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Immunomodulatory drugs (IMiDs) are effective treatments for patients with multiple

myeloma. IMiDs have pleotropic effects including targeting the myeloma cells directly,

and improving the anti-myeloma immune response. In the absence of myeloma cells,

lenalidomide and pomalidomide induce CD4+ T cell secretion of IL-2 and indirect

activation of Natural Killer (NK) cells. In the context of T cell receptor ligation, IMiDs

enhance T cell proliferation, cytokine release and Th1 responses, both in vivo and in

vitro. Furthermore, combination treatment of IMiDs and myeloma-targeting monoclonal

antibodies eg. daratumumab (anti-CD38) and elotuzumab (anti-SLAMF7), checkpoint

inhibitors, or bispecific T cell engagers showed synergistic effects, mainly via enhanced

T and NK cell dependent cellular toxicity and T cell proliferation. Conversely, the

corticosteroid dexamethasone can impair the immune modulatory effects of IMiDs,

indicating that careful choice of myeloma drugs in combination with IMiDs is key for

the best anti-myeloma therapeutic efficacy. This review presents an overview of the role

for T cells in the overall anti-myeloma effects of immunomodulatory drugs.
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INTRODUCTION

Multiple myeloma (MM) is a plasma B cell malignancy primarily localized to the bone marrow and
characterized by immune dysfunction due to the complex interplay between the malignant plasma
cells (PC) and immune cells in the tumor microenvironment (1). New therapeutic approaches in
the last two decades have dramatically improved patient outcomes. These include the incorporation
of immunomodulatory drugs (IMiDs) that exert pleiotropic effects including directly acting on the
malignant cells and enhancing T and NK cell anti-myeloma properties (2).

IMMUNOMODULATORY DRUGS

IMiDs, namely lenalidomide and pomalidomide are a group of drugs that are derivatives from
thalidomide, a glutamic acid derivative (2). Thalidomide use in clinical trials of advanced MM was
first published in 1999 and soon it was utilized, alone and in combination, across all phases of
myeloma therapy (3). Due to its problematic side effects and improved efficacy of the subsequent
IMiDs, thalidomide has progressively been replaced by lenalidomide and pomalidomide in the
myeloma treatment paradigm; currently IMiDs are used in newly diagnosed MM (NDMM)
patients, in maintenance therapy post autologous stem cell transplantation and in patients with
relapsed refractory multiple myeloma (RRMM) (4).
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IMiDs were first shown to have anti-angiogenic activities and
anti-inflammatory anti-tumor necrosis factor (TNF)-α activity in
monocytes (5). Although, IMiDs suppress TNFα production by
monocytes (5), they have an opposite effect on T cells, where
they increase TNFα production (6). IMiDs also directly act on
myeloma cells, affecting their proliferative capacity (7).

MECHANISM OF ACTION

IMiDs bind to Cereblon (CRBN), DDB1, CUL4 and ROC1 and
together form an E3 ubiquitin ligase, which modify multiple
proteins causing ubiquitination and proteasome degradation of
these target proteins (8). IMiDs cause selective degradation and
downregulation of two CRBN-binding lymphocyte transcription
factors IKZF1 (Ikaros) and IKZF3 (Aiolos), which leads to an
increase in interleukin (IL)-2 production in T cells (8) and
mechanism reviewed in detail in (9). In addition, IMiDs can also
cause immune activation by stimulating NK cells, and inhibiting
IL-6 production from monocytes and macrophages (10, 11).

CRBN-binding protein Casein kinase 1 alpha (CK1a) is
degraded upon IMiD treatment. CK1a is known to facilitate
MM pathogenesis as it sustains activation of oncogenic cascades
through p53 activation, phosphoinositide-3-kinase (PI3K) /
protein kinase B (AKT) and nuclear factor kappa B (NF-κB)
activation and modulation of interferon (IFN) pathway (12, 13).

MULTIPLE MYELOMA DEVELOPMENT
LEADS TO IMMUNE DYSFUNCTION

Several studies have shown that myeloma cell survival and
immune escape is facilitated by impaired endogenous signaling in
immune cells (2, 14). These include defects in T cell distribution
and function, a reduction of peripheral blood CD4+ and CD8+

T cells, abnormal Th1/Th2 ratio, decrease in the CD4/CD8T cell
ratio with reduced or aberrant T cell function, and reduction in
NKT cells (14). Myeloma cells are known to secrete transforming
growth factor (TGF)-β, a highly immunosuppressive cytokine
that inhibits T and NK cell function and cytotoxicity. The
compartment in which these cells are residing/trafficking may be
relevant. Indeed, a recent study demonstrated that at the tumor
site within the bone marrow, T cells are immune-suppressed,
largely exhausted and senescent (15).

MM production of TGF-β, IL-10, IL-6, and VEGF also leads
to impaired DC antigen presentation to T cells, affecting T cell
priming (16, 17). Myeloid and plasmacytoid dendritic cells (DCs)
from MM patients have lower expression of human leucocyte
antigen (HLA) molecules, C-C chemokine receptor (CCR)-5,
CCR7, and DEC205 (18). This further leads to a suboptimal
immune response toward tumor cells. Some reports suggest
regulatory T cells (Tregs), a subset of immune-suppressive CD4+

T cells, to be increased in MM patients (19, 20). However, this
is controversial as there are also conflicting reports with lower
numbers of Tregs in patients than healthy controls (21). These
discrepancies could be due to technical issues with absolute
counts and percentages of cells, if particular subsets of CD4+ T
cells are reduced. This could also be related to dexamethasone

treatment. There is also a skewing of Treg/Th17 balance in
MM and this further increases immune suppression leading to
poor prognosis in patients (22, 23). Overall, immune evasion
of tumor cells is associated with myeloma cell proliferation and
leads to MM pathogenesis. Treatments that can reverse these
defects in combination with other treatments such asmonoclonal
antibodies have shown the most promise in treating MM in
currently approved therapies.

IMMUNE MODULATION BY IMIDS

In vitro studies have shown that treatment with IMiDs enhanced
T cell proliferation, IL-2 and IFN–γ secretion and NK and NKT
cell activation (24, 25). IMiDs such as thalidomide downregulated
IL-6 from peripheral blood mononuclear cells (PBMC) and IL-
10 production from T cells and induced co-stimulation of CD4+

and CD8+ T cells in in-vitro assays (10). Pomalidomide and
lenalidomide are 300–1,200 times more potent than thalidomide
at inducing T cell proliferation, IL-2 and IFN-γ production
(10, 24). IMiDs enhanced DC-antigen presentation leading to
activation of CD8+ and CD4+ T cells and production of IFN-
γ (26, 27). IMiDs also stimulated CD28 downstream signaling
by binding to B7 co-stimulatory molecule, reducing myeloma
immune tolerance (28). IMiDs enhanced expression of DNA-
binding protein AP-1, which in turn causes CD28 signaling and
stimulation of nuclear factor of activated T-cells (NFAT) (2, 28,
29). This leads to production of IL-2 inducing T cell proliferation
and activation and also NK cell activation (29).

In vivo, IMiDs were shown to increase endogenous
tumor-specific T cell and NK cell immunity as well as in
vaccine responses (30).

CYTOTOXIC CD8+ T CELLS

Studies have shown that central and effector memory CD8+

T cells, Tregs and myeloid derived suppressor cells (MDSC)
increased after lenalidomide treatment (31). Thus, indicating that
lenalidomide treatment can induce both activating and inhibitory
immune responses. However, the inhibitory effects observed
could be due to dexamethasone (an immunosuppressant)
combination treatment that was used for some patients
in this study. Indeed, we have previously showed that
high dose dexamethasone abrogates immune activating effects
of lenalidomide (32).

Myeloma patients that received bortezomib treatment
followed by lenalidomide maintenance treatment post
autologous stem cell transplant (ASCT) showed increase in
naïve and memory CD8+ T cells, higher expression of co-
stimulatory molecules and reduction in inhibitory checkpoint
molecules (33). However, an increase in Treg cells was also
observed in this study. Anti-myeloma specific T cell responses
with increased secretion of IFN-γ, perforin and granzyme B were
observed in a clinical trial of myeloma patients that received
lenalidomide as consolidation therapy after ASCT (34).

In newly diagnosed patients, lenalidomide treatment after
ASCT impaired long-term thymic T cell reconstitution, with
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a decrease in CD4+ and CD8+ effector T cell counts (6–
18 months post graft) and increase in Tregs (9–18 months
post graft) (33, 35). Lenalidomide maintenance treatment also
reduced programmed cell death protein 1 (PD-1) expression
on CD8+ T cells, suggesting that it has the potential to
counter-act the myeloma induced exhaustion or senescence
on T cells (36). However, an alternate explanation is that
lenalidomide maintenance treatment maintains low minimal
residual disease, leading to lower antigen stimulation and
reduced T cell exhaustion.

CD4+ T HELPER CELLS AND TREG CELLS

In the context of ASCT, IMiDs (with dexamethasone and
bortezimib) treatment during induction chemotherapy has been
shown to play a role in reducing the pro-tumor Th17-Th1 and
Th22 cells in the bone marrow, concurrently with reduction in
cytokine levels of IL-17, IL-22, and IL-6, TNF-α, IL-1β, and IL-
23 (37). This correlated with a favorable clinical outcome (37).
There was no difference in the number of Tregs between treated
and untreated or between diagnosis and transplantation in this
study (37). However, previous studies showed an increase or
decrease in Treg numbers in patients treated with lenalidomide
and dexamethasone (38–40). In in-vitro assays, lenalidomide
and pomalidomide inhibited IL-2 mediated generation of Tregs
from PBMCs with marked reduction in suppressor function (41).
In a post-transplant setting, peripheral blood Tregs declined in
patients treated with IMiDs during induction therapy pre-ASCT
as CD8T cells expanded (38). In contrast, another study showed
that Treg numbers increased in relapsed patients when treated
with lenalidomide post allogeneic stem cell transplant (allo-SCT)
and with 46% of the patients responding to the therapy (39).
Thus, further highlighting the discrepancies observed in different
studies on the role of IMiDs on Tregs.

EFFECT OF IMIDS ON NK AND INVARIANT
NATURAL KILLER T CELLS

NK cells play an important role in tumor immunity. However,
they are dysfunctional in myeloma (1). The immune suppressive
myeloma microenvironment has elevated IL-10 and TGF-
beta, and was associated with decreased expression of NK
activating receptors, TNF and IFN-γ secretion, and impaired NK
cytotoxicity toward myeloma (1, 42, 43).

Multiple studies demonstrated IMiDs enhanced the activity
and function of NK and invariant NKT cells in multiple
myeloma (24, 29, 44, 45). Lenalidomide enhanced direct NK
cell cytotoxicity and NK-dependent antibody dependent cellular
cytotoxicity (ADCC) (24). However, our study showed that
combination treatment with high dose dexamethasone abrogates
this lenalidomide induced NK cell function (32). Lenalidomide
enhances NK cell cytotoxicity by CD4+ T cell production of IL-2
and dexamethasone suppresses this IL-2 production (32).

Combination treatment of IMiDs and monoclonal antibodies
elotuzumab (anti-SLAMF7) or daratumumab (anti-CD38) and
isatuximab (anti-CD38) showed synergistic effects in enhancing

NK cell activity and efficacy in clinical trials (46–50). This is
through enhancing NK ADCC, monocyte/macrophage mediated
antibody dependent cellular phagocytocis (ADCP) and apoptosis
(1). In phase 1/2 study of combination therapy of daratumumab,
lenalidomide and dexamethasone in refractory relapsed MM
patients, an overall response rate of 81% was achieved (51).
In a phase 3 trial, patients that received the daratumumab,
lenalidomide and dexamethasone, a higher overall response and
progression free survival rate as compared to the lenalidomide
and dexamethasone group (49). In phase 1 and phase II studies,
patients with RRMM that received combination of elotuzumab,
lenalidomide and dexamethasone had a 30% reduction in disease
progression or death without significant toxicity (52, 53). These
treatment strategies demonstrate that combining IMiDs with
monoclonal antibodies are effective for RRMM.

Invariant NKT cells are CD1d restricted T cells that
recognize glycolipid antigens. Invariant NKT cells respond to α-
galactosylceramide (NKT cell antigen) pulsed primary myeloma
cells, with release of cytokines and tumor cell lysis (54). MM
patients treated with lenalidomide showed increased invariant
NKT cell frequency with cytokine responses. Patients with
refractory disease have a marked decrease in invariant NKT
cell frequency (45). However, no difference in invariant NKT
cell numbers were observed in newly diagnosed MM patients
(45). Lenalidomide induction or maintenance therapy did not
seem to have any effect on invariant NKT cell frequency and
numbers (45). Thus, suggesting that lenalidomide benefits are not
dependent on invariant NKT cells.

IMPACT OF COMBINATION TREATMENT
WITH IMIDS ON T CELLS

Immune checkpoint molecules such as cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), PD-1 and lymphocyte activation
gene 3 (LAG-3) diminish T cell responses and play a major role
in peripheral tolerance to antigens and preventing autoimmune
disease. In myeloma, PD-1 is expressed on bone marrow and
peripheral blood CD8+ T cells and NK cells (55, 56). The PD-1
ligand (PD-L1) is expressed on malignant myeloma cells, bone
marrow MDSC and PD-L1 is upregulated on interaction with
bonemarrow stromal cells (BMSC) (57, 58). Thus, indicating that
the PD1-PDL1 axis can be targeted as a treatment strategy.

In in-vitro studies, single blockade using an antibody
against PD-1 or dual blockade using antibodies against
PD1 and PD-L1 with lenalidomide induced anti-myeloma
immune response by blocking the cross-talk between BMSC
and myeloma cells, thus reducing myeloma growth (55).
A phase 1 trial of pembrolizumab (anti-PD-1 antibody) in
combination with lenalidomide and dexamethasone showed
a 50% overall response rate (59). A phase 2 trial with the
same combination showed an overall response rate of 60%
in refractory relapsed patients (60). However, a phase 3 trial
(KEYNOTE-183 and KEYNOTE-185) evaluating pembrolizmab
with lenalidomide and dexamethasone in newly diagnosed
patients was discontinued due to unexpected higher risk of
death (61). Other ongoing trials involving immune checkpoint
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FIGURE 1 | Summary of immunomodulatory effects of IMiDs in multiple myeloma. 1. IMiDs directly act by downregulating adhesion molecules that disrupt the

BMSC-myeloma interaction, which further leads to reduced production of IL-6 and TGFβ and conversion to a less immune-suppressed TME. 2. IMiDs enhance IL-2

production by CD4+ T cells that in turn lead to NK cell activation and proliferation. IMiDs also enhance direct cellular cytotoxicity and ADCC. 3. IMiDs enhance DC-T

cell antigen presentation and co-stimulation through the CD28 pathway. T cells secrete higher amounts of IL-2, IFNγ and TNF. BMSC, bone marrow stromal cells; DC,

dendritic cells; NK, Natural killer; IL, interleukin; TGF, transforming growth factor; ADCC, antibody-dependent cellular toxicity; dex, dexamethasone; IFN, Interferon;

TNF, tumor necrosis factor. Created with BioRender.com.

inhibitors in NDMM patients were stopped based on this
warning (62). Therefore, despite some trials showing a safe
response, in light of the phase 3 trials described above, the safety
concerns of the PD1/PDL1 inhibitors in combination with IMiDs
led the FDA to terminate all trials using these combinations
[reviewed in detail (62)].

A vaccine approach that used DCs fused with tumor cells
demonstrated an increase in myeloma specific T cells, in a
phase II study in the post ASCT setting (63). Combining IMiDs
with this vaccine may further enhance the response to the DC
fusion vaccine therapy. Indeed, combination treatment of a
vaccine targeting the EGFR pathway substrate (Eps8) antigen on
myeloma cells with lenalidomide enhanced the tumor-specific
cytotoxic T cell response and increased survival in patients (64).

IMIDS EFFECTS ON THE TUMOR
MICROENVIRONMENT AND MYELOMA
CELLS

The BMSC and the extracellular matrix (ECM) proteins such as
CD44, VLA-4, LFA-1, VCAM, NCAM, and ICAM-1 are critical
for the malignant PC survival (65). The interaction between
the BMSC and PC is via cell-cell contact and production of
cytokines such as IL-6, which promote PC survival. Adhesion of
MM cells to BMSC enhances expression of IL-6 and VEGF (66).
IMiDs inhibit production of TNFα, which in turn reduces the
production of IL-6 (67). IMiDs downregulate surface adhesion
molecules, which inhibit the MM-BMSC interaction and reduce
the pro-survival cytokine production (67). IMiDs also exert direct
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effects on PC proliferation via inhibition of the cyclin-dependent
kinase pathway and activation of Fas-mediated cell death (2).

The inhibition of PC survival by IMiDs restores immune
homeostasis and thus reduces the presence of senescent or
exhausted T cells in the bone marrow. A summary of the
immunomodulatory effects of IMiDs are outlined in Figure 1.

RESISTANCE TO IMIDS

Treatment with IMiDs has improved survival of MM patients
and is now a standard of care treatment (68). However, a
subset of patients relapse and are refractory to IMiDs over
time (69). One of the mechanisms that has been identified is
through the CRBN pathway, which is a known primary target
of IMiDs mediated degradation and ubiquitination as explained
earlier (70). High expression of CRBN has been associated with
improved clinical response in IMiD treated patients (70, 71).
Patients with lenalidomide resistance express lower levels of
CRBN than lenalidomide sensitive patients (70, 71).

A recent study has reported that RUNX transcription factor
proteins, RUNX1 and RUNX3 interact with the transcription
factor proteins, IKZF1 and IKZF3 (substrates for CRBN binding),
which protects them from CRBN-dependent degradation that
is induced by IMiDs (72). Other signaling pathways have been
identified for IMiD resistance inmyeloma cells. These include the
Wnt/β-catenin (73), MEK/ERK (74), or STAT3 pathways (75).
Overall, all the pathways identified for resistance to IMiDs are
in myeloma cells. This may in turn affect the micro-environment
leading to immune dysregulation. However, further studies are
required to demonstrate whether IMiD resistance in myeloma
cells, affects their capacity to inhibit T and NK cell function.

OVERCOMING RESISTANCE TO IMIDS

New IMiDs known as CELMoDs (CRBN modulating agents)
have been recently developed; these drugs have a more specific
activity than IMiDs and are engineered to target specific proteins
for rapid and efficient degradation (76). These CELMoDs can be
used in patients that are refractory to previous lines of treatment
that include lenalidomide and pomalidomide (76). These new
CELMoDs include avodomide (CC-122) and iberdomide (CC-
220) (77, 78). Avadomide has shown acceptable safety and
pharmacokinetics in myeloma patients (78). Iberdomide is an
E3 ligase cereblon modulator that mediates anti-proliferative and
immunostimulatory activity in lenalidomide and pomalidomide
resistant cell lines (79). Combination of iberdomide with
daratumumab showed superior cytotoxicity against myeloma
cell lines than either drug alone (79). In early results of an
ongoing phase 1/2 clinical trial (NCT02773030), iberdomide
plus dexamethasone showed favorable efficacy and safety in
pre-treated RRMM patients who failed previous treatments,
including pomalidomide, lenalidomide, and daratumumab (77).
In other arms of the trial, iberdomide plus daratumumab plus
dexamethasone (IberDd) and iberdomide plus bortezimib plus

dexamethasone (IberVd), showed favorable tolerability with an
overall response rate of 35% across both groups (80). These
results demonstrate that triplet combination therapy may have
clinical benefits in heavily pre-treated refractory patients. Further
phase 3 trials are needed to evaluate these triplet combinations.

Other strategies have been tested to overcome IMiD
resistance in in-vitro assays against myeloma cell lines resistant
to IMiDs. These include STAT-3 inhibitor (PB-1-102) and
MEK1/2 inhibitor, demonstrating the importance of these
pathways in resistance to IMiDs (75). As RUNX proteins
protect IKZF1 and IKZF3 from degradation, inhibition of
RUNX resulted in sensitization of myeloma cell lines and
primary tumors resistant to lenalidomide (72). Epigenetic
modulators such as 5-Azacytidine (DNA methyltransferase
inhibitor) and EZH2 inhibitor re-sensitized IMiD-resistant
myeloma cells through extensive epigenetic reprogramming and
independent of CRBN (81). However, the exact mechanism is
still unknown.

CONCLUSION

Treatment with IMiDs, especially in combination with other
therapeutic drugs has dramatically improved the outcomes of
patients with MM, both for newly diagnosed and refractory
relapsed patients. IMiDs exert their action through multiple
pathways. Immune modulation by enhancing the function of
immune cells such as T and NK cells are a major pathway of their
mode of action.

Newer therapies such as bispecific antibodies and chimeric
antigen receptor (CAR)-T cell therapies are currently in clinical
trials and are showing promising results in treating myeloma
[reviewed in (82, 83)]. Both of these approaches target specific
antigens on myeloma cells and work through CD3 stimulation
(bispecific antibodies) or CAR on T cells, but independent of
their T cell receptor (82, 83). Both of these therapies use T
cells from myeloma patients, which are senescent or enriched
in Tregs (as discussed in previous sections). IMiDs can reverse
some of these defects in the T cells and restore immune
homeostasis. Therefore, future therapeutic approaches could
involve combining IMiDs with CAR-T cell based approaches
and bispecific engagers, reducing chances of relapse. Overall,
combination approaches will avoid drug resistance that has been
observed with single agents.
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