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Characterizing and understanding the antibody binding interface have become a pre-
requisite for rational antibody design and engineering. The antigen-binding site is formed
by six hypervariable loops, known as the complementarity determining regions (CDRs)
and by the relative interdomain orientation (VH–VL). Antibody CDR loops with a certain
sequence have been thought to be limited to a single static canonical conformation
determining their binding properties. However, it has been shown that antibodies exist as
ensembles of multiple paratope states, which are defined by a characteristic combination
of CDR loop conformations and interdomain orientations. In this study, we
thermodynamically and kinetically characterize the prominent role of residue 71H

(Chothia nomenclature), which does not only codetermine the canonical conformation
of the CDR-H2 loop but also results in changes in conformational diversity and population
shifts of the CDR-H1 and CDR-H3 loop. As all CDR loop movements are correlated,
conformational rearrangements of the heavy chain CDR loops also induce conformational
changes in the CDR-L1, CDR-L2, and CDR-L3 loop. These overall conformational
changes of the CDR loops also influence the interface angle distributions,
consequentially leading to different paratope states in solution. Thus, the type of
residue of 71H, either an alanine or an arginine, not only influences the CDR-H2 loop
ensembles, but co-determines the paratope states in solution. Characterization of the
functional consequences of mutations of residue 71H on the paratope states and interface
orientations has broad implications in the field of antibody engineering.

Keywords: antibodies, canonical clusters, molecular dynamics simulations, role of residue 71H, Markov-
state modes
INTRODUCTION

The rise of antibodies as important biotherapeutic proteins has sparked the interest in
characterizing antibody structures and investigating structure–function relationships (1–3).
Understanding the structural determinants and the involved conformational transitions
governing antibody antigen recognition is critical for understanding antibody functions, in
particular antibody specificity and consequently processes such as affinity maturation (4, 5).
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The antigen binding fragment (Fab) consists of a heavy and a
light chain and can be divided into a constant and a variable
domain. The variable fragment (Fv) exhibits the highest diversity
of an antibody, as it is the focal point of somatic hypermutation
and recombination events (6, 7). This high diversity of the Fv is
concentrated on six hypervariable loops, also known as the
complementarity determining regions (CDRs), which form the
antigen binding site, the paratope. To facilitate the structure
prediction of antibodies, five of these six CDR loops have been
assigned to so-called canonical clusters, assuming that they can
only adopt a limited number of backbone conformations (5,
8–11). Due to its unchallenged diversity in length, sequence and
structure, no canonical clusters can be assigned for the CDR-H3
loop. Thus, structure prediction still remains challenging. In
order to capture the high flexibility and diversity of the CDR-H3
loop and to functionally characterize all CDR loops, they have to
be described as conformational ensemble in solution (12, 13).
Within the obtained CDR loop ensembles in solution, also
transitions between the majority of canonical clusters and
additional dominant solution structures were observed.

Together with the CDR loops, the relative VH–VL

interdomain orientation plays an important role in
determining the shape of the antigen binding site (4, 14–16).
Various studies observed that mutations in the framework
regions, in particular in the VH–VL interface, can result in
structural changes of the binding site and hence can influence
antigen recognition. Additionally, allosteric effects during
antibody antigen binding have also been reported, involving
conformational rearrangements in the constant domains (CH1–
CL) and the elbow angle (17–22).

The majority of VH–VL, CH1–CL and elbow angle dynamics
have been shown to occur in the low nanosecond timescale, while
the slower components of the movements are strongly correlated
with conformational changes in the CDR loops, which occur in
the micro-to-millisecond timescale.

Based on these observations, antibodies were shown to exist
as ensembles of paratope states in solution, which are defined by
a characteristic combination of correlated CDR loop
conformations and interdomain orientations. These paratope
Frontiers in Immunology | www.frontiersin.org 2
states interconvert into each other in the micro-to-millisecond
timescale by synchronous loop and interdomain rearrangements.

In this study we combine a well-established enhanced sampling
technique with classical molecular dynamics simulations to
kinetically characterize the influence of mutations of the
prominent residue 71H (Chothia nomenclature) (8, 23), on the
conformational diversity on the CDR loops and the resulting
paratope states in solution. Figure 1 illustrates the position (HV4
loop) and residue type of 71H with respect to the CDR loops, which
are color-coded respectively.
METHODS

Structure Preparation
As starting structure for the simulations, we used the human
germline antibody IGHV1-69/IGKV1-39 with the PDB
accession code 5I15 (24). The mutant starting structure for the
simulations was prepared in MOE (Molecular Operating
Environment, Chemical Computing Group, version 2020.01)
by mutating residue 71H to an arginine instead of an alanine.
The mutated structure with the mutation at position 71H will be
further referred to as mutant. Additionally, the two structures
were then also protonated using the Protonate3D tool (25, 26).
Charge neutrality was ensured by utilizing the uniform
background plasma approach in AMBER (27–29). Using the
tleap tool of the AmberTools20 (27) package, the crystal
structures were soaked in cubic water boxes of TIP3P water
molecules with a minimum wall distance of 10 Å to the protein
(30). The structures were described with the AMBER force field
14SB (31). The antibody fragments were carefully equilibrated
using a multistep equilibration protocol (32).

Metadynamics Simulations
To enhance the sampling of the conformational space, well-
tempered bias-exchange metadynamics (33–35) simulations
were performed in GROMACS (36, 37) with the PLUMED 2
implementation (38). As enhanced sampling technique, we chose
metadynamics as it allows to focus the enhanced sampling on
FIGURE 1 | Structures of the germline IGHV1-69/IGKV1-39 antibody and the mutant (R71H) highlighting the position and the type of residue at position 71H. The
residue at position 71H is illustrated in magenta, while the heavy chain CDR loops are colored in cyan. The light chain CDR loops are depicted in green.
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predefined collective variables (CV). The sampling is accelerated
by a history-dependent bias potential, which is constructed in the
space of the CVs (33, 35, 39). As collective variables, we used a
well-established protocol, boosting a linear combination of sine
and cosine of the y torsion angles of all CDR loops calculated
with functions MATHEVAL and COMBINE implemented in
PLUMED 2 (13, 38, 40–43). As discussed previously, the y
tors ion angle captures conformat ional trans i t ions
comprehensively (44). The underlying method presented in
this paper has been validated in various studies against a large
number of experimental results. The simulations were performed
at 300 K in an NpT ensemble using the GPU implementation of
the pmemd module (45) to be as close to the experimental
conditions as possible and to obtain the correct density
distributions of both protein and water. We used a Gaussian
height of 10 kJ/mol. Gaussian deposition occurred every 1,000
steps and a biasfactor of 10 was used. 500 ns of bias-exchange
metadynamics simulations were performed for the prepared Fab
structures. The resulting trajectories were clustered with the
program cpptraj (28, 46) using the average linkage hierarchical
clustering algorithm with a distance cut-off criterion of 1.2 Å
resulting in a large number of clusters. For the 5I15 antibody, we
obtained 256 cluster representatives, while for mutant the
clustering resulted in 279 cluster structures.The cluster
representatives for the antibody fragments were equilibrated
and simulated for 100 ns using the AMBER 20 (27) simulation
package. Thus, the aggregated simulation time for the 5I15 Fab
are 25.6 µs and for the mutant 27.9 µs. Additionally, in Figure S2
the cluster representative for both antibody fragments
is illustrated.

Molecular Dynamics Simulations
As mentioned above, we performed for each obtained cluster
representative 100 ns of classical molecular dynamics
simulations. Molecular dynamics simulations were performed
in an NpT ensemble using the pmemd.cuda module of AMBER
20 (28). Bonds involving hydrogen atoms were restrained with
the SHAKE algorithm (47), allowing a time step of 2.0 fs.
Atmospheric pressure (1 bar) of the system was set by weak
coupling to an external bath using the Berendsen algorithm (48).
The Langevin thermostat (49) was used to maintain the
temperature during simulations at 300 K.

With the obtained trajectories, we performed a time-lagged
independent component analysis (tICA) using the python library
PyEMMA 2 employing a lag time of 10 ns. tICA was applied to
identify the slowest movements of the investigated Fab fragments
and consequently to obtain a kinetic discretization of the
sampled conformational space (50).

tICA is a possible dimensionality reduction technique, detecting
the slowest-relaxing degrees of freedom and facilitating the kinetic
clustering, which is crucial for building an MSM (51). tICA is a
linear transformation method, which linearly transforms a set of
high-dimensional input coordinates to a set of output coordinates
by finding a subspace of good reaction coordinates.

Based on the tICA conformational spaces, thermodynamics
and kinetics were calculated with a Markov-state model (52) by
using PyEMMA 2, which uses the k-means clustering algorithm
Frontiers in Immunology | www.frontiersin.org 3
(53) to define microstates and the PCCA+ clustering algorithm
(54) to coarse grain the microstates to macrostates. Markov-state
models are network models which provide valuable insights for
conformational states and transition probabilities between them,
as it is possible to accurately identify the boundaries between two
states (52). The states are defined based on kinetic criteria, which
allow identification of the boundaries between free energy wells.
Basically, MSMs coarse-grain the system’s dynamics, which
reflects the free energy surface and ultimately determines the
system’s structure and dynamics. Thus, MSMs provide
important insights and enhance the understanding of states
and transition probabilities and facilitate a quantitative
connection with experimental data (55, 56).

We performed tICA analyses and calculated Markov-state
models of both investigated variants for the whole paratope and
for all individual CDR loops.

The sampling efficiency and the reliability of the Markov-state
model (e.g., defining optimal feature mappings) can be evaluated
with the Chapman–Kolmogorov test (57, 58) by using the
variational approach for Markov processes (59) and
monitoring the fraction of states used, since the network states
must be fully connected to calculate probabilities of transitions
and the relative equilibrium probabilities. To build the Markov-
state model we used the backbone torsions of the respective CDR
loop, defined 150 microstates using the k-means clustering
algorithm and applied a lag time of 10 ns.

The canonical cluster representatives for each CDR loop,
extracted from the PyIgClassify database (60), were projected
into the free energy surfaces of all individual CDR loops. We
then used the respective macrostate ensembles to investigate
correlations between the different paratope states and the relative
VH and VL orientations.

Relative VH and VL Orientations Using
ABangle
ABangle is a computational tool (14, 15, 61, 62) to characterize
the relative orientations between the antibody variable domains
(VH and VL) using six measurements (five angles and a distance).
A plane is projected on each of the two variable domains. To
define these planes, the first two components of a principal
component analysis of 240 reference coordinates were used for
VH and VL each. The reference coordinate set consists of Ca
coordinates of eight conserved residues for 30 cluster
representatives from a sequence clustering of the non-
redundant ABangle antibody data set. The planes were then
fitted with those 240 coordinates, and consensus structures
consisting of 35 structurally conserved Ca positions were
created for the VH and VL domain. Between these two planes,
a distance vector C is defined. The six measures are then two tilt
angles between each plane (HC1, HC2, LC1, LC2) and a torsion
angle (HL) between the two planes along the distance vector C
(dc). The ABangle script can calculate these measures for an
arbitrary Fv region by aligning the consensus structures to the
found core set positions and fitting the planes and distance
vector from this alignment. This online available tool was
combined with an in‐house python script to reduce
computational effort and to visualize our simulation data over
March 2021 | Volume 12 | Article 630034
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time. The in‐house script makes use of ANARCI (63) for fast
local annotation of the Fv region and pytraj from the
AmberTools package (27) for rapid trajectory processing.
RESULTS

We use a well-established protocol combining enhanced
sampling techniques and classical molecular dynamics to
investigate the influence of residue 71H on the whole paratope,
the individual CDR loop dynamics and the respective relative
VH–VL orientations. We used the human germline IGHV1-69/
IGKV1-39 antibody as starting structure for this study, which
originally has an alanine on position 71H. We aim to kinetically
Frontiers in Immunology | www.frontiersin.org 4
and thermodynamically characterize the effect of mutating only
alanine 71 to arginine on the resulting ensembles of paratope
states. Figures 2 and 3 show the free energy surfaces of the
paratope of the IGHV1-69/IGKV1-39 antibody and the mutant
in the same coordinate system, respectively. The calculated
Markov-state model results for both investigated Fab variants
in three macrostates, corresponding to the three paratope states
in solution, which are illustrated in Figure 2B and Figure 3B.
The most striking difference between the IGHV1-69/IGKV1-39
antibody and the mutant is the substantial population shift. The
obtained macrostate trajectories from the Markov-state models
were further used to calculate the relative interdomain
orientations upon conformational changes in the paratope. For
the IGHV1-69/IGKV1-39 antibody we clearly see a significant
A

B

C

FIGURE 2 | Paratope states in solution of the human germline IGHV1-69/IGKV1-39 antibody, characterized by the free energy surface, the respective Markov-state
model and the relative VH–VL interdomain orientations. Panel (A) shows the free energy surface of the whole paratope based on the backbone torsions of all CDR
loops. Both the human germline IGHV1-69/IGKV1-39 antibody and the mutant (Figure 3) are projected into the same coordinate system. The gray dot represents
the starting structure (PDB accession code: 5I15). Panel (B) illustrates the Markov-state model including the respective state probabilities. The transitions between
different paratope states in solution occur in the micro-to-millisecond timescale and are represented by the thickness of the arrows. The macrostate arrangement
corresponds to the free energy surface in panel (A). Panel (C) depicts the relative VH–VL interdomain orientations of the individual macrostates color-coded according
to panel (B).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fernández-Quintero et al. Mutations in Framework Residue H71
shift in the VH–VL distribution, which is much smaller and not
significant for the mutant. Thus, 71H does not only strongly
influence CDR loop dynamics, but also results in changes in the
VH–VL distributions.

To pinpoint the obtained global changes of the paratope to
local CDR loop and interface rearrangements we also calculated
free energy surfaces of the individual CDR loops.

CDR-H1 Loop
Figure 4 shows the free energy surfaces in the same coordinate
system of the CDR-H1 loop of the IGHV1-69/IGKV1-39
antibody with and without the mutation of an alanine to an
arginine at position 71H. Additionally, all available canonical
clusters with the CDR-H1 loop length of 13 are projected into the
free energy landscape colored in black, while the assigned
Frontiers in Immunology | www.frontiersin.org 5
canonical structure H1-13-4 (PDB accession code: 1IC4) is
depicted in red. The gray dot represents the crystal structure of
the IGHV1-69/IGKV1-39 antibody (PDB accession code: 5I15).
What can immediately be noticed is the substantial rigidification
of the conformational space, accompanied by a population shift,
from the IGHV1-69/IGKV1-39 antibody (Figure 4A) to the
mutant (Figure 4C). Furthermore, within the CDR-H1 loop
conformational space of the IGHV1-69/IGKV1-39 antibody
(Figure 4A) the majority of available canonical clusters are
present within the sampled conformational ensemble; however,
especially in this example, other dominant solution structures
have to be considered, which are not apparent from X-ray
structures. The free energy surface of the mutated antibody
shown in Figure 4C, shows a substantial population shift
towards the assigned canonical cluster and reveals a
A

B

C

FIGURE 3 | Paratope states in solution of the mutant antibody Fab, characterized by the free energy surface, the respective Markov-state model and the relative
VH–VL interdomain orientations. Panel (A) shows the free energy surface of the whole paratope based on the backbone torsions of all CDR loops. Both the human
germline IGHV1-69/IGKV1-39 antibody (Figure 2) and the mutant are projected into the same coordinate system. The gray dot represents the starting structure
(PDB accession code: 5I15). Panel (B) illustrates the Markov-state model including the respective state probabilities. The transitions between different paratope
states in solution occur in the micro-to-millisecond timescale and are represented by the thickness of the arrows. The macrostate arrangement corresponds to the
free energy surface in panel (A). Panel (C) depicts the relative VH–VL interdomain orientations of the individual macrostates color-coded according to panel (B).
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rigidification, which is also reflected in less sampled canonical
clusters of the CDR-H1 loop. Figures 4B, D illustrate the
resulting Markov-state models with the respective state
probabilities. The thickness of the arrows corresponds to
obtained transition times which occur in the micro-to-
millisecond timescale. The type of residue of 71H has already
previously been shown to co-determine the canonical structure
of the CDR-H2 loop (9).

CDR-H2 Loop
Figure 4 shows the resulting free energy surface and the Markov-
state models including the respective state probabilities for the
CDR-H2 loop with and without the mutation at position 71H.
While conformational diversity of both CDR-H2 loop variants is
comparable,mutating alanine at position 71H to an arginine results
in a strong population shift. Again, as described for the CDR-H1
also for the CDR-H2 loop, with a loop length of 10 residues, we
sample the majority of available canonical clusters. Especially
interesting is that the assigned canonical cluster H2-10-1 (PDB
accession code: 2BDN), colored in red, for the IGHV1-69/IGKV1-
39 antibody, lies in a local side-minimum, while the H2-10-2 (PDB
accession code: 1SEQ) is close to the dominant minimum in
solution (Figure 5A). Figure 4C shows the free energy surface of
the mutant CDR-H2 loop, revealing this substantial population
shift towards the assigned canonical conformation. The Markov-
Frontiers in Immunology | www.frontiersin.org 6
state model, including the state probabilities is depicted in Figures
5B,D. The IGHV1-69/IGKV1-39 antibodyCDR-H2 loop results in
three macrostates, while the mutant leads to four macrostates. The
transition timescales between themacrostates lie again in themicro-
to-millisecond timescale. As all CDR loops of the heavy chain are
strongly correlated, also the influence of mutations at position 71H

on the observed CDR-H3 loop ensemble in solution is investigated.

CDR-H3 Loop
Figure 6 shows the free energy surfaces of the CDR-H3 loop with
and without mutating residue 71H and reveals a higher
conformational diversity for the mutant (Figure 6C). This
higher flexibility is also reflected in the number of resulting
macrostates, four macrostates for the mutant and three
macrostates for the IGHV1-69/IGKV1-39 antibody CDR-H3
loop and is accompanied by population shifts. Thus, also the
CDR-H3 loop ensemble in solution is strongly influenced by the
type of residue of 71H.The Markov-state models for both variants
are illustrated in Figures 6B, D, which show conformational
rearrangements in microsecond timescale.

Light Chain CDR Loops
These conformational rearrangements and population shifts in
the heavy chain as a consequence of mutating residue 71H from
an alanine to an arginine can also be observed for the VL-CDR
A

B

C

D

FIGURE 4 | Comparison of the free energy surfaces and Markov-state models of the CDR-H1 loop of both the human germline IGHV1-69/IGKV1-39 antibody Fab
and the mutant. Panel (A) illustrates the free energy surface of the CDR-H1 loop of the human germline antibody. The red dot represents the assigned canonical
cluster structure (PDB accession code:1IC4), while the black dots represent all other available canonical cluster structures with a CDR-H1 loop length of 13 residues.
The gray dot represents the starting structure (PDB accession code: 5I15). Panel (B) shows the corresponding macrostate ensembles with the respective state
populations. The thickness of the circles reflects the state population. The thickness of the arrows corresponds to the transition timescales, which are in the micro-
to-millisecond timescale. Panel (C) shows the Markov-state model of both the human germline and the mutant CDR-H1 loop, including the respective state
probabilities. Again, the black dots represent all available canonical cluster structures of the CDR-H1 loop with a loop length of 13 residues, while the red dot shows
the assigned canonical cluster structure (PDB accession code: 1IC4). The gray dot represents the starting structure. Panel (D) depicts the respective macrostate
ensembles with respective state populations. The thickness of the circles reflects the state population. The thickness of the arrows corresponds to the transition
timescales, which are in the micro-to-millisecond timescale.
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loops. Our results illustrated in Figure S1 show that for all VL-
CDR loops additional minima in solution can be identified. As all
CDR loops are strongly correlated with each other, conformational
changes observed for the heavy chain CDR loops have an effect on
the light chain CDR loops as well. The flexibility of the CDR-H3
loop increases substantially as a consequence of the mutation and
transfers this higher variability also on the VL-CDR loops.
DISCUSSION

In this study we thermodynamically and kinetically characterize
the effect of a single point mutation at position 71H for a human
germline IGHV1-69/IGKV1-39 antibody on the paratope states
in solution and give a structural and mechanistical explanation of
the observed conformational changes. Various studies have
already investigated the role of framework mutations on the
CDR loops and the relative VH–VL interdomain orientations
based on X-ray structures (9, 64, 65). Even allosteric effects
involving mutations in the CH1–CL and the elbow angle have
been reported to influence the antibody binding site and
consequentially antibody affinity and specificity (17–22,
66–68). In particular, residue 71H, has been discussed to
determine the canonical conformation of the CDR-H2 loop,
according to whether there is a bulky residue or a small side-
Frontiers in Immunology | www.frontiersin.org 7
chain present and thus bringing the CDR-H1 and CDR-H2 loops
closer to each other (16, 23, 69). Recently, it was also indicated
that paratope states in solution, including the relative VH–VL

orientation, could be influenced by the type of residue of
71H (68).

Previous studies described this prominent role of residue 71H

determining the CDR-H2 loop structure by considering crystal
structures and sequences of naturally occurring antibodies and
their respective variations. However, among these antibodies the
CDR-H2 loop sequence not only differed, but they revealed also a
high diversity in length, sequence, and structure of other CDR
loops. Thus, in the course of antibody humanization, various
studies focused on understanding the function of residue 71H on
structure, antigen-binding, and stability and engineered identical
antibodies differing only in the type of residue at position 71H.
Compared to the natural variations in this residue, functional
differences could now be pinpointed to a single residue (69–72).
Already from the earliest antibody engineering efforts, it has been
observed that biases in the natural repertoire, which contribute to
folding and stability, are selected and contribute successfully to
the design of antibodies and synthetic libraries. Thus, also
different residue types at position 71H could be used to
finetune the functions of antibodies and to balance the benefits
of functional diversity by combining features of natural and
engineered repertoires (73, 74).
A

B

C

D

FIGURE 5 | Comparison of the free energy surfaces and Markov-state models of the CDR-H2 loop of both the human germline IGHV1-69/IGKV1-39 antibody Fab
and the mutant. Panel (A) illustrates the free energy surface of the CDR-H2 loop of the human germline antibody. The red dot represents the assigned canonical
cluster structure (PDB accession code:2BDN), while the black dots represent all other available canonical cluster structures with a CDR-H2 loop length of 10
residues. The gray dot represents the starting structure (PDB accession code: 5I15). Panel (B) shows the corresponding macrostate ensembles with the respective
state populations. The thickness of the circles reflects the state population. The thickness of the arrows corresponds to the transition timescales, which are in the
micro-to-millisecond timescale. Panel (C) shows the Markov-state model of both the human germline and the mutant CDR-H2 loop, including the respective state
probabilities. Again, the black dots represent all available canonical cluster structures of the CDR-H2 loop with a loop length of 10 residues, while the red dot shows
the assigned canonical cluster structure (PDB accession code: 2BDN). The gray dot represents the starting structure. Panel (D) depicts the respective macrostate
ensembles with respective state populations. The thickness of the circles reflects the state population. The thickness of the arrows corresponds to the transition
timescales, which are in the micro-to-millisecond timescale.
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Especially interesting is that the 71H residue belongs to the
Vernier-zone residues, which have been discussed to play a
critical role in the humanization and for the rational design of
antibodies in general as they can influence antibody specificity
and affinity (65, 75, 76). Additionally, residue 71H is part of the
DE loop, also called H4 loop, which joins strands D and E on the
heavy chain variable domain (9). The H4 loop has been
traditionally considered to be part of the antibody framework;
however, it has been shown not only for antibodies but also for
T-cell receptors that the H4 loop can directly interact with the
antigen and thus, influence antigen binding (9, 40). The fact that
one single residue in the H4 loop can determine different
paratope conformations in solution strongly supports the idea
of highly correlated CDR loop movements, which interconvert
into each other on the micro-to-millisecond timescale and favor
specific interdomain orientations (12, 13, 41, 62, 68, 77, 78).
Considering only one single static structure might not be
sufficient to fully understand the consequences of point
mutations on the resulting conformational diversity (42, 79).
In line with these observations, we show for the human germline
IGHV1-69/IGKV1-39 antibody strong population shifts towards
different dominant paratope conformations in solution, when
substituting 71H from an alanine to an arginine (Figure 2
and Figure 3). Additionally, we also identified shifts in the
relative VH–VL orientations depending on the type of residue
of 71H.

To get a better understanding of the global changes, we also
analyzed the influence of mutating residue 71H on the individual
Frontiers in Immunology | www.frontiersin.org 8
CDR loops and their respective dynamics and were able to
identify substantial differences in the obtained conformational
ensembles in solution. For the CDR-H1 loop shown in Figure 4,
we do not only see a strong population shift but also substantial
rigidification when mutating residue 71H to an arginine, which
can be explained by strong hydrogen bond interactions of the
arginine with the sidechains of a serine 245 (occurrence 20.24%),
tyrosine 247 (occurrence 16.66%) and hydrogen bond and pi-
stacking interactions with the backbone of phenylalanine 244
(occurrence 22.74 and 10.3%). Figures 4A, C illustrate the free
energy surfaces of the CDR-H1 without and with the
substitution, respectively. In line with previous studies (12, 13,
78), we observe that different canonical clusters lie within the
same dominant minimum in solution, which is especially true for
the germline IGHV1-69/IGKV1-39 antibody CDR-H1 loop.
Thus, these canonical clusters might be combined. Another
interesting aspect is that the slowest movement of the CDR-H1
loop, described by the TIC1, represents the conformational
transition from the assigned canonical structure to all other
available canonical structures with a CDR-H1 loop length of
13 residues.

Apart from sampling all available canonical structures, we are
able to identify an additional solution structure, which represents
the dominant minimum in solution and is not apparent from X-
ray structures (Figures 4A, B). Upon substituting the alanine
71H to an arginine, the populations of this dominant minimum
are shifted towards the originally assigned canonical structure
(Figures 4C, D).
A

B

C

D

FIGURE 6 | Comparison of the free energy surfaces and Markov-state models of the CDR-H3 loop of both the human germline IGHV1-69/IGKV1-39 antibody Fab
and the mutant. Panel (A) illustrates the free energy surface of the CDR-H3 loop of the human germline antibody. The gray dot represents the starting structure (PDB
accession code: 5I15). Panel (B) shows the corresponding macrostate ensembles with the respective state populations. The thickness of the circles reflects the state
population. The thickness of the arrows corresponds to the transition timescales, which are in the micro-to-millisecond timescale. Panel (C) shows the Markov-state
model of both the human germline and the mutant CDR-H3 loop, including the respective state probabilities. The gray dot represents the starting structure. Panel (D)
depicts the respective macrostate ensembles with respective state populations. The thickness of the circles reflects the state population. The thickness of the arrows
corresponds to the transition timescales, which are in the micro-to-millisecond timescale.
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The stabilization of the CDR-H1 as a consequence of the
substitution of residue 71H allows the CDR-H3 loop more
degrees of freedom, which is reflected in the resulting
conformational space illustrated in Figure 6. The increase in
the flexibility of the CDR-H3 loop in Figure 6C, as a result of the
stabilization of the CDR-H1 loop when mutating the alanine in
position 71H to an arginine, is also accompanied by a population
shift (Figures 6C, D). For the CDR-H3 loop, due to its high
diversity, no canonical structures were available and in
agreement with previous studies, also here we see that the
CDR-H3 loop needs to be characterized as conformational
ensemble in solution (42, 78). As already discussed in
literature, the CDR-H2 loop canonical conformation is
strongly influenced by the bulkiness of the residue at position
71H, and even though we observe a similar conformational space,
indeed strong population shifts towards different canonical
structures of the obtained CDR-H2 loop ensembles in solution
can be observed (Figure 5).

Similar to the observations for the CDR-H1 loop, also for the
CDR-H2 loop the majority of canonical clusters are present
within the sampled conformational ensemble in solution, clearly
following the concept of conformational diversity. The concept
of conformational diversity was proposed by Pauling and revived
by Milstein and Foote, who demonstrated that the same antibody
sequence can adopt various different conformations, which does
not only influence their binding properties, but also increases the
effective size of the antibody repertoire (80–82). Our results show
that the individual CDR loops and the whole paratope, including
the relative VH–VL interdomain orientations, follow the concept
of conformational diversity. Figure S1 illustrates the free energy
surfaces of the CDR-L1, CDR-L2, and CDR-L3 loops, to
investigate if the mutation at position 71H also influences the
conformational diversity of the light chain CDR loops. In all light
chain CDR loops, the free energy surfaces for the mutant reveal a
broader conformational space similar to the increase in flexibility
which was observed for the CDR-H3 loop. A potential
explanation for this higher flexibility when substituting an
alanine to an arginine could be that the introduction of
arginine residues can enhance the promiscuity of antibodies
(42, 83).
CONCLUSION

In conclusion we observe in line with previous results that the
type of residue at position 71H does not only influence the
neighboring CDR-H2 loop, but also induces conformational
Frontiers in Immunology | www.frontiersin.org 9
rearrangements in the whole paratope. Thus, mutating the
prominent residue 71H to either an alanine or an arginine
results in different paratope states in solution, which also favor
specific relative VH–VL interdomain orientations. The results
show that the antibody binding site exists as multiple paratope
states in solution, with strongly correlated CDR loop and
interdomain movements. This study raises the awareness of the
strong correlations between the CDR loops and that one single
static structure is not sufficient to capture the involved
conformational changes and population shifts, which occur as
a consequence of one single point mutation. Thus, we provide a
new paradigm in the field of antibody engineering in the design
of interconvertible paratope states in solution, which allows a full
characterization of the antibody binding interface.
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