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Background: Transcriptomic signatures for tuberculosis (TB) have been proposed and

represent a promising diagnostic tool. Data remain limited in persons with advanced HIV.

Methods: We enrolled 30 patients with advanced HIV (CD4 < 100 cells/mm3) in India;

16 with active TB and 14 without. Whole-blood RNA sequencing was performed; these

data were merged with a publicly available dataset from Uganda (n = 33; 18 with TB

and 15 without). Transcriptomic profiling and machine learning algorithms identified an

optimal gene signature for TB classification. Receiver operating characteristic analysis

was used to assess performance.

Results: Among 565 differentially expressed genes identified for TB, 40 were shared

across India and Uganda cohorts. Common upregulated pathways reflect Toll-like

receptor cascades and neutrophil degranulation. The machine-learning decision-tree

algorithm selected gene expression values from RAB20 and INSL3 as most informative

for TB classification. The signature accurately classified TB in discovery cohorts

(India AUC 0.95 and Uganda AUC 1.0; p < 0.001); accuracy was fair in external

validation cohorts.

Conclusions: Expression values of RAB20 and INSL3 genes in peripheral blood

compose a biosignature that accurately classified TB status among patients with

advanced HIV in two geographically distinct cohorts. The functional analysis suggests

pathways previously reported in TB pathogenesis.
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INTRODUCTION

Tremendous advances in tuberculosis diagnosis have been made based on nucleic acid
amplification of bacteria in the sputum, such as Xpert MTB/RIF sputum smear and culture, which
provides results in 2 h (1–5). However, sputum-based diagnostics remain problematic in the context
of HIV infection. Sputum smear is often negative for TB bacilli, and the sensitivity of Xpert
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MTB/RIF is only 67% (6–8). Persons living with advanced HIV
(CD4 < 100 cells/mm3) are at particularly high risk for TB and
are likely to have smear-negative pulmonary or extrapulmonary
TB, underscoring the need for non-sputum-based TB diagnostics
to support TB control efforts (9–15).

Blood-based transcriptomic signatures, including several
parsimonious gene signatures, have been proposed to diagnose
and differentiate TB from other respiratory diseases (ORD)
and are in various stages of validation (14, 16, 17). However,
the majority of studies do not include persons living with
advanced HIV. A recent case-control study from Uganda
found that transcript levels of FcGR1A and BATF2 and plasma
protein levels of interferon gamma (IFN-γ) and CXCL10 were
individually accurate classifiers of active TB in the context of
advanced HIV (18). However, geographic differences may exist
and could impact performance when transcriptomic profiles
developed in one population are applied to other geographically
distinct populations.

To address the potential influence of geography and the
reduced number of TB gene expression signatures addressing
persons living with HIV (PLWH), we established a discovery
cohort comprising the publicly available RNA sequencing (RNA-
seq) dataset from the aforementioned Uganda case-control study
(n = 33) (18) and RNA-seq data from our prospective case-
control study in India among persons with advanced HIV with
or without active TB (n= 30). Using transcriptomic profiling and
a machine-learning approach, we aimed to develop and validate
a gene signature to fairly classify TB status among persons with
advanced HIV from geographically distinct sites.

METHODS

Discovery Cohorts
India Cohort
Between January 2018 and June 2019, we enrolled 30 consecutive
adults attending the antiretroviral treatment (ART) clinic at
Byramjee Jeejeebhoy GovernmentMedical College (BJGMC) and
Sassoon General Hospitals (SGH), which provides HIV care to
residents of Pune, India, and the surrounding area. Eligibility
criteria were ART-naïve and ART-experienced adults (>18 years)
with advanced HIV, defined as CD4 < 100 cells/mm3, with
or without newly diagnosed active TB. Exclusion criteria were
previous history of TB or anti-tuberculosis treatment (ATT)
before enrolment. All potential participants underwent TB
symptom screen and GeneXpert MTB/RIF, sputum smear and
culture. Cases (TB-HIV), defined as any positive microbiologic
TB investigations or ATT initiation based on high clinical
suspicion (active TB), were enrolled up to n= 15; controls (HIV-
only), defined as no evidence of active TB, were enrolled up to n
= 15. Medical, demographic, socio-economic characteristics, and
chest radiograph were obtained at enrolment, and blood samples
were collected at baseline for HIV quantitative RNA and CD4+

Abbreviations: ART, antiretroviral therapy; ATT, anti-tuberculosis treatment;

AUC, area under the curve; DEG, differentially expressed genes; HIV, human

immunodeficiency virus; TB, tuberculosis; PLWH, people living with HIV; PCA,

principal component analysis.

T-cell count. Individual participant consent as well as BJGMC
ethics committee and Johns Hopkins University institutional
review committee approvals were obtained.

Uganda Cohort
A published case-control study conducted among 33 adults
with advanced HIV (CD4 count <100 cells/mm3) in Uganda.
The study population comprised 18 cases with active TB (TB-
HIV; 16 with smear-positive or microbiologically-confirmed TB
and 2 undergoing ATT) and 15 controls (HIV-only) with no
clinical symptoms of TB. All participants underwent whole-blood
RNA sequencing (RNA-seq) and plasma cytokine/chemokine
analysis (18).

Whole Blood Sample Processing and RNA
Sequencing
At enrolment, whole blood (5mL) was collected from all 30 India
participants in two PAXgene Blood RNA tubes (Qiagen, catalog
#762165) and directly frozen at−80◦C. RNA was extracted using
the PAXgene Blood RNA kit (Qiagen, catalog #762174) and
quantified using Qubit RNA assay HS (Invitrogen, Cat #Q32852).
RNA purity was checked using QIAxpert, and RNA integrity was
assessed on TapeStation using RNAHS ScreenTapes (Agilent, Cat
#5067-5579). NEB Ultra II Directional RNA-Seq Library Prep kit
protocol was used to prepare libraries for total RNA sequencing.
Prepared libraries were quantified using Qubit High Sensitivity
Assay (Invitrogen, Cat #Q32852), pooled and diluted to final
optimal loading concentration before cluster amplification on
Illumina flow cell. Once the cluster generation was completed,
the cluster flow cell was loaded on Illumina HiSeqX instrument
to generate 150bp paired-end reads.

Gene Expression Analysis
Raw RNA-seq data from the India cohort were retrieved
from Illumina HiSeqX in fastq formatted files and processed
using the protocol for paired-end reads in the quality check
and mapping step; raw RNA-seq data from the Uganda
cohort were downloaded from the NCBI SRA database using
sra-tools (https://ncbi.github.io/sra-tools/fastq-dump.html) and
processed using the single-end protocol in the quality check
and mapping step. Low quality bases were removed from all
samples, and adapters were trimmed using Trimmomatic V0.32
(19). A total of 5 samples failed in the quality check process
from India Cohort and were removed from analysis. A total of
58 samples from both sites were used in downstream analysis.
After the quality check, sequences were aligned to the human
transcriptome (GRCh38 version 100), comprising mRNA and
ncRNA, using Salmon v1.2.0 (20). After the mapping step, the
Salmon output was converted to count tables using the tximport
R package (21). Count gene expression matrix was examined
using the DESeq2 R package (22) to identify differentially
expressed genes (DEG) for cases. Changes in gene expression
with false discovery rate (FDR)-adjusted p-value <0.05 and
log2fold-change ±1.4 were considered significant. Candidate
DEGs were visualized using volcano plots and Venn diagrams
using the VennDiagram R package and scanned with the
REACTOME pathway database (23) using the compareCluster
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R package (24). The entire gene expression data set from
India cohort is available at the GEO database (Accession
number GSE162164, https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE162164).

Machine Learning Approach
Following variance-stabilizing transformation and batch effect
correction [sva package (25)], gene expression measurements
were used to perform a machine learning approach. Using the
rpart R package (26), a decision-tree algorithm with leave-
one-out cross-validation was applied to identify the minimal
variable set (gene set) exhibiting higher classification power to
describe cases. The resulting genes were retrieved from each
dataset. Sample clustering and classification were assessed using
Heatmaps and the Principal component analysis (PCA) plot and
applied to the variance-stabilizing transformed gene expression
values from each cohort.

Signature Performance Analysis
We conducted a performance comparison using 36 previously
published gene expression signatures for TB diagnosis,
progression and treatment provided by the TBSignatureProfiler
package (https://github.com/compbiomed/TBSignatureProfiler).
In addition, we have included Risk6 signature cohort for
comparison (27) (Supplementary Table 1). We applied a general
linear model to gene expression values from each signature gene.
The outcomes were binarized to measure the sensitivity and
specificity of classification, allowing us to measure each group
rate and plot area under the curve (AUC) values to identify the
best classifier.

Validation of the Gene Signature
To validate the gene signature, we applied the gene expression
model to gene expression data, which was log 2 normalized, from
three independent and publicly available patient cohorts (28–30).
The first study developed and validated transcriptomic signatures
to distinguish TB from latent TB infection (LTBI) using a case-
control design among African adults with and without HIV
(28); validation was performed by comparing TB-HIV (with and
without culture-confirmed TB) vs. HIV-only. The second study
identified and validated transcriptomic signatures to distinguish
active TB from other respiratory diseases as well as LTBI among
large pediatric cohorts from South Africa, Malawi and Kenya
(29); the comparison for validation was TB-HIV vs. HIV and
other respiratory diseases.

Statistical Analysis
All analyses were pre-specified. Clinical data were compared
among cases and controls using the Mann-Whitney U test
(continuous variables) or Pearson’s chi-square test (categorical
variables). Correlations between gene expression and clinical
variables were tested using Spearman’s rank correlation
coefficient. Receiver Operator Characteristics (ROC) were used
to assess the accuracy of a gene signature to distinguish between
comparison groups specified in the India/Uganda datasets
and each validation dataset (in-silico validation cohorts). We
measured the z-scores with the scales function. Analyses were

TABLE 1 | Baseline characteristics among cases (TB-HIV) and controls (HIV-only)

enrolled in the India cohort (n = 30).

Characteristic HIV-only

(n = 14)

TB-HIV

(n = 16)

p-value

Sex

Female, n (%) 4 (29%) 3 (18%) 0.68

Male, n (%) 10 (71%) 13 (82%)

Median age, y (IQR) 41 (31–52) 45 (38–52) 0.42

Smoker, n (%)

Never 10 (71%) 11 (69%) >0.95

Former 0 1 (6%)

Current 4 (29%) 4 (25%)

Body mass index, kg/m2 20.0

(16.8–21.4)

17.6

(16.4–19.9)

0.23

Median HIV viral load, log10 copies/mL 4.92

(4.24–5.77)

5.50

(4.97–5.87)

0.32

Median CD4 count, cells/mm3 (IQR) 53 (32–75) 48 (31–65) 0.60

Median CD8 count, cells/mm3 (IQR) 645

(320–861)

430

(244–589)

0.13

Median CD3 count, cells/mm3 (IQR) 739.5

(407–1,043)

491

(290–679.5)

0.15

BMI, body mass index; HIV, human immunodeficiency virus; TB, tuberculosis.

performed using the base package from R 4.0.2. Differences with
p-values <0.05 were considered statistically significant.

RESULTS

Description of Discovery Cohorts
Cases (n = 16) and controls (n = 14) from the India cohort (n
= 30) did not significantly differ among baseline characteristics,
including sex (82% male vs. 71% male), median age (45 vs. 41
years), median CD4 count (45 vs. 53 cells/mm3) andmedian HIV
viral load (5.50 vs. 4.92 log copies/mL) (Table 1). The Uganda
cohort (n = 33) was 62% female, median age was 32 years
and median CD4 count was 50 cells/mm3 with no significant
differences between cases (n= 18) and controls (n= 15) (18).

Gene Expression Analysis
A total of 565 DEGs were identified for cases (active TB)
among the discovery cohorts. Of these, the majority (488 DEGs)
were specific to the Uganda cohort, including 265 upregulated
and 223 downregulated genes; 37 were specific to the India
cohort, including 32 upregulated and 5 downregulated genes;
and 40 were shared by both cohorts (Supplementary Figure 1,
Supplementary Table 2). Cluster analysis revealed that DEGs
identified at each site were able to distinguish samples
from cases and controls, but with some misclassifications
(Supplementary Figure 2).

The majority of shared DEGs were upregulated (38
upregulated vs. 2 downregulated). The enrichment analysis
shown in Figure 1 reveals that only two pathways were
enriched in both discovery cohorts, namely Toll-like receptor
cascades and Neutrophil degranulation. Among Uganda-
specific DEGs, upregulated pathways predominantly reflect
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FIGURE 1 | Enrichment analysis of differentially expressed genes (DEG) for TB among adults living with advanced HIV by study site. Dot diameter represents the gene

ratio for each pathway, and fill color represents the false discovery rate (FDR)-adjusted p-value for the change in gene expression. Shading identifies shared (orange),

India-specific (green), and Uganda-specific (purple) pathways.

DNA repair and regulation, and downregulated pathways
reflect immune cell response regulation. In contrast, India-
specific upregulated pathways reflect IFN-γ signaling and
antimicrobial peptide response while downregulated pathways
reflect nucleotide metabolism.

Machine Learning
Gene expression values from DEGs were used to perform
machine learning. The decision tree identified INSL3 and
RAB20 (Decision-tree genes) as the optimal gene set to classify
tuberculosis status among patients from both sites (Figure 2A).
Dot plots show that threshold gene expression values for INSL3
and RAB20 fairly classified samples from both study sites,
correctly classifying 100% of Uganda samples and returning
only 3 classification errors in the India cohort (Figures 2B,C).
Receiver operator characteristic (ROC) analysis indicates
accurate TB classification among samples from India [AUC 0.95
(0.87–1.00)] and Uganda (AUC 1.00) (Figure 2D). Compared
to DEGs and 36 proposed TB gene expression signatures, the
Decision-tree genes best classified TB status among samples from
both cohorts (Figures 2E,F). Although the Maertzdorf_4, Roe_3
and Suliman_4 signatures and Decision-tree genes performed
comparably in the India cohort, the Maertzdorf and Suliman
signatures comprises 4 genes and Roe signature comprises 3
genes, and was not as accurate in the Uganda cohort where
the Rajan_HIV_5 and Decision-tree signatures performed best.
Reviewing potential associations between Decision-tree genes

and previously proposed TB signatures revealed that RAB20
is included in the Bankley_380 (383 genes) and Barry_393
(290 genes) signatures (Supplementary Figure 3A), yet the
Decision-tree genes had superior performance in both cohorts.

Correlation of Clinical Variables With
Decision-Tree Gene Expression
Among the India cohort, CD8+ and CD3+ cell
counts were significantly lower in cases than controls
(Supplementary Figures 3B–D). Comparing Decision-tree
gene expression to clinical variables, Spearman correlation
values indicate a significant negative correlation between INSL3
expression and both CD8+ and CD3+ cell counts. No cluster
was associated with clinical variables (Smoke, Cough, Cavitation,
Death, Viral load, CD4, Age or BMI) (Figure 3).

Validation of the Decision-Tree Signature
We performed ROC analysis to determine the sensitivity of
the 2-gene signature to distinguish active TB among three
validation cohorts. As shown in Figure 4, the Decision-tree
signature performed best among South African cohorts with
AUC ranging between 0.683 and 0.748; performance was lower
among Malawi cohorts with AUC ranging between 0.615 and
0.623 (Figures 4A,B). The 2-gene signature demonstrated high
accuracy to predict active TB with an AUC of 0.945 for
distinguishing culture-confirmed TB from culture-negative TB
(Figure 4C).
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FIGURE 2 | The machine learning approach identified a 2-gene signature (INSL3 and RAB20) that best classified tuberculosis status across study sites. (A) The

decision-tree algorithm selected INSL3 and RAB20 genes to classify tuberculosis status among the discovery cohorts. (B,C) Dot plots show that Decision-tree genes

correctly classify TB status for most samples from the India cohort (B) and for 100% of samples from the Uganda cohort (C); vertical and horizontal dotted lines

represent decision thresholds for RAB20 and INSL3 genes, respectively. (D) Receiver operating characteristic (ROC) curve analysis shows strong TB classification

performance of Decision-tree genes among samples from India (green line) and Uganda (purple line) with area under the curve (AUC) of 0.948 and 1.00, respectively;

shaded area represents standard deviation. Boxplots show the AUC, measured by general linear modeling, for Decision-tree genes (Bold), differentially expressed

genes (Bold), and publicly available TB gene expression signatures identifying the Decision-tree genes as the best TB classifier across India (E) and Uganda (F)

cohorts.

Frontiers in Immunology | www.frontiersin.org 5 February 2021 | Volume 12 | Article 631165

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Kulkarni et al. Biomarker of TB in Advanced HIV

FIGURE 3 | Heatmap showing the relationship between Decision-tree gene expression and clinical characteristics in the India cohort. The top horizontal bar

corresponds to cases (red) and controls (blue). The side bar plot shows the Spearman correlation value measuring the association between INLS3 and RAB20

expression and CD8+ and CD3+ cell count; green bars indicate a significant association. The lower horizontal bars correspond to female (orange) vs. male (green)

followed presence (red) vs. absence (light gray) of participant characteristics; dark gray indicates no information available. The bottom bar plots show significant (green

vertical bars) and non-significant (gray vertical bars) correlations with participant characteristics, including log2 HIV viral load; CD4+/CD8+/CD3+ cell counts, body

mass index (BMI) and age.

DISCUSSION

Transcriptomic signatures for TB diagnosis have been previously
identified using various approaches, including differentially
expressed genes, pathway analysis and subsetting genes
associated to symptomatology (15, 16, 31). Although the
blood transcriptomic profiling can improve diagnosis and
understanding of TB infection, population-specific gene
expression could interfere with performance across different
regions (32). This study identified a 2-gene parsimonious
signature that accurately classified active TB among people with
advanced HIV infection in two geographically distinct cohorts.
More importantly, the signature fared well to distinguish
active TB from latent tuberculosis infection (LTBI) as well
as other respiratory diseases when applied to other African
datasets. Finally, the signature performed best among those with
culture-confirmed TB and is likely an indicator of mycobacterial
replication, suggesting the potential to extrapolate its use for TB
treatment monitoring.

The prediction of TB diagnosis in PLWH improved when
Indian and Ugandan datasets were combined. The two genes
generated by themachine learning algorithm (RAB20 and INSL3)
were able to accurately distinguish active TB from non-TB.
RAB20, a member of the RAS Oncogene Family, is involved

in the maturation and acidification of phagosomes. More

specifically, RAB20 regulates the endosomal membrane, thus
playing an important role in phagosome integrity and control
of Mycobacterium tuberculosis (Mtb) replication in infected

macrophages (33). This mechanism is also regulated by IFN-
γ, assisting with Mtb infection control in macrophages (34). In
contrast, INSL3 is part of an insulin-like hormone superfamily
and is associated with human testicular cell tumors (35), but
has not been previously associated with TB infection or disease.
Notably, the strong negative correlation observed between INSL3
expression and CD8+/CD3+ cell count (rho−0.6) suggests a
significant role in immune cell regulation among PLWH with
active TB from India. The influence of INSL3 on CD8+ and
CD3+ cells could be associated with its regulation of TIMP2 (36),
a member of the NF-KappaB Family Pathway.

Although the 2-gene signature performed well in both
discovery cohorts, we observed considerable geographic
differences in gene expression between India and Uganda.
Specifically, samples from Africa presented more DEGs
(528 genes) than India (77 genes), and only 40 common
DEGs were identified across the sites. A multitude of factors
alter the immune response and may explain the observed
differences, including ethnic population, dietary, environmental
and seasonal differences (37, 38). Variable performance
of TB signatures in Indian and African discovery cohorts
provides additional evidence of population-specific gene
expression. The performance of TB signatures varied with
lower AUC observed among India samples compared to
Uganda. Even signatures proposed among PLWH, such
as Esmail_82, Esmail_203, Esmail_893 (31), Kaforou_27,
Kaforou_OD_44, Kaforou_OD_53 (28), Sambarey_HIV_10 (39),
and Rajan_HIV_5 (40), demonstrated differential performance
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among Indian and Ugandan cohorts. The total number of genes
varies widely across signatures, ranging from 5 to 893 genes, and
could explain the differential performance (AUC) in classifying
TB status among PLWH, but also suggests a possible population
bias in each signature that could interfere with its use in other
geographic locations.

The differential gene expressions observed between
Indian and Ugandan cohorts was not unexpected. Despite
the differences, however, the discovery cohorts shared 40
differentially expressed genes for TB, and two important
pathways were found to be upregulated in both cohorts (18).
The Toll-like receptor cascade pathway has been previously
associated with TB and HIV, indicating the role of Mtb in the
regulation of HIV replication (41). The neutrophil degranulation
pathway has also been associated with TB, but the exact role of
neutrophils remains ambiguous with potential to be associated
with Mtb clearance as well as increased disease severity and
mortality (42). Overall, these pathways suggest that TB disease
may influence peripheral blood mononuclear cell expression
in PLWH.

The performance of the novel 2-gene signature is
heterogeneous in the external validation data sets, but the
2-gene signature has fair overall accuracy to distinguish TB.
Accuracy ranged from 0.683 to 0.748 in the African cohort
comprising children and adults, and inferior performance
was observed in the Malawi cohort with AUC values ranging
from 0.615 to 0.623. The difference in performance suggests
that population-associated gene expression interferes with TB
classification in PLWH. Despite the unsatisfactory performance
of the 2-gene signature in these data, some aspects should be
accounted. In this dataset, the control group was composed
of PLWH and other respiratory diseases. The control group
composition and population bias may have contributed to
reduced AUC values. Interestingly, TB classification accuracy
was high for patients with culture-confirmed TB in the Kenya
cohort (AUC 0.954) while reduced performance was observed
among patients without culture-confirmed TB (AUC 0.627).
This finding suggests an association of the two-gene signature
with bacterial load and that longitudinal change in expression of
this gene signature could also be used to monitor bacillary load
in response to treatment.

Gene signatures derived from multiple cohorts were validated
using a targeted approach, reverse transcriptase multiplex
ligation-dependent probe amplification (RT-MLPA) in a
multisite study that comprised cohorts with and without HIV.
The analysis revealed FCGR1A [high-affinity IgG Fc receptor
1 (CD64)] as a consistent single-gene classifier of active TB
disease, in the presence and absence of HIV (43). FcGR1A
was also reported to function as a consistent single gene
classifier of active TB even in advanced HIV in the Uganda
cohort included in this study (18). In an Ethiopian cohort, five
genes (CD8A, TIMP2, CCL22, FCGR1A, and TNFRSF1A),
were shown to segregate active TB from non-active TB in
HIV patients (44). In another study, also in an Ethiopian
cohort of HIV co-infected TB patients, 7 genes (FCGR1A,
RAB24, TLR1, TLR4, MMP9, NLRC4, and IL1B) accurately
discriminated between active tuberculosis disease and latent

FIGURE 4 | Validation of the Decision-tree gene signature using publicly

available microarray datasets. Receiving operating characteristic curve analysis

evaluating the performance of the 2-gene signature to distinguish comparison

groups in the: (A) GSE39940 dataset—children living with HIV from South

Africa and Malawi coinfected with TB or other respiratory diseases (ORD)

(HIV-TB vs. HIV-ORD); (B) GSE37250 dataset—adults living with HIV from

South Africa and Malawi coinfected with TB or ORD (HIV-TB vs. HIV-ORD);

and (C) GSE39939 dataset from Kenya—patients with HIV-TB co-infection

with and without culture-confirmed TB (culture-positive vs. culture-negative).

infection (45). RISK6 is a prognostic signature derived from
baseline blood samples in a SA adolescent cohort of progressors
and non-progressors (27). The signature is an aggregate of
nine transcript pairs that was derived by separately linking
each of three transcripts upregulated in progressors (GBP2,
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FCGR1B, and SERPING1), to three transcripts downregulated
in progressors (TUBGCP6, TRMT2A, and SDR39U1), relative
to non-progressors. RISK6 also performed well in diagnosing
active TB in HIV-uninfected and HIV-infected persons (27).
Of note, none of the studies included cohorts from India.
Additional head-to-head comparative studies in larger cohorts
are needed to determine whether the 2-gene signature reported
here works across ethnicities and comorbidities, including HIV.
Furthermore, whether the same gene signatures will perform
well in segregating TB from HIV with differing CD4 counts and
differing peripheral inflammation also needs to be determined.

Despite yielding interesting results, our study has some
limitations. First, the sampling size is not ideal, with 25
samples from India and 33 from Uganda, and has resulted in
more variability observed in the study. Second, the metadata
from all validation datasets do not have the CD4 count
value for each patient, but the overall cohort data report
much higher CD4 value than our cohort. This may have
contributed to reduction in performance of our signature. For
clinical application, more studies are required to standardize a
gene expression-based protocol. Furthermore, RNA seq-based
signatures need to be further developed for use in clinical practice
to distinguish PLWH with TB from those with LTBI or other
respiratory diseases.

In conclusion, despite populational-specific differential gene
expression, the RAB20 and INSL3 genes outperformed all
previously proposed TB signatures to accurately distinguish
TB from non-TB among multiple cohorts from different
geographical regions. This parsimonious 2-gene signature also
performed well among those with culture-positive TB, indicating
its potential use for TB treatmentmonitoring. Our study provides
evidence supporting a promising, novel and non-sputum-based
biomarker for TB diagnosis, especially for those with advanced
HIV infection in whom TB diagnosis is often difficult with
sputum-based diagnostics. Future studies are needed to confirm
our findings.
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Supplementary Figure S1 | (A,B) Volcano plots showing differentially expressed

genes (DEG) for TB using whole-blood samples from India (A) and Uganda (B)

cohorts. Red indicates DEGs, defined as change in gene expression with log2
Fold Change ±1.4 and FDR <0.05; green indicates change in gene expression

with log2 Fold Change ±1.4; blue indicates change in gene expression with FDR

<0.05; and gray indicates no significant change in gene expression. (C) The Venn

diagram shows the number of site-specific and shared DEGS. (D) The Bar plot

shows the log2 Fold Change of the 40 DEGs shared across study sites.
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Supplementary Figure S2 | Heatmap of the differentially expressed genes (DEG)

for TB identified in the India (A) and Uganda (B) cohorts.

Supplementary Figure S3 | The dot plot demonstrates the presence of

Decision-tree genes (INSL3 and RAB20) in previously proposed TB gene

expression signatures (A). Boxplots show the associations of CD3 (B), CD8 (B),

and CD4 (C) cell counts and HIV viral load (D) with TB-HIV co-infection status in

the India cohort. Clinical variables were compared among cases (TB-HIV) and

controls (HIV-only) using the Wilcoxon test. Only CD3 and CD8 cell counts were

significantly associated with TB status.

Supplementary Table 1 | Systematic literature review but restricted to the

signatures present in TBSiginatureProfiler package, plus the RISK6 used as

reference. Signature names represent the first author’s name of the corresponding

publication, suffixed with number of constituent genes that are present in the

RNAseq dataset. Table includes number of genes, method, population, HIV status

and treatment, geographical region, and participant condition. TB, tuberculosis;

LTBI, latent tuberculosis infection; HHC, household contacts; SARC, sarcoidosis.

Supplementary Table 2 | File with the differentially expressed genes (DEG) list

from India, Uganda cohort, and the common genes. The log2 Fold Change, log2

Fold Change SE, p-value, and FDR are also provided for each gene.
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