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Coronavirus disease-19 caused by the novel RNA betacoronavirus SARS-CoV2 has

first emerged in Wuhan, China in December 2019, and since then developed into a

worldwide pandemic with >99 million people afflicted and >2.1 million fatal outcomes

as of 24th January 2021. SARS-CoV2 targets the lower respiratory tract system

leading to pneumonia with fever, cough, and dyspnea. Most patients develop only mild

symptoms. However, a certain percentage develop severe symptoms with dyspnea,

hypoxia, and lung involvement which can further progress to a critical stage where

respiratory support due to respiratory failure is required. Most of the COVID-19 symptoms

are related to hyperinflammation as seen in cytokine release syndrome and it is

believed that fatalities are due to a COVID-19 related cytokine storm. Treatments

with anti-inflammatory or anti-viral drugs are still in clinical trials or could not reduce

mortality. This makes it necessary to develop novel anti-inflammatory therapies. Recently,

the therapeutic potential of phytocannabinoids, the unique active compounds of the

cannabis plant, has been discovered in the area of immunology. Phytocannabinoids

are a group of terpenophenolic compounds which biological functions are conveyed

by their interactions with the endocannabinoid system in humans. Here, we explore

the anti-inflammatory function of cannabinoids in relation to inflammatory events that

happen during severe COVID-19 disease, and how cannabinoids might help to prevent

the progression from mild to severe disease.

Keywords: SARS-CoV2, COVID-19, cytokine release syndrome, cytokine storm, inflammation, cannabis,

cannabinoids, cannabinoid receptors

INTRODUCTION

Coronavirus disease 19 (COVID-19) caused by the novel severe acute respiratory syndrome-
coronavirus 2 (SARS-CoV2) firstly emerged in December 2019 in Wuhan in China and has, since
then, evolved into a global pandemic (1). It is a novel enveloped RNA betacoronavirus, which
binds with its spike surface protein (S-protein) to angiotensin-converting enzyme 2 (ACE2) on
the cellular host’s surface. Entry of the virus to the host cell by endocytosis requires cleavage of the
S-protein by the host cell transmembrane protease serine-2 (TMPRSS-2) (2). ACE2 is expressed
in a diverse array of cells including cells of the upper respiratory, central nervous and vasculature
system as well as of the eye, lung, liver, heart, kidney, and intestine contributing to the diverse
clinical pulmonary and extra-pulmonary manifestations of COVID-19 including gastrointestinal
involvement of COVID-19 [(3–5); Figure 1].
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FIGURE 1 | Distribution of ACE2 in the human body. ACE2 is expressed in different cells of the eye, the upper airway, the lung, the liver, the gut, the central nervous

system, the heart, the vasculature system, and of the kidneys.

SARS-CoV2 similarly to other coronavirus outbreaks SARS-
CoV1 and Middle East Respiratory Syndrome (MERS) targets
the lower respiratory tract system leading to pneumonia
with fever, cough, and dyspnea (6). Most patients (80%)
show only mild disease (either no or mild pneumonia), a
smaller proportion (14%) develops severe symptoms with
>50% pulmonary manifestations as observed on imaging tests
including dyspnea and hypoxia. A small proportion (5%) develop
a critical disease with respiratory failure, multi-organ failure
or systemic shock. About 10–30% of hospitalized patients get
into a critical stage where they require intensive care for
respiratory support. Approximately 1% of all patients have a
fatal outcome (7, 8). Patients who developed acute respiratory
distress syndrome (ARDS) and required mechanical ventilation
had a reported mortality rate of 88.1% in the New York
City area in March 2020 (9). Interestingly, not only elderly,
but also young patients with only mild comorbidities like
hypertension, diabetesmellitus and obesity developed respiratory
failure (10).

Epidemiological data show that differences in susceptibility
and severity of COVID-19 widely depend on biological and
socio-economic factors. A lower incidence of severe disease
was observed in females with caucasian heritage (11, 12). This
might be due to the fact that females are less susceptible to
viral infections due to a higher macrophage and neutrophil
activity and an increased antibody production and lower cytokine
production (12). On the other hand seem ethnic minorities
more susceptible to contract a SARS-CoV2 infection (11, 12).
Ethnic minorities usually have less access to a functioning health
care system, higher levels of medical comorbidities, and their
lower socioeconomic status contributes to a weak cell-mediated
immunity (11, 12).

Development of a severe disease progresses in two steps;
mild symptoms at the start are followed by respiratory
worsening after ∼10 days after onset of initial symptoms. This
deterioration is accompanied with clinical presentations of
ground-glass lung opacities on chest imaging, lymphocytopenia,
high D-dimer, and high prothrombin (1). In patients with
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moderate disease, a progressive reduction in inflammatory
responses happens in convalescence while in patients with
severe disease, these levels remain high and an additional
cluster of inflammation appears (13) possibly due to
a defective type I interferon response [(14); Figure 2].
Those systemic hyperinflammatory patterns in COVID-19
patients are similar to those in cytokine release syndrome
(CRS) and the occurrence of CRS in severe disease was
suggested (15).

Although certain patterns for the susceptibility to develop
severe COVID-19 are recognizable (13, 16), the inflammatory
response and the immune dynamics of the infected patient
are still not fully understood. This makes the exact course
of a SARS-CoV2 infection and the correlation to a certain
clinical manifestation highly unpredictable. Effective and
specific anti-viral drugs against SARS-CoV2 are not yet
available. The usage of available repurposed anti-inflammatory
medicines (17) and antibody-based immunotherapeutics
targeting viral clearance (18, 19) is still experimental and
applied only for the treatment of severely and critically
ill patients (20–22). Safe and efficient treatment options
that have the potential to halt disease progression at an
early stage are needed. Cannabis and cannabinoids with
their well-known anti-inflammatory properties may hold
this potential.

Cannabis comprises various strains termed Cannabis sativa,
Cannabis ruderalis, and Cannabis indica. It is not sure if they
are three different species or whether ruderalis and indica are
subspecies of C. sativa. During the history of the mankind, the
cannabis plant was grown for varied uses as for production of
fabric, for food, for recreational purposes and for medicinal use.
Medically useful substances are produced in the trichomes that
sit on the leaves and buds of the plant (23).

The cannabis plant contains more than 550 different
components, of which are about 150 belongs to C21 or C22
terpenophenolic phitochemicals, which are predominantly
expressed in the cannabis plant thus termed cannabinoids.
The other 400 components are terpenes and phenolic
compounds (24). The cannabinoids components contains
both psychoactive [as 9-tetrahydrocannabinolic acid (THCA)]
and non-psychoactive [as cannabidiolic acid (CBDA)] substances
(24). The biological properties of the cannabinoids rely on their
interaction with the endocannabinoid system includes G-
proteins coupled receptors and Transient receptor potential
chanels (TRP) (25).

Most interestingly, the anti-inflammatory properties
especially of the non-psychoactive cannabidiol were recently
explored as anti-viral agents. These effects were shown for the
treatment of HIV (26), viral hepatitis (27), or influenza (28, 29) as
well as orthopoxvirus, borna disease virus or vaccinia virus (30).

Here, we will explore the anti-inflammatory qualities of
phytocannabinoids and discuss the possibility of applying
cannabinoids as a treatment option for COVID-19 patients.
We will explore the recent literature and emphasize the anti-
inflammatory properties in relation to the events occurring
during cytokine release syndrome (CRS) in mild or severe
COVID-19 disease.

CYTOKINE RELEASE SYNDROME IN
COVID-19 PATIENTS

Each infection with SARS-CoV2 is closely related to excessive
inflammatory events with monocytes/macrophages and T cells
playing a special role (31). Diffuse alveolar damage, pulmonary
thrombi and vasculitis occurring predominantly in monocytes
and myeloid tissue and an excess of plasma cells in lymph nodes,
spleen, and lung was observed (15, 32). This leads to a severe
increase in white blood cells with concomitant decrease in CD4+

and CD8+ lymphocytes resulting in an impaired neutrophil to
lymphocyte ratio (33). Inflammatory cells infiltrate the sites of
infection at an early stage of the infection with SARS-CoV2
and cause a stormy release of pro-inflammatory cytokines like
IL-6, IL-17A, TNFα, IFNγ, IL-1α/β, and chemokines like CC-
chemokine ligand 2 (CCL2) as well as CXC-chemokine ligand 10
(CXCL10) (13). The release of IL-6 by circulating monocytes into
the bloodstream leads to an increased activation of T cells with a
concomitant reduced total number of T cells. Monocyte-derived
FNC1+macrophages were found in bronchoalveolar lavage fluid
(BALF) (13, 34) probably contribute to the hyperinflammation
phenomenon (35). CRS can develop at every stage of infection
beginning with the entry of the virus into the host causing innate
and adaptive immune responses.

Induction of CRS During SARS-CoV2-ACE2
Interaction
Binding of the virus to ACE2 leads to the internalization of
ACE2 and activation of angiotensin II resulting in the activation
of nuclear factor kappa B (NF-κB). Subsequently, cytokines IL-
6, TNFα, IL-1β, and IL-10 will be produced which might lead
to local lung dysfunction including a rise in blood pressure,
which contributes to lung injury and deterioration of pulmonary
function as occurs in ARDS (36, 37).

Induction of CRS by Innate Immune Cells
ACE2 was found on CD169+ macrophages in lymph nodes and
spleen of COVID-19 patients and severe lymphocyte apoptosis
was observed probably induced by viral antigens through Fas
upregulation (38). CD169+ cells control viral replication via type
I interferon, and expose viral antigens to recognition by adaptive
immune cells (39). Infection of CD169+ macrophages enables the
translocation of the virus to the spleen and lymph nodes, which
contributes to the body-wide distribution of the virus resulting in
accumulation of pro-inflammatory monocytes and macrophages
at the sites of infection and at sites adjacent to the infection (40).

Monocyte derived FCN1+ macrophages that produce pro-
inflammatory cytokines and chemokines were found in the
BALF of patients with ARDS (34). This might contribute to the
induction of T cell apoptosis, which might lead to pneumonia
and disease progression to ARDS (41). Moreover, production of
IL-6 in the spleen and lymph nodes, and of IL-6, TNFα, IL-10,
and PD-1 by alveolar macrophages induces lymphocyte necrosis,
further contributing to the development of lymphocytopenia and
cytokine storm in the lung (38).

Monocytes and mononuclear cells in the peripheral blood
and BALF are activated and secrete IL-6, IL-10, and TNFα,
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FIGURE 2 | Inflammatory responses in COVID-19 patients. Inflammatory responses to SARS-CoV2 comprise a “core” inflammatory response, which all COVID-19

patients experience. In patients with mild disease, the inflammatory response resolves on the way to convalescence. The appearance of additional inflammatory

clusters is observed during progression to severe disease. This includes the release of a higher number of systemic pro-inflammatory cytokines, low numbers but

over-reactive T cells, and infiltration of monocytes/macrophages to the sites of infection.

and chemoattractors of macrophages’ IFN-induced protein 10
(IP-10), and MCP-1 (42). In peripheral blood mononuclear
cells (PBMC) and BALF, high levels of neutrophil-attracting
chemokines CXCL2 and CXCL8 attract neutrophils to the site
of inflammation (43). Neutrophils secrete extracellular webs of
DNA and histone to infectious particles, termed NETs, which are
found aberrantly in patients with ARDS (44). They are believed
to contribute to venous and arterial thrombosis in critical disease,
multi-organ, and respiratory failure as well as coagulopathy due
to their impact on the regulation of cytokine release (42).

Induction of CRS by Adaptive Immune
Cells
Lymphocytopenia is a well-observed symptom in patients with
severe COVID-19. It comprises a highly reduced number
of circulating B and T cells combined with an increase in
neutrophils and hyperactivation of monocytes and macrophages.

Patients with severe disease symptoms have low T cells and
T helper cells, Th1, Th2, and Th17 numbers (45), either due
to T cell apoptosis by high amounts of cytokines secreted by
CD4+ T cells (46, 47) or due to the redistribution to other
tissues resulting in the infiltration of mononuclear cells into the
interstitial area of the lung contributing to the development of
interstitial pneumonitis (48).

In patients with ARDS, CD4+, and CD8+ T cells were found
in the peripheral blood 14 days after disease onset. While CD8+

T cells secrete primarily IFNγ, CD4+ T cells secrete cytokines
related to Th1 (IFNγ, TNFα, IL-2) and Th2 (IL-5, IL-9, IL-10)
at normal levels (49) albeit at reduced levels in severe COVID-19
(50). Patients with ARDS had low but over-activated CD8+ cells
(51) leading to T cell exhaustion rendering the T cell response
ineffective (50). In addition, activated T cells, including Th1 and
Th17 helper cells, further stimulate the activation of monocytes
enabling secretion of IL-1β, IL-6, and colony stimulating factor
(CSF1 and CSF2) to contribute to the worsening of the cytokine
storm resulting in organ failure (46).

Another important subset of T cells comprises regulatory T
cells (Tregs). They are responsible for regulating the immune
response to prevent hyperinflammation. To do so, they expand
rapidly in antiviral immune responses (52). Inconsistent results
have so far been obtained about the levels of Tregs in patients
with severe COVID-19. Some observed higher levels of Tregs,
while others reported reduced or unchanged levels (45).

As a result of the above, a significant elevation of a plethora
of pro-inflammatory cytokine levels was reported. The most
prominent elevated pro-inflammatory cytokine is IL-6 in patients
with severe symptoms. This IL-6 production from CD14+ and
CD16+ monocytes is driven by GM-CSF produced by Th1
cells (53) directly correlated with virus load (54). Moreover,
IL-6 might influence lung-centric coagulopathy by inducing
coagulation cascades (55).

Increased numbers of CCR4+ and CCR6+ Th17 cells were
measured in COVID-19 patients with ARDS (56). Other
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cytokines IL-1, IL-17, TNFα, and GM-CSF were associated with
Th17 immune responses (57). These observations might explain
the occurrence of a Th17-type cytokine storm, and the onset of
multiple organ damage in patients with severe COVID-19 (56).
Similarly, production of IP-10, CCL5/RANTES41, CRP, and C-
dimer were higher in patients with severe COVID-19 compared
to mild COVID-19 (57). An increase of anti-inflammatory
cytokines IL-10 and IL-4 hints to an elevated Th2 response, which
might be involved in the development of pulmonary interstitial
fibrosis (13, 58). Underlying bacterial infections might contribute
to the development of CRS by exacerbating the inflammatory
response (59).

TREATMENT OPTIONS FOR COVID-19
PATIENTS

No specific anti-viral drug for the successful treatment of
COVID-19 is available. Several anti-inflammatory drugs are
tested in pre-clinical and clinical trials as repurposed drugs
for resolving CRS in patients with severe disease including
steroids and corticosteroids like dexamethasone (60, 61), mono-
and polyclonal antibodies normally used in rheumatology, i.e.,
the IL-6 inhibitor tocilizumab (62–65) including the “famous”
monoclonal antibody cocktail REGN-COV2 (66), anti-viral
drugs like remdesivir (67) or the HIV-drug combination
lopinavir-ritonavir, the anti-parasitic drug hydroxychloroquine
(68) as well as drugs against gastrointestinal diseases like
famotidine (histamine-2 receptor antagonist), which showed
antiviral properties for HIV or omeprazole (proton pump
inhibitor) (69) in addition, the administration of convalescent
plasma was tested (22).

Most of the drugs with the exception of remdesivir that was
recently approved by the FDA, are still in clinical trials or could
not reduce mortality (20–22). To prevent mortality, therapies
halting disease progression at earlier stages are required.
Cannabinoids with their anti-inflammatory function represent
potential candidates to avoid CRS (70–72).

CANNABIS AND THE ENDOCANNABINOID
SYSTEM

The cannabis plant comprises >550 different chemical
constituents, ≈150 of these are cannabinoids and >400 non-
cannabinoids. The main pharmacologically active compounds
are the psychoactive tetrahydrocannabinols (THC), 18-THC
and 19-THC, and other non-psychoactive cannabinoids like
cannabinol (CBN), cannabidiol (CBD), or cannabigerol (CBG)
to name only a few. CBN was the first cannabinoid that was
isolated in 1899 (73). Non-cannabinoids are flavonoids, terpenes,
and fatty acids [(23, 24); Figure 3].

Cannabinoid Receptors and Their Ligands
Cannabinoids convey their functions via cannabinoid receptors
that are anchored in the cell membrane. Cannabinoid
receptors bind to endo- (eCBs) and phytocannabinoids
alike comprising the endocannabinoid system. The most studied

FIGURE 3 | Cannabinoids in Cannabis sativa spp. Depicted is the number of

the compounds of the cannabis plant, which are >400 non-cannabinoids and

≈150 cannabinoids that are listed including their abbreviations.

endocannabinoids are 2-arachidonoylglycerol (2-AG) (74) and
N-arachidonoylethanolamide (anandamide, AEA) (75). They
belong to a group of lipid mediators that are either synthesized
and released from membrane phospholipids “on demand” in
response to physiological or pathological stimuli by many cell
types in the brain or peripheral tissue or may be stored in
organelles that might serve as potential platforms for trafficking
and accumulation (76).

2-AG is a monoacylglycerol that serves as an intermediate
in lipid metabolism (77). It is synthesized when needed by
two major pathways, a signaling and a metabolic pathway.
The signaling pathway starts from phosphatidylinositol-4,5-
biphosphate (PIP2) and the metabolic pathway starts from
triglycerides that contain 2-arachidonate (78). Two second
messengers are synthesized from PIP2: diacylglycerol (DAG) and
inositol-1,4,5-triphosphate (75). Triglycerides are hydrolyzed by
hormone-sensitive lipase, other lipases, and carboxylesterase to
diglycerides that contain 2-arachidonylglycerol (75). Diglycerides
are then further processed by two isoforms of diacylglycerol
lipase α and β (DAGL-α and -β) generating 2-AG and a fatty acid
(79). Degradation of 2-AG is accomplished by the hydrolysis of
the ester bond into arachidonic acid and glycerol by the enzyme
monoacylglycerol lipase (MAGL) or α,β-hydrolase domain-
containing proteins 12 and 6 (ABHD12 and ABHD6) (80).

The biosynthesis of AEA involves two steps: (i) the
formation of N-arachidonoyl-phosphatidylethanolamine
from phosphatidylethanolamine catalyzed by the calcium-
dependent N-acyltransferase followed by (ii) the conversion
of N-arachidonoylphosphatidylethanolamine to AEA or
other N-acylethanolamines through five different metabolic
pathways of which the most studied pathway involves N-
acyl-phosphatidylethanolamine-hydrolyzing phospholipase D
(76, 81). Degradation of AEA occurs through cleavage into
arachidonic acid and ethanolamine by fatty acid amide hydrolase
(FAAH) or N-acylethanolamine-hydrolyzing acid amidase (82).

Both, 2-AG and AEA, can be degraded by cyclooxygenase
(COX), lipoxygenase (LOX), or cytochrome P450 resulting
in the formation of oxidized compounds such as hydroxyl-
anandamides and hydroxyeicosatetraenloyl-glycerol or
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prostaglandin-ethanolamines and prostaglandin-glyceryl
esters; all of them with different biological functions (76).

Two different classes of receptors are assigned as putative
cannabinoid receptors, G-protein-coupled receptors (GPCRs)
and transient receptor potential channels (TRP), which we
present in further detail in the following two sections and in
Table 1.

G Protein-Coupled Receptors
G protein-coupled receptors are a family of membrane proteins.
They are characterized by seven membrane-spanning α-helical
domains that are separated by alternating intra- and extracellular
loops. GPCRs mediate the cellular response to neurotransmitters
and hormones and are mostly responsible for taste, vision, and
olfaction. The most prominent GPCRs that mediate endo- and
phytocannabinoid signaling believed to be involved in signal
transduction of the immune system are CB1R, CB2R, GPCR18,
and GPCR55 (121).

Transient Receptor Potential Channels
Transient receptor potential (TRP) channels are a family of
ion channels. They are membrane proteins which consist of
channel subunits built of six putative transmembrane-spanning
segments (S1-S6) with a pore-forming loop between S5 and
S6 which assemble into tetramers to form functional channels
(122). TRPs are involved in the signal transduction of numerous
chemical and physical stimuli and regulate many neural signaling
processes and other physiological functions such as temperature
sensation, smell, taste, vision, pressure, or pain perception
(123). Thus, they are potentially attractive targets for the
therapeutic use of phytocannabinoids in the treatment of sensory,
inflammatory or dermatological pathologies (124). Most TRPs
can cause channelopathies which are risk factors for many disease
states (125).

TRPs that are putative cannabinoid receptors are TRPV1-4,
TRPA1, and TRPM8 (126).

Anti-inflammatory Properties of
Cannabinoids and Their Potential to
Downregulate COVID-19 Related CRS
First indications that cannabis has the potential to influence
the disease course of COVID-19 were already published 3
years before the outbreak of the current pandemic. Researchers
from Italy examined the potential of a hemp seed protein
isolate that was prepared from defatted hemp seed by alkaline
solubilization/acid precipitation as inhibitors for ACE-2. Four
potentially bioactive peptides GVLY, IEE, LGV, and RVR were
identified in the tested fraction by mono- and bidimensional
NMR and LC-MS analyses. All four peptides had ACE-inhibitory
activity rendering hemp seeds a potential agent to inhibit entry of
SARS-CoV2 into the cells (127).

Recently, Canadian researchers have tested CBD extracts of
800 different C. sativa lines on 3D human models of oral,
airways, and intestinal tissues and found 13 low THC/high CBD
lines that modulated ACE2 and TMPRSS2 levels, which might
lower the virus load (128). ACE2-reducing activity of cannabis-
derived products were confirmed by a different group. They

extracted a CBD, CBG, and THCV-containing fraction of a C.
sativa strain and tested it in vitro in comparison to a standard
phytocannabinoid agent. Both products reduced the secretion of
pro-inflammatory cytokines IL-6, IL-8, CCL2, and CCL7 from
the alveolar epithelial cell line A549, induced polarization of
the macrophage cell line KG1 and increased the phagocytosis.
CD36 and type II receptor for the Fc region of IgG (FcγRII)
were upregulated. The researchers reported a certain superiority
of the standard phytocannabinoids compared to the cannabis-
derived fraction but cannot give recommendations for usage of
cannabis in the treatment of COVID-19 (129). Another recent
study simulated viral infections using the synthetic RNA Poly
I:C and could show that Poly I:C-induced ARDS could be
prevented by CBD (130) through the upregulation of apelin,
a peptide regulating central and peripheral immunity that was
severely downregulated in a murine model of ARDS (131). In the
following two sections we will present the processes of regulation
of the immune responses of endo- and phytocannabinoids.

Regulation of Immune Responses by

Endocannabinoids via CB1 and CB2
The endocannabinoid system has anti-inflammatory activities
in innate and adaptive immunity. It regulates migration and
trafficking of different immune cells dependent on its receptors.
Experiments with human bone marrow cells obtained by
aspiration from healthy donors showed that the migration of
human hematopoietic stem and progenitor cells was modulated
by endocannabinoids. Endocannabinoids receptors CB1 and
CB2 were expressed by bone marrow derived hematopoietic
stem cells and CD34+ cells. AEA and 2-AG were detected in
the microenvironment of peripheral blood and bone marrow,
which were secreted by bone marrow mesenchymal stem cells.
Migration of hematopoietic stem cells was stimulated by AEA
and 2-AG and blocked by CB receptor antagonists rendering
endocannabinoids putative candidates for the enhancement of
the migration of hematopoietic stem cells (132).

Cell trafficking of mature immune and effector cells, like
lymphocytes, macrophages, neutrophils, and dendritic cells can
be regulated by endocannabinoids [rev. in (133)]. It was reported
that exogenously added 2-AG leads to the attenuation of
lymphocyte proliferation through the decrease of Th1- and
Th17-associated cytokines IL-6, IL-2, and TNFα. Moreover,
activated B and T cells that produce high levels of 2-AG
inhibit in a feedback loop T cell activation and proliferation,
making exogenously applied 2-AG a putative candidate for
therapeutic usage in Th1- or TH17-dependent diseases (134).
Upon antigen activation by pathogens, macrophages, and
dendritic cells produce and release 2-AG, which results in
the upregulation of 2-AG levels in the serum and lymph
nodes of mice during vaccination CB2 dependently. In a
murine immunization model, transient administration of CB2
antagonist AM630 or inverse antagonist JTE907 increased the
intensity of antigen-specific immune responses by upregulation
of immunomodulatory genes in secondary lymphoid tissue
(135). AEA inhibited macrophage-mediated killing of the TNFα-
sensitive mouse alveolar macrophage cell line L929 (136). Correa
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TABLE 1 | Cannabinoids receptors.

Receptor Location in immune cells/tissue Function in immunity Ligands

CB1 and CB2 - Immune tissue (spleen and thymus) and

leukocyte subpopulations like natural killer

cells, B-cells, and peripheral blood

mononuclear cells (83, 84)

- Reduces IL-2 synthesis (85)

- Suppression of T cell activation (86–89)

- Inhibition of lymphocyte proliferation and

IL-17 secretion (86)

- Regulation of function of intestinal neutrophils

(90)

- Regulation of acute trafficking of neutrophils

to site of inflammation (91)

- Retention of immature B cells in the bone

marrow (92)

- Immunosuppression in B cells after AEA or

19-THC ligand binding (93)

Endocannabinoids:

- 2-AG (94), AEA (95)

Phytocannabinoids:

- 19-THC and 18-THC as partial agonists

regulating pain management (96, 97)

- CBN as agonist (98)

- CBD as a weak antagonist (99), as a negative

allosteric modulator (100), and as an inhibitor

of anandamide uptake (101)

- CBG as a weak partial agonist (102, 103), and

as an inhibitor of AEA uptake (101)

- CBC asweak agonist (103), and as an inhibitor

of AEA uptake (101)

- 19-THCV as an antagonist (104)

GPR18 - Spleen (105)

- CD4+- and CD8+ T cells and CD19+ B cells

(106)

- Immune regulation in the small intestine for

normal homeostasis of CD8+ subsets of IELs

(CD8αα and CD8αβ IELs) (107)

Endocannabinoids:

- NAGly (105)

Phytocannabinoids:

- 19-THC as an agonist (108)

- CBD as antagonist (108)

GPR55 - Leukocytes - T cell migration (109)

- Hyperalgesia associated with inflammatory

and neuropathic pain (110)

Endocannabinoids:

- AEA, 2-AG, and virodhamine (111)

Phytocannabinoids:

- 19-THC as an agonist (112) and LPI inhibitor

(113)

- CBD as antagonist (111)

- CBG as weak LPI inhibitor (113)

- 19-THCV as a partial agonist and LPI inhibitor

(113)

- CBDV as a LPI inhibitor (113)

TRPV2 - Human and mouse B cells

- Human dendritic cells and neutrophils

- Mouse monocytes and macrophages

- Translocation of TRPV2 to the plasma

membrane plays a role in the chemotaxis of

macrophages and in phagocytosis (114)

- Some analgesic and anti-proliferative

properties of CBD may be mediated by

TRPV2 activation (115)

Phytocannabinoids:

- 19-THC, CBD, CBG, 19-THCV, and CBDV

as agonists (101, 116)

TRPA1 - Expressed on human lung fibroblasts and

epithelial cells (117)

- Agonist binding leads to release of IL-8

- Role in modulation of the release of

chemokines in inflamed airways (117)

Phytocannabinoids:

- 19-THC, CBG (118)

- CBN and CBC as antagonists (101)

TRPM8 - Co-expressed with several clusters of

differentiation (CD) like CD38, CD79a,

CD138, and in mature B-cell neoplasms (119)

- Role in cold hypersensitivity associated with

inflammatory and neuropathic pain (120)

Phytocannabinoids:

- 19-THC, CBG (118)

- CBN and CBC as antagonists (101)

CB, cannabinoid receptor; 2-AG, 2-arachidonoylglycerol; AEA, N-arachidonoylethanolamide; NADA, N-arachidonoyl dopamine; THC, tetrahydrocannabinols; CBN, cannabinol; CBD,

cannabidiol; CBG, cannabigerol; CBC, cannabichromene; THCV, tetrahydrocannabinol; GPR, G protein-coupled receptor; LPI, lysophosphatidylinositol; CBDV, cannabidivarin; NAGly,

N-arachidonyl glycine; TRPV2, transient receptor potential cation channel; subfamily V; member 2; IELs, intraepithelial lymphocytes; TRPA1, transient receptor potential cation channel;

subfamily A; member 1; TRPM8, transient receptor potential cation channel; subfamily M, member 8.

et al. presented evidence that AEA inhibited expression of pro-
inflammatory cytokines like IL-12 and IL-23 in in vitromodels of
immune disorders and increased the anti-inflammatory cytokine
IL-10 in activated mouse microglia (137–139). In a model of
acute intestinal inflammation it was shown that the transporter
p-glycoprotein helped the influx of endocannabinoids into the
intestinal lumen, which inhibited the migration of neutrophils by
counteracting the pro-inflammatory neutrophil chemoattractant
eicosanoid hepoxilin A3 (90). Similarly, the migration-related
transcriptional profile of neutrophils was enhanced in CB2−/−

mice. In response to Zymogen, the neutrophil, and lymphocyte
antigen 6 complex was recruited to the dorsal air pouch and
metalloproteinase 9 and CCL4 and CXCL10 increased (91).

Regulation of the Immune Response by

Phytocannabinoids
Similarly, extracts of the phytocannabinoids CBD and THC
could attenuate the proliferation of activated lymphocytes and
the secretion of pro-inflammatory IL-17, thereby increasing
secretion of the anti-inflammatory IL-10 (86). Additionally,
the endocannabinoid AEA and the phytocannabinoid THC
could also induce immunosuppression in B cells as was
examined in both primary and secondary in vitro plaque-forming
cell assays of antibody formation (93). Many reports have
shown that exogenously applied CBD suppresses transcription
factors involved in inflammation like NFAT, AP-1, and
NF-κB, which results in a broad repression of cytokines
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FIGURE 4 | Impact of cannabinoids on inflammatory responses during a SARS-CoV2 infection. The entry of the virus via ACE2 can be inhibited by CBD, reducing the

virus load inside the cells. Infection with the virus triggers a cascade of inflammatory responses of the innate and adaptive immunity. Monocytes and macrophages

secrete cytokines and chemokines. Activated macrophages secrete CXCL2 and CXCL8 which attract neutrophils, which release NETs to the site of infection.

Infiltrating FCN1+ macrophages secrete IL-6, IL-10, and TNFα in the lung, which leads to T cell apoptosis. CD8+ T cells secrete IFNγ and TNFα. T helper cells Th1

and Th17 stimulate CD14+ and CD16+ monocytes to secrete IL-6, IL-1β, and CSF1 and CSF2. This leads to the development of the cytokine storm, which might

culminate in ARDS or multi-organ failure. Cannabinoids have the potential to inhibit the secretion of several pro-inflammatory cytokines resulting in prevention of CRS.

like IL-6, IL-1β, IL-1α, GM-CSF, and TNFα in diverse
cells and tissues (140). These cytokines have a central role
in the development of CRS in COVID-19. IL-6 promotes
the differentiation of Th17 cells, which was shown to be
suppressed by CBD (141). Moreover, CBD was shown to inhibit
IFNγ (142).

A plethora of pre-clinical studies show that cannabinoids of
certain cannabis strains can have an impact on the inflammatory
response in mouse models of lung or inflammatory diseases,
thus halting their progression. In a murine model of LPS-
induced acute lung injury, CBD suppressed the vigorous immune
response by three mechanisms: (i) inhibition of infiltration of
leukocytes and neutrophils into lung tissue, (ii) inhibition of
secretion of pro-inflammatory cytokines TNFα, IL-6, and the
chemokines MCP-1 and MIP-2 into the BALF, (iii) inhibition of
the activity of myeloperoxidase, an enzyme with antimicrobial
activity abundantly expressed in neutrophils (143). In murine
models of chronic asthma, cytokine levels of IL-4, IL-5, IL-6,
IL-13, and TNFα were decreased by CBD, probably exerting

its effect via the CB1 receptor. This led to the reduction of
airway inflammation and fibrosis (144, 145). Moreover, the
production of regulatory T cells were increased in murine models
of inflammatory diseases (146).

These anti-inflammatory actions of cannabis might be
beneficial for the prevention of CRS before the host inflammatory
response turns pathological during the transition from mild to
critical disease in COVID-19 patients (Figure 4).

CONCLUSION AND FUTURE
PERSPECTIVES

According to the current state of available clinical data, most
severe COVID-19 symptoms are related to CRS, which is also
assumed to be responsible for the fatal outcome in COVID-19
patients. Here, we discuss the hypothesis that cannabinoids may
have a great potential for the inhibition of hyperinflammation
leading to CRS in COVID-19 patients. However, extensive
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evidence from pre-clinical and clinical trials are still missing
but urgently needed. This is because in spite of the medicinal
potential of cannabis, it may be used in harmful or abusive
manner. Cannabis is the most widely used illicit drug in the
world. The United Nations Office On Drugs and Crime World
Drug Report (UNODC) from 2020 measured around 192 million
users in 2018 (147). An increased use among older adults was
seen in the US between after legalization 2015 and 2018 (148)
and known cannabis users increased their usage during first
lockdown in the Netherlands (149) and in the US (150). The
most common route of cannabis administration is smoking
with or without tobacco. This raises concern in relation to
the development of a severe/critical disease state in COVID-
19 patients because smoking tobacco upregulates ACE-2 which
increases the entry rate of the virus into the cells and leads to
a worse outcome (151). While in Europe still 77.2–90.9% prefer
tobacco-based smoking (152), the use of alternative routes of
cannabis administration like vaporizing or edibles have increased
in the US since legalization (153). However, whether vaping has
an advantage over smoking for the likelihood of an infection with
SARS-CoV2 and its outcome are still unknown (154).

Moreover, severe cardiovascular events were reported after
acute usage of herbal cannabis (155) including an elevated risk
of myocardial infarction in the presence of Angina pectoris
(156) and reported cardiovascular deaths in 26% of users
between 2006 and 2010 (157). In adolescent users, regular
herbal cannabis use can lead to irreversible cognitive decline
including loss of short-term memory, mood disorders, and
schizophrenia (158).

However, increasing evidence shows a positive impact of
cannabidiol on chronic pain in adult patients, as an antiemetic in
chemotherapy-induced nausea and vomiting and in improving
spasticity in multiple sclerosis based on patient’s reports as well
as in sleep improvement and fibromyalgia (159). However, many

more precisely targeted clinical studies need to be performed
in order to evaluate the benefit/risk ratio for cannabinoids. All
together, these concerns emphasize the need of deeper science-
based data that will allow the appropriate use of cannabis
for medicinal purposes. Our studies at the Medical Cannabis
Research and Innovation Center follow this route. We aim to
become more knowledgeable about the exact anti-inflammatory
capability of the cannabinoid’s components of a chosen strain
with the lowest potential to drug abuse and the least adverse
effects so that we can administer cannabinoids more accurately
targeted to the patients.
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