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Background: Murine monocytes (MC) are classified into Ly6Chigh and Ly6Clow

MC. Ly6Chigh MC is the pro-inflammatory subset and the counterpart of human
CD14++CD16+ intermediate MC which contributes to systemic and tissue inflammation
in various metabolic disorders, including hyperhomocysteinemia (HHcy). This study aims
to explore molecule signaling mediating MC subset differentiation in HHcy and
control mice.

Methods: RNA-seq was performed in blood Ly6Chigh and Ly6Clow MC sorted by flow
cytometry from control and HHcy cystathionine b-synthase gene-deficient (Cbs-/-) mice.
Transcriptome data were analyzed by comparing Ly6Chigh vs. Ly6Clow in control mice,
Ly6Chigh vs. Ly6Clow in Cbs-/- mice, Cbs-/- Ly6Chigh vs. control Ly6Chigh MC and Cbs-/-

Ly6Clow vs. control Ly6Clow MC by using intensive bioinformatic strategies. Significantly
differentially expressed (SDE) immunological genes and transcription factor (TF) were
selected for functional pathways and transcriptional signaling identification.

Results: A total of 7,928 SDE genes and 46 canonical pathways derived from it were
identified. Ly6Chigh MC exhibited activated neutrophil degranulation, lysosome, cytokine
production/receptor interaction and myeloid cell activation pathways, and Ly6Clow MC
presented features of lymphocyte immunity pathways in both mice. Twenty-four potential
transcriptional regulatory pathways were identified based on SDE TFs matched with their
corresponding SDE immunological genes. Ly6Chigh MC presented downregulated co-
stimulatory receptors (CD2, GITR, and TIM1) which direct immune cell proliferation, and
upregulated co-stimulatory ligands (LIGHT and SEMA4A) which trigger antigen priming
and differentiation. Ly6Chigh MC expressed higher levels of macrophage (MF) markers,
whereas, Ly6Clow MC highly expressed lymphocyte markers in both mice. HHcy in Cbs-/-

mice reinforced inflammatory features in Ly6Chigh MC by upregulating inflammatory TFs
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(Ets1 and Tbx21) and strengthened lymphocytes functional adaptation in Ly6Clow MC by
increased expression of CD3, DR3, ICOS, and Fos. Finally, we established 3 groups of
transcriptional models to describe Ly6Chigh to Ly6Clow MC subset differentiation, immune
checkpoint regulation, Ly6Chigh MC to MF subset differentiation and Ly6Clow MC to
lymphocyte functional adaptation.

Conclusions: Ly6Chigh MC displayed enriched inflammatory pathways and favored to be
differentiated into MF. Ly6Clow MC manifested activated T-cell signaling pathways and
potentially can adapt the function of lymphocytes. HHcy reinforced inflammatory feature in
Ly6Chigh MC and strengthened lymphocytes functional adaptation in Ly6Clow MC.
Keywords: lymphocyte antigen 6 complex, locus C (Ly6C) monocyte subset, hyperhomocysteinemia, transcription
factor, immunological gene, immune checkpoint
INTRODUCTION

Monocytes (MC) are bone marrow (BM) derived mononuclear
phagocytes that play an important role in innate immune
response and are the major immune cell population in chronic
tissue inflammatory (1, 2). MC can be classified into
inflammatory or anti-inflammatory subsets (1). Human MC
were initially divided into three subsets based on the cell
surface expression of CD14 and CD16, and recently classified
based on CD40 expression (2–5). Murine MC are divided into
three subsets based on surface expression of lymphocyte antigen
6 complex, locus C (Ly6C) (3, 4). Murine Ly6Chigh and
Ly6Cmiddle MC subsets perform pro-inflammatory functions,
which are considered the counterpart of human CD14++

CD16+ intermediate MC or CD14+CD40+ inflammatory MC
(4, 5). Murine Ly6Clow MC perform patrolling and anti-
inflammatory function, similar to human CD14+ CD16++ non-
classical, CD14++CD16- classical MC, and CD14+CD40- anti-
inflammatory MC (4, 5). Various studies support the notion that
Ly6Chigh MC can be differentiated into Ly6Clow MC (6–8).
However, the selective impairment of Ly6Chigh MC
in Irf8−/− mutant murine demonstrated an independent
developmental pathway for Ly6Clow MC (9). It was reported
that certain transcription factors (TF) (e.g. NR4A1, CEBPb)
controlled Ly6Clow MC differentiation in the BM (10, 11). TF
CEBPb was shown to regulate Ly6Clow MC differentiation by
controlling orphan nuclear receptor NR4A1 expression (10, 11).
CEBPb-deficient mice lacked Ly6Clow MC (11). However, the
, Hyperhomocysteinemia; Cbs-/-,
t; SDE, Significantly differentially
C, Lymphocyte antigen 6 complex,
ritic cells; Mf, Macrophages; NK,
nocyte chemoattractant protein; CD,
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molecular mechanism underlying MC subset differentiation and
transcriptional regulation remain to be elucidated.

Ly6C is a member of the lymphocyte antigen-6 (Ly6)/
urokinase-type plasminogen activator receptor superfamily and
a glycosylphosphatidylinositol-anchored glycoprotein with
undefined function (12). Ly6C is first identified as an antigen
shared by ∼50% of BM cells and expressed on dendritic cells
(DC), macrophages (MФ), neutrophils, natural killer (NK) cells,
CD4+ and CD8+ T-cell (13). It was generally accepted that tissue-
specific MF were first derived during embryogenesis, and then
mainly maintained their populations by self-renewal (14–16).
Ly6Chigh MC displays developmental plasticity and are recruited
to tissues to complement MФ and DC on demand (3, 4, 17).
After entering tissues, Ly6Chigh MC can be differentiated into
MФ, DC or tissue-specific MФ, including bone osteoclast (18),
liver Kupffer cells (19), skin Langerhans cells (20) and kidney and
intestinal MF (21–23), which can also self-renewal (24).
Ly6Chigh MC released proinflammatory cytokines, such as IL
(interleukin)-1, IL-18, IL-15, and MCP (MC chemoattractant
protein)-1 to contribute to systemic/tissue inflammation and T-
cell activation (25). The molecular mechanism underlying MC
plasticity and subset differentiation remain unclear.

To explore the immunological feature and transcriptional
regulatory mechanism in MC subsets, we analyzed the
expression pattern of four sets of immunological genes
(secretome, cytokine, surface marker and immune checkpoint).
Secretome is a new term to describe proteins secreted to the
extracellular space mediating cell-cell interactions (17).
Cytokines are small soluble signaling proteins secreted by cells,
which determine immune response (26). Most cytokines have
defined functions to regulate immune responses including
proliferation, trafficking, and differentiation by binding to
corresponding receptors (26). Cell surface markers, such as
cluster of differentiation (CD) molecules, regulate adhesion,
immune recognition and cell-cell interaction (27, 28). Lineage-
specific cell-surface markers are characteristic molecules used to
define specific lineage and stage in the differentiation process (29,
30). Recent progress in a single-cell RNA sequencing (scRNA-
seq) study proposed a group of new signature genes to define
novel immune cell populations (31). Immune checkpoints are
cell surface molecular pairs (receptors and their ligands)
February 2021 | Volume 12 | Article 632333
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classified into co-stimulatory and co-inhibitory immune
checkpoint (25, 32). Co-stimulatory signals activate T-cell or
antigen-presenting cell to regulate differentiation, proliferation,
cytokines secretion, and receptor expression (33). Co-inhibitory
signals are negative regulators of immune response to avoid
immune injury or turn down the immune system (25, 34).

We previously demonstrated that hyperhomocysteinemia (HHcy),
an independent risk factor for cardiovascular, diabetic and
Alzheimer’s disease, induced Ly6Chigh inflammatory MC subsets
differentiation, which contributed to tissue inflammatory and
accelerated arteriosclerosis and chronic kidney disease (5, 35–
39). The effect of HHcy on MC subset differentiation in patient
would be an interesting topic for future clinical research. Discover
of regulatory mechanisms mediating HHcy-induced MC subset
differentiation may lead to the discovery of novel therapeutic
Frontiers in Immunology | www.frontiersin.org 3
target. This study aims to systemically examine mRNA expression
profiles of key immunological genes in Ly6Chigh and Ly6Clow MC
subsets by intensive bioinformatic analysis and to develop models
of molecule pathways and transcriptional regulatory signaling for
subset differentiation.
RESEARCH DESIGN AND METHODS

We summarized the overall study approaches and strategies in
Figure 1.

HHcy Mice
The Tg-hCBS Cbs-/- mice were created as described previously
(35, 40). The human CBS transgene (Tg-hCBS) was introduced in
Cbs-/- mice to rescue neonatal lethality and is under the control of
a Zn-inducible metallothionein promoter (40). Mice were all
born to mothers drinking ZnCl2 water (25 mM) to induce
transgene expression (35, 40). ZnCl2 was withdrawn after
weaning at 1 month of age to allow the development of HHcy.
Animals were fed standard rodent chow diet and sacrificed at 22
weeks for blood collection after euthanization. Mouse protocols
were approved by the Temple University Institutional Animal
Care and Use Committee.

Hcy Measurement
Mouse blood was collected into 1 mM ethylenediaminetetraacetic
acid (EDTA)-coated tubes. A total of 50 ml of plasma was batched
and stored at -20 °C for Hcy measurement as previously described
(41). In brief, total Hcy levels were tested by liquid chromatography-
electrospray ionization-tandem mass spectrometry.

Flow Cytometry and Cell Sorting
Mouse peripheral blood was collected into 1 ml phosphate‐
buffered saline (PBS) containing 5 mM EDTA in fluorescence-
activated cell sorting (FACS) tube. White blood cells (WBC)
were isolated by using (Ammonium-Chloride-Potassium) ACK
lysing buffer (NH4Cl 0.15 M, KHCO3 10.0 mM, Na2 EDTA 0.1
mM) to lyse red blood cells. WBC from 11 mice were pooled and
stained with antibodies against CD11b-Brilliant Violet 421
(myeloid cell marker, 0.25 mg/100 ml, clone M1/70), Ly6G-
acticated protein C(APC)/Cy7 (granulocyte marker; 0.25 mg/
100 ml, clone 1A8), Ly6C-APC (inflammatory MC marker, 0.25
mg/100 ml, clone HK1.4, BD Pharmingen, San Diego, CA), and
subjected for flow cytometry cell sorting. CD11b+ Ly6G-

Ly6Chigh and CD11b+ Ly6G- Ly6Clow MC were sorted on a BD
FACSAria III cell sorter. Fluorescent activated cells were
analyzed offline with FlowJo software (Tree Star Inc, Ashland,
OR, version 10) and compiled using Prism software (GraphPad,
version 6). All populations were routinely backgated to verify
gating and purity.

RNA Sequencing in Monocyte Subsets
Flow cytometry sorted CD11b+Ly6G-Ly6Ch i gh and
CD11b+Ly6G-Ly6Clow cells from control and Cbs-/- WBC
(200000/MC subset) were collected in 700 ml QIAzol Lysis
FIGURE 1 | Overall strategy of the identification of Ly6C MC regulatory
genes and molecule mechanism for Ly6C monocyte subset differentiation in
control and Cbs-/- mice. RNA-seq were performed in Ly6Chigh

(CD11b+Ly6G−Ly6Chigh) and Ly6Clow (CD11b+Ly6G−Ly6Clow) MC isolated by
flow cytometry sorting from peripheral blood of C57/BL6 control and Cbs-/-

mice. Transcriptome data were analyzed by performing four pairs of
comparisons; (A) Ly6Chigh vs. Ly6Clow (CT), (B) Ly6Chigh vs. Ly6Clow (Cbs-/-),
(C) Cbs-/- vs. CT (Ly6Chigh), (D) Cbs-/- vs. CT (Ly6Clow). We identified 7928
SDE genes using the Bioconductor suite of packages in RStudio software
with the criteria of |Log2FC| more than 1 (2-FC) and adjusted P value less
than 0.01. Top ingenuity pathways were identified by top-down analysis using
IPA with |Z-score|>2, P value<0.05. Immunological SDE gene sets, including
secretome, cytokine and surface marker were overlapped analysis and
matched with corresponding upstream SDE TF by IPA upstream analysis.
Three molecular signaling model system were developed, 1) Transcriptional
regulation for Ly6Chigh to Ly6Clow MC subset differentiation, 2) Immune
checkpoint regulation in Ly6C MC. 3) Transcriptional signaling for Ly6Chigh

MC to MF subset differentiation and Ly6Clow MC to lymphocyte functional
adaptation, CT, control, HHcy, Hyperhomocysteinemia; RNA-seq, RNA-
sequencing; MC, monocyte; Cbs, Cystathionine b-synthase; SDE, significant
differentially expressed; IPA, Ingenuity Pathway Analysis, TF, transcription
factor, MF, macrophage.
February 2021 | Volume 12 | Article 632333
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Reagent (Qiagen, Germantown, MD) for total RNA extraction.
Samples were quality checked on an Agilent Bioanalyzer 2100
using pico RNA chip for RNA integrity number. Total RNA (50–
100 ng/sample) were used for cDNA library construction
after ribosomal cDNA depletion using Takara pico-input kit.
Pooled samples were run for sequencing analysis in duplication
on Illumina NextSeq 500 (CT) and Illumina Hiseq 4000
sequencer (HHcy).

RNA-seq data from this study are available from the
corresponding author upon reasonable request in reference to
recent similar publication (42). Details for major RNA-seq data
resources can be found in Supplementary Material.

RNA Sequencing Data Processing
The raw reads were mapped to the mouse reference
transcriptome (mouse cDNA FASTA from ensembl, website
http://uswest.ensembl.org/info/data/ftp/index.html) using
Kallisto, version 0.45. Genes with less than 1 count per million
reads in at least 2 or more samples were filtered out. This reduced
the number of genes to 16,476 normalized genes. The raw RNA-
seq data was analyzed using the statistical computing
environment R, the Bioconductor suite of packages for R and
RStudio (tidyverse, reshape2, tximport, biomaRt, RColorBrewer,
genefilter, edgeR, matrixStats, hrbrthemes, gplots, limma, DT, gt,
plotly, beepr, skimr, cowplot, data.table, sva).

Principle Component Analysis
PCA was performed to examine the variance of RNA-seq data.
RNA-seq data from control and Cbs-/- mice were produced at
different times and processed to remove batch effects and other
unwanted noise using ComBat approach (43, 44). The first 2
principal components (PC1 and PC2) were used to depict the
similarity between samples.
Identification of Significantly Differentially
Expressed Gene
SDE genes were identified using the Bioconductor suite of
Limma packages in RStudio software with the criteria of |Log2
fold change (FC)| more than 1 (FC>2) and adjusted P-value less
than 0.01. We identified genes differentially expressed (|FC|
>2, P<0.01) in Ly6Chigh and Ly6Clow MC by performing four
pairs of comparisons: A. Ly6Chigh vs. Ly6Clow (control), B.
Ly6Chigh vs.Ly6Clow (Cbs-/-), C. Cbs-/- vs. control (Ly6Chigh), D.
Cbs-/- vs. control (Ly6Clow). We identified 2641 secretome, 1176
cytokines and 377 surface markers collected in Protein Atlas
(https://www.proteinatlas.org) (45) and 49 immune checkpoint
gene based on the current literature (25), and newly suggested
leukocyte signature genes from recent scRNA-seq study (46, 47).
SDE immunological genes were overlapped with SDE gene in
immunological gene.
Volcano Plot and Heatmap
Volcano plot was used as a scatterplot to show the differential
expression of genes that shows statistical significance
Frontiers in Immunology | www.frontiersin.org 4
(-Log10adjust P-value) versus magnitude of change (Log2FC).
Heatmap was generated in RStudio using the pheatmap package
to present the expression levels of SDE genes. The color density
in the heatmap indicates the average expression levels of a given
gene normalized by z-score.

Identification of Functional Pathways
We used Ingenuity Pathway Analysis (IPA) version 7.1 (IPA,
Ingenuity Systems, https://www.ingenuity.com) to identify
functional pathways. SDE genes were identified and uploaded
into IPA for analysis. The general canonical functional pathways
were established for SDE genes identified in above mentioned
four comparison groups, as we have previously reported (48, 49).

Overlap Analysis of SDE Genes
SDE genes and functional pathways identified from above
mentioned four comparisons were subjected for overlapping
analysis (http://bioinformatics.psb.ugent.be/webtools/Venn/).
Venn diagrams were displayed to present SDE genes and
pathways overlaps between comparisons. Further, functional
pathways were also established for three sets of immunological
SDE genes (secretome, cytokines and surface markers) and SDE
TF. Functional pathways in Venn diagram were developed by
using metascape website software (https://metascape.org/) for
SDE gene set (>20 SDE genes).

Identification of Transcriptional Signaling
We identified SDE TFs and matched with their corresponding
SDE immunological genes by referencing TF- matched gene sets
using IPA upstream analysis. The significate matches were
recognized as potential transcriptional signaling (TF/targeted
molecule axis) based on p‐values < 0.01, |z‐scores|>2,
calculated by using Fisher’s Exact Test.
RESULTS

Identification of 7928 Significantly
Differentially Expressed Genes Through
Four Comparisons in Sorted Blood
Ly6Chigh and Ly6Clow Monocytes From
Control and Cbs-/- Mice
We obtained 40 million reads and 16476 normalized genes from
RNA-Seq analysis of 200000 sorted Ly6Chigh (CD11b+Ly6G-

Ly6Chigh) and Ly6Clow (CD11b+Ly6G-Ly6Clow) MC from
control C57/BL6 mice and HHcy Cbs-/- mice (plasma Hcy 5.23
mM and 128.13 mM) (Figures 2A–C). PCA presented a clear
separation between Ly6Chigh and Ly6Clow in both control and
Cbs-/- samples (Figure 2D). There was also a good separation in
Ly6Chigh between control and Cbs-/- mice which was absent in
Ly6Clow. The PC1 axis showed the largest variations and
explained 44.1% of the variances between Ly6Chigh and
Ly6Clow MC subsets. The PC2 axis explains 21.1% of the
variance between Cbs-/- and control mice.
February 2021 | Volume 12 | Article 632333
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A total of 7,928 SDE genes with the criteria of |Log2FC| more
than 1 (2-FC) and adjusted P-value less than 0.01 (Figure 2E)
were identified through the previously mentioned comparison
pairs (Figure 2F). We found 1,423 upregulated and 1,641
downregulated SDE genes in Ly6Chigh MC compared with
Ly6Clow MC in control mice (Comparison A). We identified
1,525 upregulated and 2,080 downregulated in Ly6Chigh MC
compared with Ly6Clow MC in Cbs-/- mice (Comparison B).
When compared between the same subset among the two mouse
groups, we discovered that HHcy in Cbs-/- mice upregulated 345
and downregulated 337 SDE genes in Ly6Chigh MC (Comparison
Frontiers in Immunology | www.frontiersin.org 5
C), and upregulated 201 and downregulated 366 SDE genes in
Ly6Clow MC (Comparison D).
Ly6Chigh Monocytes Enriched With
Inflammatory Pathways and Ly6Clow

Monocytes Presented Features of T Cell
Activation Based on All Significantly
Differentially Expressed Genes
We recognized 23, 18, 2, and 3 canonical pathways that were
significantly enriched by top-down analysis using SDE gene
A

C

F

D E

B

FIGURE 2 | RNA-Seq analysis and SDE gene identification from blood Ly6Chigh and Ly6Clow MC of C57/BL6 control and Cbs-/- mice. (A) Cbs-/- mice and Hcy
levels. Eleven mice were used in each group. Severe HHcy were determined in Cbs-/- mice (plasma Hcy 128.13 mmol/L). (B) Gating and sorting strategy to isolate
Ly6Chigh and Ly6Clow MC. Mouse white blood cell were prepared from peripheral blood and stained with antibody against CD11b, Ly6G and Ly6C and subjected for
flow cytometry cell sorting. Intact cells (72.8%) were recognized based on higher FSC-A (larger size). Singlets (71.0%) were identified by using FSC-H versus FSC-A
appeared on a diagonal. CD11b+Ly6G- cells (11.0%) were selected as MC. MC subsets (CD11b+Ly6G-Ly6Chigh, and CD11b+Ly6G-Ly6Clow) were sorted based on
Ly6C levels. The quantification of MC was used flow cytometry analysis for Ly6Chigh and Ly6Clow MC in CT and Cbs-/-. (C) General data. 100 ng mRNA were
obtained from 100,000 sorted cells and achieved around 30 million reads and 16,487 normalized genes per sample by mRNA-Seq analysis. (D) PCA plot. PCA
analysis incorporated 8 samples from 4 groups of MC subsets {Ly6Chigh (CT), Ly6Clow (CT), Ly6Chigh (Cbs-/-) and Ly6Clow (Cbs-/-), n=2} using the R software
package Seurat. PC1 versus PC2 demonstrates the close transcriptional proximity. PC1, PC2 and PC3 variance is 44.1%, 21.1% and 12.9%. PC1 (44.1%) means
that the difference on the x-axis can explain 44.1% of the overall result. (E) Comparison strategy and SDE gene identification. We performed four group comparison
(A–D) and identified down-regulated and up-regulated SDE genes using the criteria of |Log2FC| more than 1 (2-FC) and adjusted P value less than 0.01.
(F) SDE genes in four comparison groups. Volcano plot of all genes demonstrates the expression pattern of SDE genes in four comparison groups. Down-regulated
SDE genes are highlighted in green and up-regulated in red (|Log2FC|>1, adj. P<0.01), with Log2FC as x-axis and −Log10(adjust P-value) as y-axis. MC, monocyte;
CT, control; Cbs, cystathionine b-synthase; HHcy, Hyperhomocysteinemia; Hcy, homocysteine; FACS, fluorescent-activated cell sorting; PCA, principal component
analysis; PC, principal component; SDE, significantly differentially expressed; FC, fold change.
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FIGURE 3 | Continued
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FIGURE 3 | General canonical pathway analysis for SDE genes from four comparison groups. (A) Ly6Chigh vs. Ly6Clow (CT) pathway changes; (B) Ly6Chigh vs.
Ly6Clow (Cbs-/-) pathway changes; (C) Cbs-/- vs. CT (Ly6Chigh) pathway changes; (D) Cbs-/- vs. CT (Ly6Clow) pathway changes. Top canonical pathways were
identified by top-down analysis using IPA software. Significant top IPA pathways are identified using the criteria of adjusted P value<0.05 and |Z-score|>2. Blue bar
indicates a negative z-score and down-regulated pathway. Red bar indicates a positive z-score and up-regulated pathway. Representative top 40 up/down SDE
genes involved in these top pathways are listed in Supplementary Table 1. (E) Overlap analysis for SDE genes in Ly6C MC subsets and top 3 functional pathways
(Venn diagram). Venn diagram summarized the total SDE genes and their top 3 pathways in each SDE set in four pairs of comparisons. Numbers depict the amount
of SDE genes. Numbers in the parentheses describes the number of pathways. MC, monocyte; MF, macrophage; TREM1, The triggering receptor expressed on
myeloid cells 1; GPCRs, G-protein-coupled receptors; PFKFB4, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4; SLE, Systemic Lupus Erythematosus, Th1,
T helper 1; PKCq, Protein Kinase C Theta; IL-7, Interleukin 7; NFAT, Nuclear factor of activated T-cells; CHK, Csk-homologous kinase; nNOS, neuronal nitric oxide
synthase; PXR, pregnane X receptor; CAR, constitutive androstane receptor.

Yang et al. Ly6C Monocyte Subset Transcriptional Signaling
identified from comparison groups A, B, C, and D, respectively,
by using IPA software (Figures 3A–D). The details of the gene
names, FC and molecular category of the top 40 up/down SDE
genes involved in these pathways are listed in Supplementary
Table 1.

Through overlap analysis (Figure 3E), we discovered 21
activated pathways in Ly6Chigh MC (16 in control mice, two in
Cbs-/- mice, and three in both) in Comparisons A and B. These
activated pathways were derived from 2084 SDE genes (590 in
control, 667 in Cbs-/- and 826 in both). The top 3 pathways are
depicted. Moreover, we found 15 suppressed pathways in
Ly6Chigh MC (2 in control, 11 in Cbs-/- and 2 in both). These
suppressed pathways were derived from 2677 SDE genes (604 in
control only, 1,068 in Cbs-/- only and 1,005 in both). From
comparison C and D, we discovered two activated pathways and
three suppressed pathways in Ly6Chigh and Ly6Clow MC in Cbs-/-

mice, respectively. The two activated pathways in Cbs-/- Ly6Chigh

MC were derived from 294 SDE genes. The three suppressed
pathways in Cbs-/- Ly6Clow MC were derived from 249
SDE genes.

There were 3 activated pathways overlapped in Ly6Chigh MC
from both control and Cbs-/- mice. These include interferon,
inflammasome and PD-1/PD-L1 checkpoint pathways. Two
suppressed pathways, T-cell apoptosis and Th cell signaling,
were overlapped in Ly6Chigh from both control and Cbs-/- mice.

Specifically, sulfate degradation was activated, and Th1/B-cell
pathway was suppressed only in Ly6Chigh from Cbs-/- mice.
Whereas, NK cell signaling were activated in Ly6Chigh and a
few metabolic pathways, including xenobiotic metabolism and
melatonin degradation, were suppressed in Ly6Clow MC only in
Cbs-/- mice as detailed in Figures 3C–E.
Ly6Chigh Monocytes Exhibited Activated
Inflammatory and Lysosome Activation
Pathways, Whereas, Ly6Clow Monocytes
Presented Features of Lymphocyte
Immunity Pathways Based on Significantly
Differentially Expressed Immunological
Signature Genes
In comparison A, we identified 184-upregulated/174-
downregulated secretome, 95-upregulated/72-downregulated
cytokine, and 49-upregulated/74-downregulated surface marker
SDE genes in Ly6Chigh MC from control mice (Figure 4A). In
comparison B, we found 213-upregulated/241-downregulated
secretome, 75-upregulated/101-downregulated cytokine, 41-
Frontiers in Immunology | www.frontiersin.org 7
upregulated/87-downregulated surface marker SDE genes in
Ly6Chigh MC from Cbs-/- mice. When compared the same subset
between the two mouse groups, we found that HHcy induced 48-
upregulated/41-downregulated secretome, 15-upregulated/23-
downregulated cytokine, and 8-upregulated/27-downregulated
surface marker SDE genes in Ly6Chigh MC, and 21-upregulated/
51-downregulated secretome, 11-upregulated/18-downregulated
cytokine, and 4-upregulated/16-downregulated surface marker
SDE genes in Ly6Clow MC in Cbs-/- mice. The details and FC of
the top 25 up/down immunological SDE genes were listed in
Supplementary Table 2.

In SDE gene-derived pathway overlap analysis, presented in
Venn diagram in Figure 4B, we found 20-activated/20-
suppressed pathways from SDE secretome genes in Ly6Chigh

MC from both control and Cbs-/- mice (Comparisons A and B).
The top pathways indicated the activation of lysosome and
extracellular structure, and suppression of lymphocyte
activation, IFN-g production and inflammatory response in
Ly6Chigh MC. In addition, we identified secretome SDE gene-
derived pathway specific for Ly6Chigh for each mouse. For
example, protein glycosylation and ECM regulation were
activated in Ly6Chigh only in Cbs-/- mice. Moreover, HHcy in
Cbs-/- mice specifically activated extracellular structure
organization and synaptic membrane adhesion, and suppressed
external stimulus, MNC migration, cell adhesion and leukocyte
proliferation pathways in Ly6Chigh MC, and suppressed myeloid
leukocyte migration, collagen catabolic process and humoral
immune response pathways in Ly6Clow MC. A detailed list of
SDE genes and pathway are presented in Supplementary
Table 3.

For the SDE cytokine genes, we identified 20-activated/20-
suppressed pathways in comparison A and B. The top pathways
indicated the activation of cytokine production, response to
lipopolysaccharide and locomotion, and the suppression of NK
cell chemotaxis and leukocyte activation in Ly6Chigh MC.
Specifically, HHcy activated responses to lipopolysaccharide,
IL-17 signaling pathway and inflammatory response, and
suppressed cytokine production/signaling pathways and
adaptive immune response in Ly6Chigh only in Cbs-/- mice.

In SDE surface marker gene set, we discovered 20-activated/
20-suppressed pathways in comparison A and B. The top
pathways displayed the activation of myeloid cell and cytokine
production, and suppression of lymphocyte activation,
hematopoietic cell lineage, and lymphocyte mediated immunity
in Ly6Chigh MC. Specifically, HHcy suppressed regulation of cell
adhesion, adaptive immune system and collagen metabolic
process in Ly6Chigh only in Cbs-/- mice.
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FIGURE 4 | Immunological signature genes and top functional pathways in Ly6C MC subset from CT and Cbs-/- mice. (A) Identification of immunological SDE
genes (secretome, cytokine and surface marker). Volcano plot of all genes demonstrates the expression pattern of SDE genes in four comparison groups. Down-
regulated SDE genes are highlighted in green and up-regulated in red (|Log2FC|>1, adj. P<0.01), with Log2FC as x-axis and −Log10(adjust P-value) as y-axis. SDE
secretome, cytokine and surface marker were identified using the immunological gene set established in our previous study (PMID: 32179051) from website (https://
www.proteinatlas.org/). Top 25 up- and down-regulated SDE genes in all comparisons via IPA are listed in Supplementary Table 2. (B) Overlap analysis for SDE
immunological genes in Ly6C MC subsets and top pathways. Venn diagram summarized the total SDE genes and their top three pathways in each SDE set from
four pairs of comparisons. Functional pathways were developed by metascape software mainly using the GO database only in SDE set (>20 SDE genes). The top 3
functional pathways are presented. Numbers depict the amount of SDE genes. Numbers in the parentheses describes the number of pathways. A detailed list of
SDE genes and pathway in each SDE set are presented in Supplementary Table 3. ECM, extracellular matrix; EC, extracellular; IFNg, interferon gamma; MNC,
mononuclear cell; NK, natural killer.
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Identification of Significantly Differentially
Expressed Transcription Factor and
Establishment of Transcriptional
Regulatory Model for Ly6Chigh to Ly6Clow

Monocyte Subset Differentiation
As shown in volcano plots in Figure 5A, we identified 77-
upregulated/84-downregulated, 66-upregulated/115-
downregulated, 13-upregulated/13-downregulated, and 14-
upregulated/9-downregulated SDE TFs in comparisons A, B, C
and D, respectively. From these SDE TFs, we discovered 20-
activated/20-suppressed pathways overlapped in Ly6Chigh MC
from both control and Cbs-/- mice (Comparisons A and B)
(Figure 4B). The top pathways displayed the activation of
hemopoiesis, and suppression of cell fate commitment,
proliferation and differentiation in Ly6Chigh MC. Specifically,
HHcy activated RNA polymerase II transcription initiation,
chordate embryonic development and myoblast differentiation
pathways, and suppressed fat cell differentiation, cellular
response to steroid hormone, and histone modification
pathways in Ly6Chigh only in Cbs-/- mice.

To identify potential transcriptional regulatory axis in Ly6C
MC subset differentiation, the SDE TFs were used to match with
corresponding downstream immunological SDE genes by IPA
upstream analysis. We found 24 SDE TFs matched and positively
associated with various downstream SDE secretome, cytokine
and surface marker genes (Figure 5C). These were potential
transcriptional regulatory mechanisms determining differential
immunological features and subset differentiation. Two
representative SDE TFs were chosen to describe their relevant
transcriptional regulatory axis (Figure 5D). CCAAT/enhancer-
binding protein Epsilon (Cebpe), also known as CRP1, is
expressed primarily in myeloid cells, which is required for the
promyelocyte-myelocyte di fferent iat ion in myeloid
differentiation (50). Cebpe was upregulated by 6.5-fold and
34.3-fold in control and Cbs-/- Ly6Chigh MC, which was
associated with the upregulation of corresponding targeting
secretome (Lcn2, Mmp8, Il1rn, Cd14 and Serpinb2), cytokine
(Il1rn, Ccl9), surface marker (Cd14) in Ly6Chigh in both mice.
Pax5, a member of the paired box (Pax) family of TF, plays an
important role in B-cell differentiation and CD19 regulation in
B-cell. Pax5 was downregulated by 36.2-fold and 56.2-fold in
control and Cbs-/- Ly6Chigh MC, which was associated with the
downregulation of corresponding targeting TFs (Ccnd1, Pou2af1,
Mmp2), secretome (Cd22, Cd79a, Mmp2), surface marker (Cd22,
Cr2, Cd19, Cd72) in Ly6Chigh from both mice.

We presented a model for transcriptional regulatory
machinery potentially responsible for MC subset differentiation
in Figure 5E. The top 5 up/down SDE TFs and matched TFs are
depicted. In comparison A, the top upregulated SDE TFs are
Ifi211, Tfec, Fos, Fam129b, and Id1) and the top downregulated
SDE TFs are Neurod4, Asb2, Sox5, Pou2af1, and Pax5 in Ly6Chigh

MC from control mice. Nine upregulated SDE TFs (Cebpa,
Cebpd, Cebpe, Ifi16, Irf5/7, Spi1, and Stata1/2) and four
downregulated SDE TFs (Pax5, Ikzf3, Sp110, and Tbx21) were
found matched and positively associated with corresponding
immunological genes. In comparison B, the top upregulated SDE
Frontiers in Immunology | www.frontiersin.org 10
TFs are Foxq1, Ascl2, Cebpe, Tfec, and Cys1, and the top
downregulated SDE TFs are Neurod4, Prox1, Mafa, Pax5, and
Pou2af in Ly6Chigh MC from Cbs-/- mice. Four upregulated SDE
TFs (Cebpa, Cebpe, Irf7, and Trps1) and six downregulated SDE
TFs (Egr2, Foxm1, Myb, Pax5, Spib, and Tbx21) were found
matched and positively associated with corresponding
immunological genes. In comparison C, the top upregulated
SDE TFs are Ets1, Tbx21, Sox5, Shox2, and Fah and the top
downregulated SDE TFs are Pou2af1, Gata2, Spib, Mafa, and
Nfia in Ly6Chigh MC from Cbs-/- mice. In comparison D, the top
5 upregulated SDE TFs are Irf7, Fos, Thrb, Mybl1 and Ahrr and
the top 5 downregulation SDE TFs are Etv1, Nfia, Zik1, Nr1i3,
and Gata in Ly6Clow MC from Cbs-/- mice.
Ly6Chigh Monocyte Presented
Downregulated Co-Stimulatory Receptors
for Proliferation, and Upregulated Co-
Stimulatory Ligands for Antigen Priming
and Differentiation
To test the differential role of Ly6C MC subsets in regulating
adaptive immunity, we examined the expression pattern of
immune checkpoint molecules. As depicted in Figure 6A, 25
out of 49 checkpoint pairs displayed differential expression in
Ly6Chigh and Ly6Clow MC subsets. Ly6Chigh MC expressed
relative low levels of both co-stimulatory and co-inhibitory
immune checkpoint receptors. A detailed list of immune
checkpoint expression was presented in Supplementary Table 4.

Based on their differential expression and previously defined
function (Figure 6B), we modeled the functional implication of
immune checkpoint in Ly6C MC subsets (Figure 6C). In
Ly6Chigh MC, four co-stimulatory receptors (4-1BB, CD2,
CD30, GITR, and TIM1) and two co-inhibitory receptors
(CD96 and TIGIT) were downregulated, which imply
suppressed proliferation. In addition, two co-stimulatory
ligands (LIGHT and SEMA4A) were upregulated in Ly6Chigh

MC, which imply ligand function for increased antigen priming
and differentiation. In Cbs-/- Ly6Clow MC, co-stimulatory
receptors (DR3 and ICOS) were upregulated, which imply
increased proliferation. In Cbs-/- Ly6Chigh MC, co-inhibitory
ligands (CD112, PD-L1/2) were downregulated which imply
increased ligand function for differentiation/activation.

Ly6Chigh Monocyte Favored to MF
Differentiation and Ly6Clow Monocyte
Shared Function With Lymphocyte
Subsets
To examine the potential plasticity of Ly6C MC subsets, we first
analyzed the expression pattern of newly suggested leukocyte
signature genes from recent scRNA-seq studies (46, 47). Ly6Chigh

MC expressed high levels of myeloid cell (MF and DC) signature
genes in both mice (Figures 7A, B). Differently, Ly6Clow MC
expressed high levels of lymphocyte (T- and B-cell) signature
genes, especially that of CD8+ T-cell and B-cell (Figures 7A, B).
Interestingly, Ly6Chigh MC expressed high levels of osteoclast
TFs (Cebpa, Fos, Tfe3, and Mitf) and surface marker CD44, and
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D E

FIGURE 5 | Identification of SDE TF and immunological transcriptional regulatory models. (A) SDE TF in four comparison groups. Volcano plot of all genes
demonstrates the expression pattern of SDE TF in four comparison groups. Down-regulated SDE TF are highlighted in green and up-regulated in red (|Log2FC|>1,
adj. P<0.01), with Log2FC as x-axis and −Log10(adjust P-value) as y-axis. Top 25 up- and down-regulated SDE TF in all comparisons via IPA are listed in
Supplementary Table 2. (B) Overlap analysis for SDE TF in Ly6C MC subsets and top pathways. Venn diagram summarized the total SDE genes and their top 3
pathways in each SDE TF change groups from four pairs of comparisons. Functional pathways were developed by metascape software using the GO database only
in SDE set (>20 SDE genes). The top 3 functional pathways are presented. Numbers depict the amount of SDE TF. Numbers in the parentheses describes the
number of pathways. A detailed list of SDE TF and pathway in each SDE set are presented in Supplementary Table 3. (C) SDE TF and targeted SDE
immunological genes. SDE immunological genes were matched with SDE TF by IPA upstream analysis. Transcriptional regulatory relationship between SDE TF and
SDE immunological genes was justified by correspondence at the same direction (either positive or negative) and overlapped p-value<0.01 and |z-score|>2. Note
that Itgam is also known as CD11b, that Ly6c refers to other Ly6 genes (Ly6.2, Ly6C, Ly6C.2, Ly6C antigen, Ly6a2, Ly6al, Ly6b, Ly6c1, Ly6c2, Ly6f, Ly6g, Ly6i).
(D) Representative of CEBPE and PAX5 transcriptional regulatory pathways (Ly6Chigh vs. Ly6Clow in both mice) CEBPE and PAX5 are used as the representative
SDE TF to establish transcriptional regulatory network by using IPA upstream analysis. The corresponding expression levels of targeted SDE genes are indicated by
colored nodes. (E) Model of transcriptional regulation between Ly6C MC subset differentiation. Model describes potential transcriptional regulatory machinery. In
Comparison A, 22 SDE TF (14 up-red and 8 down-blue) are identified in Ly6Chigh MC subset in CT mice. In Comparison B, 19 SDE TF (nine up and 10 down) are
identified in Cbs-/- Ly6Chigh MC subset. In Comparison C, 10 SDE TF (five up and five down) are identified in Cbs-/- Ly6Chigh MC subset. While, in Comparison D, 10
SDE TF (five up and five down) are identified in Cbs-/- Ly6Clow MC subset. Top 5 SDE TF are indicated in italic letters, and matched SDE TF in the parentheses. Red
letter highlighted the representative up-regulated gene. Blue letter highlighted down-regulated genes. Abbreviations are as that in Figure 2. RNAP, RNA polymerase,
PID, pathway interaction database; HDAC, histone deacetylase. Abbreviation for gene names refer to list in website, https://www.genecards.org/.
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osteoclast-like TREM2high MF signature osteoclastogenesis gene
(Trem2, Fcer1g, Timp2, and Ctsl). The details of newly suggested
leukocyte signature genes deferentially expressed in Ly6Chigh and
Ly6Clow MC were listed in the Supplementary Table 5.

Further, we examined the expression of established lineage/
subset TF and surface marker in Ly6C MC. MF surface markers
(CXCL10, Ym1, and CD206) and myeloid lineage TFs (Cebpa, c-
Fos, and Spi1) were highly expressed in Ly6Chigh MC in both
mice. While, lymphocyte surface markers (CD4, CD25, CD161,
CD5, CD19, CD21, CD79a, and CD79b) and lymphocyte lineage
TFs (T-bet, Rog, Carma1, and Pax5) were preferentially
expressed in Ly6Clow MC in both mice (Figures 7C, D).
Specifically, CD3, a T-cell receptor involved in activating both
cytotoxic T-cell and T helper (Th) cells, was upregulated by
Cbs-/- in Ly6Clow MC (Comparison D). Literature justification
and designation of TFs and surface markers for leukocyte subsets
are provided in the Supplementary Table 6. Expression change
and function implication of SDE cytokine genes in Ly6C MC
were presented in Supplementary Table 7.
DISCUSSION

Mouse MC are classified into inflammatory Ly6Chigh and anti-
inflammatory Ly6Clow subsets. However, the molecular
mechanism underlying MC subset differentiation remains
unclear, and functional features of MC subsets have not been
Frontiers in Immunology | www.frontiersin.org 12
systemically investigated. This study established transcription
profiles of flow cytometry sorted Ly6Chigh and Ly6Clow MC
subsets from control and HHcy Cbs-/- mice and examined their
functional features and transcriptional regulatory pathways by
performing intensive bioinformatic analysis and literature
integration. We have 6 major findings: 1) Ly6Chigh MC showed
enriched inflammatory pathways, whereas Ly6Clow MC
displayed activated lymphocyte immunity pathways in both
control and Cbs-/- mice. 2) Identified SDE TFs and their
corresponding targeted SDE genes in Ly6C MC subset from
both mice. 3) Ly6Chigh MC presented downregulated immune
checkpoint receptor-directed immune cell proliferation, and
upregulated l igand-tr iggered ant igen pr iming and
differentiation. 4) Ly6Chigh MC preferentially expressed MF
and osteoclast markers, whereas Ly6Clow MC expressed higher
levels of lymphocyte subsets markers. 5) HHcy in Cbs-/- mice
reinforced the inflammatory response in Ly6Chigh MC, but
promoted functional adaptation of lymphocytes in Ly6Clow

MC. 6) We established 3 groups of hypothetic molecular
signaling models. The first model described transcriptional
regulatory mechanism of Ly6Chigh to Ly6Clow MC subset
differentiation. These include SDE immunological gene and
their regulatory SDE TFs. The second model was for immune
checkpoint molecular alteration and function connection in MC
subset. The third model summarized the potential molecular
mechanism regulating Ly6Chigh MC to MF subset differentiation
and Ly6Clow MC to lymphocyte functional adaptation. Our
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https://www.genecards.org/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yang et al. Ly6C Monocyte Subset Transcriptional Signaling

F

B

C

A

FIGURE 6 | Continued
rontiers in Immunology | www.frontiersin.org February 2021 | Volume 12 | Article 63233313

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


FIGURE 6 | Identification of SDE immune checkpoint gene and function implication in Ly6C MC. (A) Expression pattern of SDE immune checkpoint gene in Ly6C
MC. Heatmap shows the expression levels of the immune checkpoint gene (receptor and ligand) in Ly6C MC. The color density indicates the average expression of
a given gene normalized by z-score. Fifteen pairs of SDE co-stimulatory and 10 pairs of SDE co-inhibitory molecules are identified in four comparison groups. Red-
colored background numbers indicate FC>2 (log2FC>1). Green-colored background numbers indicate FC<0.5 (log2FC<-1). The completed list of Immune
checkpoint genes is in Supplementary Table 4. (B) SDE immune checkpoint gene functional implication in mouse MC subsets. This table describes expression
pattern and effector function of SDE immune checkpoint (ligand-receptor) in Cbs-/- Ly6C MC. (C) Model of immune checkpoint regulation in Ly6C MC and Cbs-/-

mice. In Ly6Chigh MC, downregulation of co-stimulatory receptor molecules implicates suppressed proliferation and upregulation of ligand molecules implicates
increased antigen priming and differentiation. Co-inhibitory molecule change support similar biologic function. Cbs-/- MC presented feature of increased receptor cell
proliferation and deceased ligand cell differentiation/activation. Upregulated SDE immune checkpoint molecules are marked in red, downregulated in blue. ↑ refers to
induce expression by Cbs-/-. ↓ refers to reduce expression by Cbs-/-, ± refers to no changes in Cbs-/-. NK, natural killer cells; TCR, T-cell receptor; ITIM,
immunoreceptor tyrosine-based inhibition motif; Other abbreviations are as that in Figure 2.
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findings provide important insights into the understanding of
molecule and functional features of MC subsets.

Our study emphasized that inflammatory pathways were
enriched in Ly6Chigh MC and Ly6Clow MC presented features of
lymphocyte immunity activation (Figures 3 and 4). Ly6Chigh MC
from both mice displayed elevated interferon, inflammasome,
neutrophil degranulation, lysosome, cytokine production/
receptor interaction and myeloid cell activation pathways. This
is consistent with previous findings showing that Ly6Chigh MC are
rapidly recruited to sites of inflammation and releasing
proinflammatory cytokines, such as type I interferon (IFN-I),
IL-1, IL-6, IL-8, TNF-a, and MCP-1 (4, 51–55). It was reported
that Ly6Chigh MC coordinates the innate immune response
through inflammasome activation following exposure to
pathogen-, damage-associated molecular patterns (PAMP,
DAMP) and metabolic-associated danger signals (MADS) (25,
32, 56). Lysosomal activity is a new feature of Ly6Chigh MC, which
implies enhance function of endocytosis and autophagia, and
molecule degradation (57). Phagocytic features of Ly6Chigh MC
were connected with high lysosomal activity (3, 58).

Our data suggested that 9 SDE TFs (Cebpa, Cebpd,
Cebpe, Irf5/7, Ifi16, Spi1, and Stat1/2) are potentially involved
in Ly6Chigh MC generation and responsible for the immunological
features in control mice (Figure 5C). We and others have
reported that CEBPa and CEBPd were enriched in Ly6Chigh MC
(11, 38). CEBPa binds to the Ly6c promoter and its expression
was elevated and synergistically increased in HHcy and Type 2
DiabetesMellitusmice (38).We foundPU.1 (encodedbySpi1gene)
was increased by 2.66-fold in Ly6Chigh MC in control mice. PU.1
was a critical lineage determining TF for both myeloid and
lymphoid cell development as PU.1-deficient mice lack MC,
granulocytes and B-cells (3, 59). PU.1 can transactivate other TFs
(e.g., CEBPa, CEBPb, IRF proteins, c-Jun, JunB) to regulate
subset differentiation (60). Upregulation of Irf7 by 7.26-fold in
Ly6Chigh MC in control mice may be related with their function
towards MF differentiation. This is supported by IRF-7
overexpression-induced MC differentiation to MF in U937 and
HL60 cells (61).

We found that CEBPa, Irf7, PU.1 and Stat1 were Ly6c TFs
and positively associated with Ly6c expression. They are strong
candidate determining Ly6Chigh MC generation. Other
upregulated TFs in Ly6Chigh MC are also potentially
responsible for Ly6Chigh MC generation, for example, the top 5
TFs (Ifi211, Tfec, Fos, Fam129b, and Id1) listed in Figure 5E.
Under homeostasis, classical Ly6Chigh MC in blood reduces the
Frontiers in Immunology | www.frontiersin.org 14
expression of Ly6C and becomes non-classical Ly6Clow MC (7,
15). We proposed that downregulated TFs in Ly6Chigh MC are
possible regulators determining Ly6Chigh MC to Ly6Clow MC
differentiation. The top 4 downregulated TFs (Neurod4, Asb2,
Sox5 and Pou2af1) and 2 matched TFs Pax5 and Tbx21
represented potential general transcriptional mechanism for
Ly6Chigh MC to Ly6Clow MC differentiation. Pax5 plays a
crucial role in the commitment of BM multipotent progenitor
cells to the B-lymphoid lineages. It has been shown that, except
for B-cell lineage, other hemopoietic lineages develop normally
in Pax5-deficient mice (62). T-bet (encoded by the Tbx21 gene)
controlled IFN-g expression in CD4+ T-cell, and was reported
recently to be expressed in humanMC (63). Lack of Tbx21 reduces
monocytic interleukin-12 formation and accelerates thrombus
resolution in deep vein thrombosis (64). Overall, TFs (Pax5 and
Tbx21) were previously thought as lymphocyte lineage-specific
TF, but their role in regulating MC differentiation remains to
be addressed.

Interestingly, Ly6Chigh MC expressed lower levels of co-
stimulatory receptors (4-1BB, CD2, CD30, GITR and TIM1),
which direct cell proliferation (Figure 6C). Multiple evidence
showed that the activation of GITR, 4-1BB (also termed as ILA/
CD137) and TIM1 induces MC/MF proliferation (65–68).
TNF/TNFR family members 4-1BB, GITR and CD30, TIM1,
and CD2 have been shown to promote T-cell (effector and
memory) activation in mouse models (65, 66, 69–71). Low
levels of CD2 and CD30 have been described in activated MC
(71, 72). Taken together, Ly6Chigh MC has a lower proliferative
potential based on co-stimulatory receptor expression pattern.

The upregulation of co-stimulatory ligands (LIGHT and
SEMA4A) in Ly6Chigh MC led us to hypothesize that Ly6Chigh

MC presents high activity of antigen priming and differentiation.
LIGHT/HVEM engagement promotes T-cell priming and
differentiation (73, 74). During viral infection, LIGHT are
induced by IFN‐g on MC‐derived cells (75). High level
expression of Sema4A was found on Ly6Chigh MC (76).
Sema4A-deficient mice exhibit defective Th1 responses and
impaired antigen-specific T-cell priming and antibody
response against T-cell-dependent antigens (76). These
findings suggested a key role for Ly6Chigh MC in the regulation
of T-cell immunity and may provide new insights into
development of more effective therapies for diseases in which
T-cell has an important role.

As illustrated in Figure 8A, our study provides evidence to
support a model that Ly6Chigh MC favors to differentiate to MF,
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FIGURE 7 | Expression profile of immune cell lineage and subset marker in Ly6C MC subset. (A) Expression pattern of newly suggested leukocyte signature genes
in Ly6C MC. Heatmap shows the expression levels of the leukocyte signature genes, recently suggested by scRNA-seq study46, 47 in Ly6C MC. The color density
indicates the average expression of a given gene normalized by z-score. Fold change of newly suggested leukocyte signature gene are present in the
Supplementary Table 5. (B) Association of Ly6C MC with newly suggested leukocyte subset signature genes. Connection of the newly suggested leukocyte
signature genes with Ly6C MC subsets are established based on their expression pattern in Ly6C MC subsets. (C) Expression profile of 58 SDE established lineage
surface markers in Ly6C MC. (D) Expression profile of 38 SDE established lineage transcription factors in Ly6C MC. Four major immune cell type (MF/DC/TC/BC)
and their 15 subsets are listed. Lineage SDE surface markers and TF are differentially expressed in four comparison groups in these subsets. Red-colored
background numbers indicate FC>2 (log2FC>1). Green-colored background numbers indicate FC<0.5 (log2FC<-1). Justification for Leukocyte lineage specific TF/
surface marker are listed in the Supplementary Table 6. scRNA-seq, single-cell RNA sequencing; MC, monocyte, Cbs, Cystathionine b-synthase; MF,
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but not to DC. This is based on Ly6Chigh MC expressed high
levels of inflammatory cytokine (IL15, CXCL2/10, and CCL2)
and MF specific markers, including M1 MF surface marker
(CD11b and CD68) and TFs (Irf5 and Stat1/2), and M2 MF TFs
(Notch1 and Nfe2) and surface marker (CD206 and Ym1).
Whereas, Ly6Chigh MC exhibited inconsistent changes for DC
lineage markers.

Although the fate and mechanism underlying Ly6Chigh MC
differentiation is unclear, a more common postulation is that
Ly6Chigh MC tend to differentiate into M1 MF, but Ly6Clow MC
to M2 MF (37, 77). It is suggested that Ly6Chigh MC may be
primed to differentiate into Ly6Clow MC, or infiltrated into
tissues to develop specific tissue MC-derived cells (3, 4, 17, 78).
It was shown that continued recruitment of Ly6Chigh MC and
their differentiation to M2 rather than M1 MF are required for
resolution of atherosclerotic inflammation and plaque regression
(46, 79). The destiny of Ly6Chigh MC differentiation may vary
under different microenvironment. Details presented in Figure
8A provide important insights for molecular pathways
underlying Ly6Chigh MC to MF differentiation.

Based on the high levels of osteoclast TFs, surface marker and
osteoclast-like TREM2high MF signature genes in Ly6Chigh MC,
we proposed that Ly6Chigh MC is a precursor of osteoclasts.
Osteoclasts contribute to vascular calcification, which causes
local tissue stress and plaque instability (80). Like MF,
osteoclasts are derived from MC precursors in chronic
inflammatory conditions and required 2 main cytokines (CSF1
and RANKL) and 4 TFs (Cebpa, Fos, Tfe3, and Mitf) (81, 82).
Our data is in good accordance with previous finding showing
that Ly6Chigh MC, but not Ly6Clow, differentiate into osteoclast
in arthritis bone erosion (18, 83). Taken together, we hypothesize
that inflammatory MC subset can be differentiate to osteoclasts
and contribute to tissue calcification in inflammatory condition
and chronic disease.

We promoted a model for Ly6Clow MC to lymphocyte subsets
functional adaptation according to their preferential express of
T-cell specific surface markers, lineage TFs and checkpoint
receptor, and their associated T-cell-related effector function
(Figure 8B). The classical road map of immune cell
differentiation describes that lymphoid progenitor lineages
segregate from myelo-erythroid (ME) in hematopoietic stem
cells. However, the ‘myeloid-based model’ suggested that
myeloid cell can also be generated from myeloid-T progenitor
and myeloid-B progenitor, which is derived from common
myelo-lymphoid progenitor (84, 85). Recent evidence
suggested that early pro-B-cell can give rise to either MC-
derived MF or tissue-specific MF during tissue homeostasis
Frontiers in Immunology | www.frontiersin.org 16
and inflammation (86). Evidence for myeloid to lymphoid
lineage differentiation and function adaptation is absent. Our
study, for the first time, provide evidence of Ly6Clow MC to
lymphocyte functional adaptation.

Our data demonstrated that HHcy in Cbs-/- mice reinforced
inflammatory and immunological responses in Ly6Chigh MC by
upregulating inflammatory TFs (Ets1, Tbx21 and Sox5) and
downregulating co-inhibitory checkpoint (CD112 and PD-L1/
2). The TF Ets1 has been shown to regulate genes (VCAM1 and
MCP-1) involved in vascular inflammation (87). Tbx21-/- mice
exhibited reduced IFN-g and IL-17 expression in CD8+ T-cell
and inflammation in gut and peripheral joint (88). The TF Sox5
was related with inflammatory response in rheumatoid arthritis
fibroblast-like synoviocytes (89). Further, immune checkpoint
ligand molecules (CD112 and PD-L1/2) was suppressed in Cbs-/-

Ly6Chigh MC intimated activation and differentiation. CD112
transduces stimulatory signal by binding to CD226, while
transduces suppressive and anti-inflammatory signal by
binding to TIGIT (90, 91). Engagement of PD-1 by its ligands
(PD-L1/2) induces suppressive signal to inhibit T-cell
proliferation, cytokine production and cytotoxic activity (92,
93). These evidences supported our conclusion that HHcy
reinforced inflammatory and immunological response in
Ly6Chigh MC.

Our data also suggested that HHcy further strengthened
Ly6Clow MC to lymphocytes functional adaptation by
upregulating surface marker CD3, co-stimulatory checkpoint
(DR3, ICOS) and TF Fos. CD3 complexes with T-cell receptor
contributing to antigen recognition (94). The ligation of immune
checkpoint receptor DR3 with TL1A exerts activation and
differentiation in immune cell, including Th and T-reg cell
(95). ICOS regulates the differentiation and maintenance of
Tfh cells (96), which helps B-cells to form germinal centers
and differentiate into plasma cells and memory B-cell for high
affinity antibody production (96, 97). TF Fos plays a central role
in nuclear factor of activated T-cell (NFAT) complex formation
which involved in cell proliferation, differentiation and tumor
progression (98–100). This evidence supports the notion that
HHcy promoted lymphocytes functional adaptation in
Ly6Clow MC.

In conclusion, our study, for the first time, demonstrated that
Ly6Chigh MC displayed enriched inflammatory pathways,
immune checkpoint molecules for suppressed proliferation and
increased antigen priming, and demonstrated the potential to
differentiate into MF and osteoclast. Ly6Clow MC manifested
activated T-cell signal pathways and potentially can adapt the
function of lymphocytes. HHcy in Cbs-/- mice reinforced
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FIGURE 8 | Molecule signaling of Ly6C MC to MF subset differentiation and to lymphocyte subset functional adaptation. We established two models for molecule
signaling of MC differentiation based on their preferential expression of lineage signature TF, surface marker and cytokine using information extracted from Figures 3,
5, and 7. (A) Ly6Chigh MC favors to MF subset differentiation and associated molecule signaling. Ly6Chigh MC preferentially expressed lineage signature TF genes of
MF/DC subsets, suggesting their potential differentiation to MF. The indicated immunological and inflammatory pathways lead to various changes of cytokines
production, and effector function including T/NK cell proliferation, inflammatory response and calcification. Cbs-/- Ly6Chigh MC exhibited inflammatory cytokine
production. (B) Ly6Clow MC shares function with lymphocyte subset (molecule signaling). Ly6Clow MC preferentially expressed lineage signature TF genes of B/T cell
subsets, suggesting their potential functional adaptation to lymphocyte subsets. The indicated immunological and inflammatory pathways lead to various changes of
cytokines attributed to increased T/B cell activation, host defend, wound healing and anti-inflammatory responds. Cbs-/- Ly6Clow MC exhibited enhance T/B cell
activation potential. Expression change and function implication of SDE cytokine genes in Ly6C MC were presented in Supplementary Table 7. MC, monocyte;
DC, dendritic cell; MF, macrophage; TREM1, the triggering receptor expressed on myeloid cells; NK, natural killer, TC, T cell; Th1, T helper 1 cell; Tfh, T follicular
helper; BC, B cell, NFAT, Ca2+, Calcium; SLE, systemic lupus erythematosus, IL-7, Interleukin 7; NFAT, nuclear factor of activated T-cells; nNOS, neuronal nitric
oxide synthase.
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inflammatory response in Ly6Chigh MC and strengthened
lymphocytes functional adaptation in Ly6Clow MC.
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