPB1, -DQA1, and -DQB1 (Figures 4B–H). However, in HLA-
A, the mRNA expression was not significantly different between
allelic lineages (Figure 4A). We also investigated the magnitude of
the differential allele-specific expression among eight HLA genes by
choosing the highest and lowest expressed allelic lineage with at least
TABLE 1 | The number of different alleles and the heterozygosity rates of nine
human leukocyte antigen (HLA) genes of 50 individuals.

HLA gene Number of different alleles Heterozygosity rate (%

HLA-A 14 62
HLA-B 24 94
HLA-C 14 92
HLA-DRA 2 16
HLA-DRB1 18 90
HLA-DPA1 4 24
HLA-DPB1 10 78
HLA-DQA1 11 82
HLA-DQB1 11 89
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five samples per group (Figure 5). From these, we calculated the
fold change (log2) between the two lineages. The highest expression
differences were between pairs DPB1*02 and DPB1*03 (FC = 1.3, p
= 0.009), DQA1*05 and DQA1*03 (FC = 1.3, p = 0.02), and
DQB1*06 and DQB1*05 (FC = 1.3, p < 0.0001) (Figures 5F–H).
To compare the allele-specific expression between two alleles in
heterozygous allele pairs, we calculated the proportion of the HLA
allele-specific expression out of the HLA gene-specific expression
attributed to the less expressed allele for every heterozygote. Table 2
shows the median and range of the calculated proportions of eight
HLA genes. In addition, we divided the calculated proportions of
Frontiers in Immunology | www.frontiersin.org 7
the allele-specific expression out of the gene-specific expression into
three groups. The first group, 0.01–0.20, represents the large
expression differences between alleles in heterozygotes. The
second group, 0.21–0.40, and the third group, 0.41–0.50, represent
the groups with moderate and small expression differences,
respectively. In HLA-C, -DPB1, -DQA1, and -DQB1, the mRNA
expression between two alleles within an individual was the most
distinct. In these genes, 10% to 14% of the heterozygous allele pairs
belong to the 0.01–0.20 group (Table 2). In HLA-DRB1, 95% of the
heterozygotes belong to the 0.41–0.50 group suggesting that there is
very little allelic imbalance between -DRB1 alleles within individuals.
A B C

D E F

G H

J K

I

FIGURE 2 | Comparison of allele ratios between Illumina cDNA and Illumina amplicon datasets. The allele expression ratio was calculated for each heterozygous
allele pair in the two datasets and a non-parametric Spearman’s rank correlation was used to compare the allele-level expression between cDNA and amplicon data.
The line indicates the linear regression. The Spearman correlation coefficient is given for all genes (A), HLA class I (B), HLA class II (C), and for genes HLA-A (D),
HLA-B (E), HLA-C (F), HLA-DRB1 (G), HLA-DPA1 (H), HLA-DPB1 (I), HLA-DQA1 (J), and HLA-DQB1 (K).
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HLA Haplotype Expression
We also investigated HLA haplotype expression. We selected six
common haplotypes, which have a frequency of more than 5% in
the Finnish population (unpublished data). These haplotypes were
DRB1*03:01-DQA1*05:01-DQB1*02:01 (H1), DRB1*15:01-
DQA1*01:02-DQB1*06:02 (H2), DRB1*13:01-DQA1*01:03-
DQB1*06:03 (H3), DRB1*01:01-DQA1*01:01-DQB1*05:01 (H4),
DRB1*08:01-DQA1*04:01-DQB1*04:02 (H5), and DRB1*04:01-
DQA1*03:01-DQB1*03:02 (H6). In this comparison, we found a
statistically significant difference (Kruskal-Wallis test, p = 0.008) in
the RNA expression between the selected haplotypes (Figure 6).
The H1 haplotype with the lowest expression included DQA1*05:01
and DQB1*02:01, which both had a low expression at the allotype-
level based on the median expression value. In contrast, the H6
haplotype with the highest expression included alleles DQA1*03:01
and DQB1*03:02 with a high expression. Additionally, the DQ
alleles of H2 were linked to the low expression and DQ alleles of H5
to either high (DQA1*04:01) or intermediate expression
(DQB1*04:02). Based on these results, it seemed that DQA1 alleles
with a low expression were paired with DQB1 alleles with a low
expression and DQA1 alleles with a high expression were paired
with DQB1 alleles with a high expression. However, between DRB1
and DQ alleles we did not found a similar pattern. H6 with the
highest expression included DRB1*04:01, which at the allotype-level
had the second lowest mRNA expression. In addition, both H1 and
H2 included DRB1 alleles with an intermediate expression levels.
We also compared the DQ haplotype expression among 50
individuals. In 95% of all of the DQ haplotypes included in this
study, DQA1 had lower expression than DQB1 indicating that
DQA1 is the expression limiting molecule.
DISCUSSION

The data we present here demonstrates the possibility of
determining both the HLA alleles and their mRNA levels using
Frontiers in Immunology | www.frontiersin.org 8
RNA-Seq methodology. Our method is applicable in various
approaches related to autoimmune and transplantation genetics as
well as when studying HLA expression levels in different cells and
tissues. The growing body of evidence showing that HLA mRNA
and surface protein expression differences may influence immune
response and susceptibility to several human diseases has already
catalyzed several studies using different quantitative methods to
study HLA expression. The drawback with previous protein
expression studies has been the lack of allele-specific monoclonal
antibodies to recognize all HLA alleles with equal affinity. While
qPCR has been adopted for determining the expression of HLA
alleles, the focus has been mainly on HLA class I (3, 4, 6, 8). Given
the high number of known HLA alleles, qPCR requires a
combination of allele-specific primers to amplify different alleles
of the same gene. The design of the primers can be technically
challenging and time-consuming. Additionally, some studies using
bulk RNA-Seq have systematically focused on the gene and
especially the HLA allele-specific mRNA expression levels (32–
34). However, none of the studies were based on molecule counting.
By using RNA-Seq data of 50 individuals, we performed a high-
throughput screen for HLA expression profiles of class I and class II
alleles in peripheral blood samples.

In this study, we developed an HLA RNA-Seq method to
quantify the HLA gene- and allele-specific expression based on
molecule counting. Like most RNA-Seq methods, our method
also involved PCR amplification steps in the library preparation
protocol. To be able to amplify and process the sequencing
libraries without losing information of the original molecule
count, we designed a method based on STRT (54), which tags the
original RNA transcripts with a molecular barcode. These
barcodes, also known as UMIs, were incorporated in the 5’end
of the molecules during the first strand synthesis using a TSO.
We chose a 10 bp UMIs to ensure that every molecule in the
original pool of RNA transcripts received a unique UMI. A ten
nucleotide long UMI, which offers over 1,000,000 unique
nucleotide combinations, has previously shown to be sufficient
to improve the PCR duplicate removal in the data analysis steps
(38). In addition to our full-length cDNA library, we also tested a
targeted approach with HLA amplicons. For this, we designed
HLA gene-specific primers to enrich nine HLA genes. These
primers were designed to fall to the non-polymorphic area of the
genes to enable efficient and cost-effective amplification of
different alleles. For sequencing, we chose read lengths of
100 bp (R1) and 200 bp (R2) to ensure an adequate coverage
of the HLA polymorphisms in the area encoding the peptide-
binding groove in exons 2 and 3. The selected read
lengths produced sufficient data for HLA typing and HLA
expression quantification.

Although several tools for studying HLA mRNA expression
from bulk RNA-Seq data already exist (26, 32, 34), they do not
provide expression quantification with UMI counting. By using our
custom pipeline, we were able accurately to determine HLAmRNA
expression by counting the number of original transcripts. The
comparison of allele ratios between Illumina cDNA and amplicon
data showed that both approaches were able to quantify the allele-
specific expression differences. However, the strength of the
FIGURE 3 | Box and whisker plot of gene-specific expression of nine HLA
genes of 50 individuals. Y-axis indicates the sum of normalized unique UMIs
(Log2) of two alleles of cDNA data and X-axis indicates the names of nine
HLA genes. Boxes indicate the lower quartile, median and upper quartile.
Data were compared using a Kruskal-Wallis test.
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correlation varied between different genes. We suspect that this
might be due to different efficacies of the gene-specific primers in
the enrichment step. Even though the gene-specific primers were
designed to fall in the non-polymorphic area of the genes, it is
Frontiers in Immunology | www.frontiersin.org 9
possible that not every allele is amplified at the same level. Because
Illumina cDNA method does not include a gene-specific
enrichment step, we believe it is more accurate to quantify HLA
mRNA expression. However, since the allele ratios were highly
A B

C D

E F

G H

FIGURE 4 | Allotype expression of HLA class I and class II genes of 50 individuals. Allele-level UMIs of eight HLA genes (A–H) were normalized, grouped to allelic
lineages, and plotted according to different lineages in Illumina cDNA data. Y-axis indicates the normalized unique UMIs (Log2) and X-axis indicates the names of the
allelic lineages. Each dot refers to a UMI value and a solid bar indicates the median expression of the lineage. The number of samples are shown within parentheses.
A Kruskal-Wallis test compared the ranks between the allelic lineages.
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concordant between the two datasets in most of the genes, the
targeted approach would be a valuable option for being more
cost-effective.
Frontiers in Immunology | www.frontiersin.org 10
Our results at HLA class-level expression were consistent with
previously reported findings (31, 32, 34) as HLA class I was
expressed at higher levels than class II in all 50 samples. We also
A B

C D

E F

G H

FIGURE 5 | Comparison of the mRNA expression between the highest and lowest expressed allelic lineage of eight HLA genes. Y-axis indicates the normalized
UMIs (Log2) of cDNA data and X-axis indicates the names of the selected allelic lineages of eight HLA genes (A–H). Each dot indicates a UMI value and a solid bar
indicates the median expression of the lineage. The number inside the parenthesis indicates the number of samples. The expression between the allelic lineages was
compared using a Mann-Whitney U test.
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detected heterogeneity in the expression levels of HLA genes. Our
results confirmed differential expression of HLA genes both within
and between individuals. Despite a high inter-individual variation,
our data showed thatHLA-B andHLA-C were equally abundant on
the transcript level and that their expression was about two times
higher than the expression of HLA-A. These results are comparable
with earlier gene-specific mRNA expression levels (31, 55). For class
II, the order of gene-specific expression was HLA-DRB1 > HLA-
DRA > HLA-DPA1 > HLA-DPB1 > HLA-DQB1 > HLA-DQA1.
This imbalanced expression between HLA class II genes is in line
with previous results, which have confirmed HLA-DR to express at
higher levels compared to HLA-DP and HLA-DQ (31). However,
there were also some discordances with previous findings. A study
using HLA expression estimates from lymphoblastoid cell lines
reported equal expression levels of HLA-A andHLA-C, whileHLA-
B showed an expression level twice as high compared to the other
two class I genes (32). In contrast, another study showed the gene-
Frontiers in Immunology | www.frontiersin.org 11
level expression in the order of HLA-B > HLA-C > HLA-A in
PBMCs (34). This same study reported that HLA-DRA was
expressed at a higher level than HLA-DRB1 and that HLA-DPB1
was expressed at a higher level than HLA-DPA1. However,
according to the previously reported HLA expression estimates,
the gene-level expression of both HLA-DQA1 and HLA-DPA1 was
higher than the expression of HLA-DQB1 and HLA-DPB1 (32).
These inconsistencies between the different methods may be
attributable to a number of factors, such as differences in
methodology, data analysis, sample source, or population. HLA
gene-specific expression has already been shown to vary between
different tissues (31). Hence, it would be important to expand the
expression studies to different cell types either by using bulk RNA-
Seq or by selecting a single-cell approach (56).

In addition to gene-specific expression, we also investigated the
HLA allotype-specific expression. Among 50 samples, we found
distinct allotype-specific expression profiles. We found the largest
differences between the allelic lineages inHLA-DPB1, HLA-DQA1,
andHLA-DQB1 indicating a strong allotype-specific expression in
these genes. These results are consistent with previously reported
findings, where HLA-DQA1 and HLA-DQB1 showed the largest
differences in the inter-allelic expression (34). In the comparison
of mRNA expression between two alleles in heterozygous
individuals, we found the highest allelic imbalance in HLA-C,
-DPB1, -DQA1, and -DQB1. In contrast, HLA-DRB1 showed
almost no asymmetry in allele-specific expression within
individuals suggesting that alleles in this gene are expressed in a
very balanced manner. An extensive allelic imbalance for single
nucleotide polymorphisms (SNPs) in the MHC has been
previously described (57). However, no extreme allelic
imbalance was found using HLA expression estimates (32). In
HSCT, the unbalanced HLA expression between alleles in
heterozygous individuals might be relevant. HLA alleles
associated with low expression are suggested to be tolerated
mismatches and not to increase the risk of GvHD (5, 10, 16)

Our data also demonstrated thatmRNA expression differs between
HLAhaplotypes. This finding is concordant with earlier studies, where
the diversity of MHC haplotype sequence was shown to affect the
TABLE 2 | Differential allele expression between heterozygous allele pairs of
eight human leukocyte antigen (HLA) genes.

Proportion of the allele-specific expression out of the gene-specific
expression*

Median Range ASE
0.01–0.20 (%)

ASE
0.21–0.40 (%)

ASE
0.41–0.50 (%)

HLA-A 0.38 0.18–0.50 3 68 29
HLA-B 0.37 0.25–0.50 0 67 33
HLA-C 0.38 0.16–0.50 12 44 44
HLA-
DRB1

0.47 0.37–0.50 0 5 95

HLA-
DPA1

0.30 0.21–0.50 0 73 27

HLA-
DPB1

0.40 0.01–0.50 13 39 47

HLA-
DQA1

0.39 0.11–0.50 10 48 43

HLA-
DQB1

0.33 0.11–0.50 14 58 28
*The allele-specific expression (ASE) was calculated as the proportion of the allele-specific
expression out of the gene-specific expression attributed to the less expressed allele.
FIGURE 6 | RNA expression of six common HLA haplotypes in Finnish population. Y-axis indicates the normalized UMIs (Log2) of cDNA data and X-axis indicates
the codes of the five selected HLA haplotypes. The full haplotype names are marked on right side of the figure. The parenthesis following the haplotype codes
indicate the number of the samples for each haplotype. Each dot refers to a UMI value and a solid bar indicates the median expression of the haplotype. Data were
compared using a Kruskal-Wallis test.
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HLA gene expression (58, 59). By examining six common Finnish
haplotypes, we observed distinct expression patterns. Interestingly, the
haplotypes with the lowest expression (DRB1*03:01-DQA1*05:01-
DQB1*02:01) and with the highest expression (DRB1*04:01-
DQA1*03:01-DQB1*03:02) were both common autoimmune
haplotypes. DRB1*03:01-DQA1*05:01-DQB1*02:01 has been
associated with celiac disease and DRB1*04:01-DQA1*03:01-
DQB1*03:02 with celiac disease (CD) and type 1 diabetes (60).
Based on the distinct expression levels of these two autoimmune
haplotypes in PBMCs, we could argue that the expression level itself
might not be a risk factor. However, more information on the
expression of these predisposing haplotypes between patients
affected by the disease and healthy controls is needed.

It is of note that we analyzed the peripheral blood samples without
any quantification of their cellular contents, and it is not clear how
much variation in immune cell numbers affects the inter-individual
results. The intra-allelic variation we see in our results might partially
be due to the differences in cell subpopulation distributions, and
hence the results should be interpreted with caution. To exclude any
variation originating from differences in the sample material, we
recommend that further studies of HLA gene- and allele-specific
expression with known cellular composition and ratios are conducted
to explore the effect of different blood cell types onHLA class I, and II
expression. We are also aware of other factors, both genetic and
environmental, which might alter HLA expression. The impact of
different factors such as age, medication, infection status, activation
status, and history on HLA expression should be assessed more
closely in controlled studies in the future. Furthermore, in this study,
we did not investigate the effect of any regulatory elements on HLA
mRNA expression. However, since several polymorphisms located
both in the 5’-, and 3’- untranslated region (UTR) have been
previously associated with varying HLA expression levels (4, 61,
62), it would be important to further investigate the non-exon regions
to locate additional SNPs regulating HLA expression.

In this study, we have developed a novel method for exploring
the complexity of HLA gene- and allele-level expression from 5’end
bulk RNA-Seq data using UMIs. Increasing information on
different factors affecting the outcome of the HSCT may cause
challenges for identifying suitable donors meeting all required
criteria. Therefore, our aim is to propose a tool to explore the
differential HLA allele expression profiles. In the future, expression
screening of HLA alleles could help in the discovery of possible
permissive mismatches. Such tolerated mismatches could be
beneficial in avoiding high-risk transplantations making HSCTs
safer when no matched donor is available. Since several research
and clinical HLA laboratories have already adopted NGS in HLA
typing, the leap from DNA sequencing to RNA-Seq enabling both
the HLA typing and expression quantification could be possible in
the future. This would change the nature of HLA research from
qualitative to a quantitative field of science.
CONCLUSIONS

In summary, our HLA RNA-Seq method with UMIs was able
to quantify mRNA expression at the gene- and allele-level.
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We identified expression differences between HLA genes and
HLA allelic lineages. Identification of these allele-specific
expression differences could be important for future HLA
disease association studies and in HSCT to find permissive
mismatches when no matched donor is available. We note that
the method presented in this study can be applied to quantify the
mRNA expression of HLA alleles in various cells and tissues.
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8. René C, Lozano C, Villalba M, Eliaou J-F. 5′ and 3′ untranslated regions
contribute to the differential expression of specific HLA-A alleles. Eur J
Immunol (2015) 45:3454–63. doi: 10.1002/eji.201545927
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