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The function of T cells is critically dependent on their ability to generate metabolic building
blocks to fulfil energy demands for proliferation and consecutive differentiation into various
T helper (Th) cells. Th cells then have to adapt their metabolism to specific
microenvironments within different organs during physiological and pathological
immune responses. In this context, Th2 cells mediate immunity to parasites and are
involved in the pathogenesis of allergic diseases including asthma, while CD8+ T cells and
Th1 cells mediate immunity to viruses and tumors. Importantly, recent studies have
investigated the metabolism of Th2 cells in more detail, while others have studied the
influence of Th2 cell-mediated type 2 immunity on the tumor microenvironment (TME) and
on tumor progression. We here review recent findings on the metabolism of Th2 cells and
discuss how Th2 cells contribute to antitumor immunity. Combining the evidence from
both types of studies, we provide here for the first time a perspective on how the energy
metabolism of Th2 cells and the TME interact. Finally, we elaborate how a more detailed
understanding of the unique metabolic interdependency between Th2 cells and the TME
could reveal novel avenues for the development of immunotherapies in treating cancer.
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INTRODUCTION

Immune cells including T cells are capable of mounting immune responses against tumors. The
ability of the immune system to detect and eliminate neoplastic cells is known as tumor immune
surveillance (1, 2). Tumor immune surveillance is to a significant part mediated by CD8+ cytotoxic
T lymphocytes (CTLs). During antitumor immune responses, CTLs recognize tumor peptides
presented by major histocompatibility complexes (MHC) I through their T cell receptor (TCR).
Consecutively, CTLs are capable to kill tumor cells by the release of perforins and granzyme B or by
a mechanism that involves Fas ligand (FasL, CD95L)-mediated apoptosis of target cells (1, 2).
org May 2021 | Volume 12 | Article 6325811

https://www.frontiersin.org/articles/10.3389/fimmu.2021.632581/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.632581/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.632581/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:sascha.Kahlfuss@med.ovgu.de
https://doi.org/10.3389/fimmu.2021.632581
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.632581
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.632581&domain=pdf&date_stamp=2021-05-31


Schreiber et al. Th2 Cells in the Tumor Microenvironment
It is of note that also various CD4+ T cell populations have
been detected in tumors, although their role within the tumor
microenvironment (TME) is less well understood compared to
CD8+ CTLs. For instance, CD4+ regulatory T cells (Tregs) are
known to inhibit CTL function in tumors, while T helper (Th)1
cells participate in antitumor immunity by releasing IFN-g and
TNF (3–5). However, the role of Th2 cells and type 2 immunity
during antitumor immune responses is less well understood. Th2
cells are best known to provide immunity against parasites and
their pathogenic role in allergic diseases is well established
and has been recently reviewed (6–8), while the regulation and
function of Th2 cells in the TME is largely neglected and more
controversial (9). Yet, therapeutically effective CD4+ CAR T cells
have been shown to express a Th1 and, importantly, also a Th2
gene signature and to secrete both Th1 and Th2 cytokines (5, 10).

The TME is a unique metabolic niche, which differs between
various tumor types and affected organs (11, 12). Importantly,
many recently reviewed studies have shown that the TME and its
metabolite composition directly affects the energy metabolism,
gene expression and effector function of CTLs, Tregs and Th1
cells (11, 13, 14). How Th2 cells adapt to the TME and how
tumors, vice versa, affect Th2 cell function is less established.
In this review, we thus highlight studies investigating the
metabolism of Th2 cells and summarize the role of Th2 cells
in the TME. We then combine the evidence from both types of
studies to discuss interactions of the TME and Th2 cell
metabolism and function with a perspective and outline for
future studies. At the end, we provide an outlook how a better
understanding of this unique interdependency could help to
establish new therapeutic strategies for cancer treatment.

The Energy Metabolism of Th2 Cells
The type of energy metabolism that is used by T cells depends on
their activation level, their differentiation phenotype and the
specific environment they operate in (15–18). While naïve T cells
primarily use oxidative lipid metabolism, their activation
requires the supply with sufficient building blocks to guarantee
proliferation. T cells fulfil these energy demands by metabolic
reprogramming, which involves the upregulation of glycolysis
and lipid metabolism (19, 20). High glycolysis rates require the
activation of mammalian Target of Rapamycin (mTOR)1 and 2,
Myc, Hypoxia-inducible factor 1a (HIF-1a) and increased
expression of the glucose transporter (GLUT)1 (21–23). Lipid
synthesis is promoted by the transcription factors mTORC1 and
sterol regulatory element-binding protein (SREBP), which
regulate critical enzymes involved in lipid metabolism such
as the Acetyl-CoA carboxylase (ACC1) (24). Strikingly,
pharmacological and genetic deletion of ACC1 completely
prevents the generation of almost all effector Th cell lineages
(25, 26).

Following activation in secondary lymphatic organs, T cells
migrate to their target organs. The specific metabolic
environment in these organs also affects the energy metabolism
and effector function of different T cell populations, such as
shown for instance in the melanoma TME, in which low glucose
levels inhibit aerobic glycolysis and the tumoricidial function of
CD4+ and CD8+T cells (27, 28). In this context, lung Th2 cells are
Frontiers in Immunology | www.frontiersin.org 2
mainly characterized by an upregulation of genes related to lipid
oxidation and synthesis (29–31). Table 1 summarizes studies
investigating the Th2 cell metabolism in more detail (Table 1).
Th2 cells in the lung were shown to upregulate the expression of
the peroxisome proliferator-activated receptor-g (PPAR-g) (31,
43), a nuclear receptor that is induced by IL-4 receptor (IL-4R)
ligation and signal transducer and activator of transcription
(STAT6) activation (34, 44, 45). In lung Th2 cells, the
transcription factor PPAR-g regulates the expression of
different genes that are critical for Th2 cell differentiation and
effector function. Among them were the genes Gata3, Stat5, Il5
and Il13 (30, 39). In line with that observation, deletion of PPAR-g
in CD4+ T cells improved asthmatic airway inflammation
and, on the flipside, reduced Th2-mediated immunity to
Heligmosomoides (H.) polygyrus infection. In these studies, Th2
cells showed reduced IL-5 and IL-13 production in the absence of
PPAR-g (31, 43).

Importantly, in Th2 cells PPAR-g also controls genes involved
in fatty acid uptake and lipolysis (e.g. Ldlr, Scrab2, Vdlr, Plin2,
and Fabp5). In addition, also pharmacological inhibition of
glycolysis by 2-DG reduced Th2 cytokine production during
asthmatic airway inflammation in vivo (30). A more detailed
review of these mechanisms and the metabolic requirements of
Th2 cells was recently published by Coquet and colleagues (29).

Taken together, early T cells undergo metabolic
reprogramming and upregulate glycolysis to generate building
blocks for proliferation. Following differentiation into the Th2
lineage, signals from inflamed tissues such as the lung during
allergic asthma or parasite infection activate genes related to fatty
acid uptake and lipid oxidation in Th2 cells.

Th2 Cell-Mediated Immunity to Tumors
Compared to studies on CTLs, evidence for the function of Th2
cells in the TME is relatively spare. However, studies have shown
that Th2 cells and type 2 immunity indeed take part in tumor
immune surveillance by e.g. reducing the size of even established
tumors (9, 48, 49; Table 2).

A major difference between recognition of tumor cells by
CD4+ T cells and CD8+ CTLs cells is that the latter detect
antigens presented by MHC I complexes. However, tumors have
the ability to develop mechanisms to evade recognition by CTLs
(85–87). These mechanisms include the downregulation of MHC
I molecules and/or losing the immunogenic target antigen CTLs
are directed against (88). On the other side, tumor antigens can
also be presented by bystander antigen presenting cells (APCs)
via MHC II complexes to CD4+ T cells in tumors.

Through the MHC II complex pathway, Th2 cells can initiate
antitumor responses. The involvement of type 2 immunity in
antitumor immune responses is reflected by studies showing
that IFN-g-deficient and, importantly, also mice deficient for
the Th2 cytokines IL-4 and IL-5 show reduced tumor clearance
(51). Furthermore, injection of IL-4 enhanced tumor clearance
and correlated with increased infiltration of eosinophils,
macrophages, neutrophils and in part lymphocytes. In
addition, neutralizing IL-5 by monoclonal antibodies restored
tumor growth (50, 57, 58, 62, 65). The latter studies
demonstrated that Th2 cytokines are important in anti-tumor
May 2021 | Volume 12 | Article 632581
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immunity, although they do not provide direct evidence for an
involvement of Th2 cells. With regard to this, it needs to be
emphasized that Th2 cytokine production and type 2 immunity
is not only mediated by Th2 cells but also to a significant part by
type 2 innate lymphoid cells (ILC2s). ILC2s also secrete Th2
cytokines, depend on the Th2 transcription factor GATA3 but
lack TCR expression (89–91). Currently, there is strong evidence
that ILC2s contribute to anti-tumor immunity towards different
types of tumors (92–94). However, ILC2s were also reported to
be capable of exerting pro-tumor functions, revealing a more
ambiguous role in immune responses against tumors than
initially expected. The role of ILC2 in anti-tumor immunity
was reviewed in-depth recently (95).

While the studies mentioned above report an involvement of
type 2 immunity in anti-tumor immune responses, there are also
further studies existing that show a direct influence of Th2 cells
on tumor growth and progression: With regard to this, A20-
Ovalbumin (OVA) expressing B cell lymphomas were cleared by
the injection of either OVA-specific Th1 or, importantly, Th2
CD4+ T cells into tumor bearing host mice (61). Of note, another
studied found that adoptively transferred OVA-specific CD4+

Th2 cells, but not Th1 cells, inhibit the growth of lung metastases
produced by an OVA-transfected B16 melanoma (B16-OVA)
(49). Importantly, the Th2-mediated antitumor response in the
latter study was mediated through eosinophils and the
Frontiers in Immunology | www.frontiersin.org 3
expression of the eosinophil chemokine eotaxin. Confirmingly,
eradication of tumors by adoptive transfer of tumor-specific Th2
cells was observed by another study (56). In addition, in a very
recent study, Ming and colleagues showed that the transforming
growth factor-b receptor 2 in CD4+ (but strikingly not CD8+) T
cells is important in providing a host-directed protective Th2
response dependent on the Th2 cytokine IL-4 against tumors
(96). The latter study provides strong and recent evidence that
type 2 immunity mediates anti-tumor effects through tissue
defense mechanisms.

Immunity to tumors by Th2 cells is to a significant part
mediated by Th2 cytokines and through secondary recruitment
of tumoricidal myeloid cells such as eosinophils, which often act
in concert with macrophages (49, 67). Indeed, depletion of
granulocytes completely abolished anti-tumor immunity (48,
62). Furthermore, IL-5-deficicent mice showed impaired
numbers of eosinophils in the tumor and a consecutive loss of
anti-tumor immunity (51). Conversely, IL-5 overexpressing mice
develop fewer tumors and, if so, had high eosinophil numbers
within the TME (66). In line with this observation, others
reported an association of increased eosinophil numbers and
an overall prolonged survival (52–54, 59, 60). Besides eosinophils
and alternative activated M2 macrophages, also mast cells, B cells
and type 2 CD8+ T cells contribute to Th2-mediated anti-tumor
immunity, which was, however, reviewed elsewhere (48). In this
TABLE 1 | Studies investigating the metabolism of Th2 cells.

18 (Review) T cell metabolism drives T cell activation; T cell differentiation is linked to the environment via mTOR and AMPK
32 (Study) PPAR-g in CD4+ T cells induces genes involved in lipid metabolism
25 (Study) Inhibition of ACC1 impairs differentiation and effector function of Th17 cells and other effector T cells
33 (Study) mTOR signaling is responsive to hypoxia and therefor to metabolic cues
16, 17 (Review) T cells metabolically adapt to specific microenvironments; Metabolism shapes T cell function and differentiation
31 (Study) PPAR-g is required for Th2 cytokine production
34 (Study) PPAR-g can be activated ligand independently to facilitate STAT6 signalling in macrophages
35 (Study) Th1 and Th17 differentiation is dependent on mTORC1 and Th2 differentiation on mTORC2
15 (Review) T cell metabolism is connected to T cell function, activation and differentiation
36 mTORC2 signaling is regulated by acetylation of Rictor. This might pose a metabolic sensor, as acetylation is acetyl-CoA dependent
37 (Study) High intracellular AMP activates AMPK which phosphorylates Raptor and thereby inhibits mTORC1 signaling
38 (Study) SGK1, a downstream target of mTORC2, regulates Th2, but also Th1 differentiation
39 (Review) PPAR-g controls Th2 cell-specific genes
40 (Study) mTORC2 affects Th2, but also Th1 differentiation by distinct signaling pathways
26 (Study) Deletion of ACC1 compromises CD8+ T cell differentiation
20 (Review) Fatty acid synthesis is important for effector T cells; Fatty acid oxidation is critical for CD8+ T cells and Tregs
23 (Review) GLUT1 and GLUT3 are important to fulfill the metabolic demands of effector CD4+ T Cells
41 (Study) Glucose dependent acetylation of Rictor in GBM poses a metabolic sensor in mTORC2 signaling
19 (Study) Upon activation T cells engage in anaerobic glycolysis via the upregulation of PDHK1; Cytokine synthesis is dependent on aerobic glycolysis
42 (Study) mTORC2 signaling is responsive to ammonium
27 (Review) T cell metabolism is shaped by internal and external environmental cues
43 (Study) PPAR-g exerts type 2 immunity in helminth infection but also in asthmatic airway inflammation
44 (Study) PPAR-g is required for alternative activation of macrophages
22 (Study) Antitumor function of CD8+ T cells is dependent on HIF-1a-induced glycolysis
24 (Study) mTORC1 induces lipid synthesis via SREBP and fatty acid synthesis enzyme transcription (e.g. ACC1)
29 (Review) Th2 cells have characteristic metabolic profiles, which change dependent on maturation and location; PPAR-g is an important transcription factor

regulating the metabolism of Th2 cells in the lung
45 (Study) PPAR-g activation by IL-4 is mediated by STAT6 in dendritic cells and macrophages
30 (Study) During asthmatic airway inflammation Th2 cells upregulate genes associated with lipid metabolism
46 (Review) mTOR is a regulator of both, T cell differentiation and metabolism
21 (Study) Myc induces glycolyisis upon t cell activation and links glutaminolysis to the synthesis of biosynthetic precursors
47 (Study) mTORC1 is also important for Th2 differentiation
mTOR, mammalian Target of Rapamycin; AMPK, Adenosine monophosphate-activated protein kinase, PPAR-g, Peroxisome proliferator-activated receptor g, ACC, Acetyl-CoA
carboxylase; IL, Interleukin; STAT, Signal transducer and activator of transcription; Treg, Regulatory t cell; GLUT, Glucose transporter; PDHK, Pyruvate dehydrogenase kinase; HIF,
Hypoxia-inducible factor; SREBP, Sterol regulatory element-binding protein.
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context, it needs to be emphasized that especially mast cells are
also strong producers of Th2 cytokines and can exert pro- and
anti-tumor effects (97). So far, however, strongest evidence
comes from studies demonstrating anti-tumor activity of
eosinophils (63, 64).

Of note, there is also evidence suggesting that Th2 immunity
promotes cancer genesis, progression and metastasis. One study
for instance found that remission of transplanted lung tumors
into mice was accompanied by a shift from Th2 towards Th1
cells. In this study, the authors found that a predominant Th2
response in the TME is associated with an unfavorable outcome
(71). One report showed a Th1 skewing to be associated with
successful immune modulatory therapy of cancer (72). Others
demonstrated an association of Th2 cells in the TME with the
progression of breast cancer and cervical neoplasia (75, 76, 82).
In addition, in breast cancer, colorectal cancer and lung cancer,
type 2 immunity has been shown to enhance metastasis (69, 74,
Frontiers in Immunology | www.frontiersin.org 4
83, 84). As possible mechanisms for the above listed
observations, direct effects of IL-4 on cancer cells, an increase
in tumor-associated macrophages and IL-5-dependent
eosinophil recruitment at the site of metastasis were discussed.
In general, many studies suggest a direct effect of Th2 cytokines
on cancer cells and tumor progression, while others lack
mechanistic explanations. Of note, direct evidence for pro-
tumor effects of Th2 cells, particularly, does not exist (68, 70,
77, 78, 80, 81).

Taken together, Th2 cells were shown to mediate pro- and
anti-tumor effects. While, traditionally, type 2 immunity was
implicated in an inhibition of anti-tumor responses, a number of
studies provide convincing evidence demonstrating that Th2
cells indeed mediate anti-tumor immunity. Of note, these
studies do not only provide correlative analyses, but apply
adoptive Th2 cell transfer experiments (49, 56, 61) or perform
pharmacological administration of Th2 cytokines to tumor
TABLE 2 | Studies on the role of Th2 cells on tumors.

Evidence of Th2 cell antitumor activity

50 (Study) Perilymphatic injecton of IL-4 into CE-2 and TS/A tumors inhibits tumor growth and induces immune memory
48 (Review) Th2 cells can inhibit but also facilitate tumor growth, progression and metastasis
51 (Study) Th1 and Th2 cells are, unlike CD8+ T cells, independent of MHC I expression in tumor cells and play a significant role in initiating antitumor

responses; Th2 cells exert antitumor effects via the recruitment of eosinophils
52, 53 (Study) Eosinophil infiltration in oesophageal squamous cell carcinoma is a predictor of a favourable clinical outcome in humans
54 (Study) Eosinophilic infiltration predicts survival in patients with gastric cancer
55 (Study) Depletion of TGF-b receptor 2 disinhibits type 2 immunity to cancer in a breast cancer model by inducing tumor hypoxia and cell death through

vasculature remodeling
56 (Study) Transfer of Th2 cells eradicates subcutaneous myeloma and B cell lymphoma and is dependent on arginase produced by M2 macrophages
49 (Study) Transfer of OVA-specific Th2 (but not Th1 cells) into tumor bearing mice cleared lung and visceral melanoma metastases via the recruitment of M2

macrophages
57 (Study) Injection of IL-4 into mice prohibited TS/A tumor growth via the recruitment of eosinophils, neutrophils and macrophages into the TME
58 (Study) TS/A tumors engineered to express IL-4 in mice were rejected via induction of necrotic areas by eosinophils and neutrophils
59, 60 (Study) Eosinophilic infiltration predicts a favourable prognosis in patients with colorectal cancer
61 (Study) Transfer of OVA-specific Th1 and Th2 cells in OVA expressing lymphomas is able to clear the tumors
62 (Study) TS/A in mice engineered to express IL-4 were rejected in an eosinophil and CD8+ dependent way
63 (Review)
64 (Study)

Eosinophiles are important in regulating immune responses in the TME and can exert anti-tumor effects in colorectal cancer

9 (Review) Th2 cells can exert antitumor effects by recruiting eosinophils
65 (Study) IL-4 exerts anti-tumor effects via the recruitment of eosinophils
66 (Study) Enhanced IL-5 expression in mice protected from MCA-induced fibrosarcoma via the recruitment of eosinophils
67 (Study) A type 2 immune microenvironment induced by a biologic urinary bladder matrix scaffold inhibits melanoma tumor function
Evidence of Th2 cell pro tumor activity
68 (Study) Breast cancer cells indirectly stimulate their own growth by instructing CD4+ T cells to secrete the Th2 cytokine IL-13
69 (Study) IL-4 induces EMT in colon cancer cells via STAT6 dependent transcription of EMT promoting proteins
70 (Study) IL-4 promotes the expression of antiapoptotic genes in various human cancers in vitro
71, 72 (Study) Successful therapy of lung tumors and melanoma in mice was associated with a shift towards a Th1-Response
73 (Study) Survival of patients with pancreatic cancer is negatively associated with Th2 cell infiltration
74 (Study) IL-4 expressing CD4+ T cells enhance metastasis by instructing macrophages to activate epidermal growth factor signalling in breast cancer cells
75 (Study) IL-5 in the tumor intestitial fluid is associated with a poor prognosis
76 (Study) High risk HPV infections cause a type 2 inflammation and create an immunosuppressive environment
77 (Study) IL-13 deficient mice showed a slower progression of prostate cancer
78 (Study) IL-4 stimulates proliferation in human pancreatic cancer cells via MAPK, Akt-1, STAT3 and insulin receptor phosphorylation
79 (Review) IL-4 and IL-13 receptors are possible targets for cancer therapy
80 (Review) IL-13 negatively regulates antitumor immune surveillance
81 (Study) Expression of the IL-4 receptor subunit a enhances malignancy of human pancreatic cancers in vitro and in vivo
82 (Study) Th2 cell infiltration in human breast cancer is associated with unfavourable genetic properties of the tumour
83 (Study) IL-5 facilitates lung metastasis from melanoma, lung and colon cancers via recruitment of eosinophils to the lung
84 (Study) CCL5 recruits Th2 cells and mediates metastasis in breast cancer
IL, Interleukin; CE-2, Chemically induced fibrosarcoma; TS/A, Spontaneous adenocarcinoma; MHC, Major histocompatibility complex; CTL, Cytotoxic T lymphocyte; TGF, Tissue growth
factor; OVA, Ovalbumin; TMA, Tumor microenvironment; MCA, Methylcholanthrene; EMT, Epithelial-mesenchymal transition; STAT, Signal transducer and activator of transcription; HPV,
Human papillomavirus; MAPK, Mitogen activated protein kinase; CCL, chemokine C-C motif ligand.
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bearing mice (50, 57, 58, 62, 66). Some of the anti-tumor effects
of Th2 cells in addition were attributed to an indirect effect of
Th2 cells and their cytokines on Th9 cells (98, 99).

In summary, whether Th2 cells and type 2 immunity exert
pro- or anti-tumor effects seems to be strongly depending on the
type and stage of tumor (context dependency). However, in this
review we focus on the anti-tumor role of Th2 cells and type 2
immunity as most of the mechanistic and experimental (and not
only correlative) data derives from studies, which postulate an
anti-tumor function of Th2 cells.

The Tumor Microenvironment (TME)
Tumor cells are recognized and eliminated by innate and
adaptive immune cells. Thus, the immune system in principle
has an impressive ability to keep neoplastic cells in check before
tumor cells enter uncontrolled expansion (1, 2). The fact that the
immune system can attack tumors is the basis for antitumor
immunotherapy such as immune checkpoint blockade or
adoptive cell transfer of engineered T cells (100, 101).
However, tumors possess several mechanisms to evade tumor
immune surveillance (102), which is why some patients do not
respond to immunotherapy. To a significant part, these evasion
mechanisms involve the metabolic modulation of the TME (11,
103, 104). The metabolic TME is mainly characterized by a high
cancer cell metabolism and a consecutive starvation of immune
cells including effector T cells.

Tumors enable their rapid growth rate through glycolysis,
which generates metabolic intermediates for the synthesis of
amino acids, nucleotides, and fatty acids (105). Through
glycolysis, tumor cells consume high levels of glucose from
their surrounding environment and produce high amounts of
lactate (106, 107). Both, reduced glucose and high lactate
concentrations within the TME, results in immunosuppression
(108, 109). Differentiation of naïve T cells into effector T cells
crucially depends on metabolic reprogramming, which is
facilitated by glucose uptake through GLUT1 and aerobic
glycolysis (19, 21–23). Glucose deprivation in the TME thus
cumulates in effector T cell hyporesponsiveness. Mechanistically,
low glucose levels in the TME reduce AKT activity and induce
apoptosis in CTLs through the activation of proapoptotic B-cell
lymphoma-2 (Bcl-2) family members (110, 111). The latter
mechanism likely also applies to various CD4+ Th cell
populations in the TME, although direct evidence is missing so
far. Reduced glucose levels also decrease the levels of the
intermediate phosphoenolpyruvate in T cells, which impairs
calcium flux and nuclear factor of activated T cells (NFAT)
signaling (112). In addition, high lactate in the TME further
impairs NFAT activation and its translocation to the nucleus
(113). As calcium-mediated NFAT signals control metabolic
reprogramming of T cells by regulating gene expression of
several glycolytic enzymes (114), T cells in the TME show
impaired activation, proliferation and effector function against
neoplastic cells. Importantly, acidification of the TME through
high lactate concentrations impairs effector T cell function
stronger than the function of Tregs. This likely occurs as Tregs
also use fatty acid oxidation and might even use lactate as fuel
(115–117). In view of the fact that also tissue Th2 cells seem to
Frontiers in Immunology | www.frontiersin.org 5
use lipid metabolism preferentially, it is tempting to speculate
that also Th2 cells could be more resistant to high lactate
concentrations and a low pH within the TME.

In addition to low glucose concentrations within tumors, the
TME is also depleted of specific amino acids including glutamine,
alanine, tryptophan, arginine, cysteine and ornithine, some of
which were shown to be important for T cell proliferation and
effector function (118–120). Importantly, upon T cell activation
several genes e.g. those encoding for amino acid transporters are
upregulated (121), which indicates a high demand for the
exchange of amino acids for clonal expansion of T cells
following antigen encounter.

While many studies have focused on glucose and amino acid
metabolism, less studies report on lipid metabolism in the TME.
Generally, lipids play a significant role in cancer progression (122,
123). Cancer cells are capable of inducing lipolysis in adjacent
adipocytes and fatty acid synthesis in cancer associated
fibroblasts. This has been demonstrated for melanoma (124,
125), breast cancer (126, 127), ovarian cancer (128), prostate
cancer (129) and pancreatic cancer (130).

Another characteristic of especially necrotic tumors is that the
TME consist of a specific ion composition that is characterized
by high potassium levels due to necrotic cell lysis (131). Increased
potassium concentrations in the extracellular fluid of mouse
and human tumors suppress CD8+ CTL function, while
overexpression of the voltage-gated potassium channel Kv1.3
(that transports potassium outside the cell) improved CTL
effector function and survival of melanoma bearing mice (131).
Importantly, preventing calcium influx through genetic deletion
of components of the calcium release-activated calcium channel
(CRAC) pathway impairs CD8+ CTL effector function and
antitumor immunity in mouse models for melanoma and
colon carcinoma (132). In addition to calcium also sodium was
shown to regulate T cell function, more precisely, the effector
function of Th17 cells (133–136). However, the role of sodium
on effector T cell function within the TME is elusive. The above
studies (131, 132) show that ions have significant impact on
effector T cell function against tumors. However, despite these
studies the impact of ions on adaptive and innate immune cells
in the TME but also in other tissues is still largely neglected and
not well understood.

Hypoxia is another prominent feature of the TME (137). The
high metabolic rate of tumor cells in combination with an
insufficient vascularization especially of large solid tumors
leads to a TME that is characterized by reduced oxygen levels.
Hypoxia within the TME was on the one hand reported to
increase CTL-mediated tumor cell killing through increasing the
packaging of granzyme B. This was associated with prolonged
survival in the B16-OVA melanoma mouse model (138). In
contrast, others have shown that T cells in fact avoid areas of
hypoxia and have reported an immunosuppressive function of
hypoxia on effector T cells in the TME (109, 139, 140). In that
context, the oxygen-sensing prolyl-hydroxylase (PHD) was
reported to limit Th1 and CTL function, while PHD promoted
Treg differentiation following tumor colonization in the lung
(141). HIF-1a, an important transcription factor in sensing
oxygen levels, was shown to positively control PD-L1
May 2021 | Volume 12 | Article 632581
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expression in myeloid derived suppressor cells (MDSCs). This
induced T cell exhaustion but promoted generation of Tregs
(142, 143). Of note, deletion of HIF-1a increased fatty acid
catabolism (oxidation) and improves PPAR-a signaling in CD8+

CTLs (144). As HIF-1a negatively regulates fatty acid oxidation
and tissue Th2 cells predominantly use lipid metabolism, this
could have important mechanistic implications how hypoxic
TME regulate Th2 cell metabolism and function.

In addition to the above discussed evasion mechanisms,
neoplastic cells also produce several metabolic intermediates,
which affect the functions of various immune cells including T
cells within the TME. In malignant cells Indoleamine 2,3-
dioxygenase (IDO) is upregulated (145). IDO degrades
tryptophan to kynurenine, which inhibits effector T cells and
promotes Treg differentiation within tumors (104). Importantly,
mass spectroscopy of tumor fluid from tumor bearing mice has
already in part allowed characterizing metabolite composition
within the TME of a handful of tumors (107).
DISCUSSION

Interactions of Th2 Cell Metabolism, TME,
and Potential Therapeutic Strategies
Current evidence indicates that Th2 cell-mediated type 2
immune responses can contribute to anti-tumor immunity,
although for some tumors Th2 cells and/or cytokines have also
been shown to promote tumor growth and metastasis.

One way how tumors can influence Th2 cell-mediated
immunity to neoplastic cells is by consuming nutrients and
Frontiers in Immunology | www.frontiersin.org 6
thereby starving Th2 effectors. This mechanism was meanwhile
indicated for several immune cells within the TME including
macrophages, CD8+ T cells, dendritic cells (DCs), and natural
killer cells but not yet for Th2 cells (130, 146–149). Tumors
consume high levels of glucose to perform glycolysis. Glucose is
on the other hand essential for metabolic reprogramming of
naïve T cells when becoming effector T cells (19–23). While
tissue Th2 cells in the allergic lung were dependent on lipid
metabolism, also pharmacological inhibition of glycolysis by
the glucose analogue 2-DG attenuated asthmatic airway
inflammation by interfering with Th2 cytokine production
(30). This indicates that also in the TME Th2 cells likely could
be affected by low glucose levels (Figure 1). However, direct
evidence whether and how reduced glucose concentrations
within the TME affect Th2 cells is so far elusive.

In recent literature, a Th2 cell-specific utilization of lipid
metabolism pathways has been described (29–31, 150). In this
context, tissue Th2 cell activation was shown to involve PPAR-g
activation (31, 43). PPAR-g, in turn, controlled Th2 cell gene
expression and the expression of genes associated with lipid
metabolism (29, 30, 39). Of note, Coquet and colleagues reported
reduced T cell numbers in the bronchoalveolar lavage following
house dust mite-induced asthmatic airway inflammation after in
vivo administration of orlistat or etomoxir, which block fatty acid
synthesis and uptake or fatty acid oxidation, respectively (30). It
is of note, that these drugs also inhibited ILC2s, which resulted in
elevated helminth burden after infection with Trichuris muris
(151). This dependency on lipid metabolism could mean a
significant advantage for Th2 cells (and ILC2) in the TME for
at least two reasons: First, availability of lipids within the TME
might be even higher than in healthy tissues. In addition, as Th2
FIGURE 1 | Metabolic Interdependency of Th2 cell-mediated type 2 immunity and the Tumor Microenvironment (TME): The TME is characterized by a high energy
demand, glycolysis, and lipid metabolism. This reduces 02 and glucose availability within the TME, while free FA, other lipids and lactate is found to be elevated.
These conditions affect Th2 cells and their effector functions (e.g. cytokine production of IL-4, IL-5, and IL-13) and, secondary, eosinophil mobilization and activation.
02, Oxygen; IL, Interleukin; Ox., Oxidation; FA, Fatty acid(s).
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cells are capable of utilizing lipids in the TME, this could
maintain their function even when being exposed to low
glucose environments (Figure 1).

Given this evidence, therapy regimens that involve the
modulation of the Th2 cell metabolism are thinkable. One
potential molecular target could be indeed the transcription
factor PPAR-g as it facilitates lipid metabolism of Th2 cells.
Thiazolidinediones (TZDs), a group of diabetes drugs that
activate PPAR-g, have already been shown to be associated
with a lower risk for cancer (152, 153). While this might be
mediated by the antidiabetic effects of TZDs, there is also
evidence for TZDs directly inhibiting growth of established
tumors. Moreover, TZDs are in fact discussed for cancer
therapy (154, 155). One concern using TZDs is, however, the
notion that PPAR-g also plays an important role in Tregs as Treg
accumulation in adipose tissue has been shown to be PPAR-g-
dependent (156). If this mechanism also applies to the TME, this
could lead to a net pro-tumor effect of TZDs.

Apart from targeting only the metabolism of immune cells, it
appears also plausible to target the metabolism of tumor cells
simultaneously. With regard to this, inhibition of cancer-specific
metabolic pathways in cancer therapy has been extensively
discussed in recent years (109, 157, 158). First, disturbing
tumor metabolism might abrogate tumor growth directly. On
the other hand, a consecutive secondary change in the metabolic
TME might further improve immune cell function. Of note, a
major challenge of this approach is the inhibition of tumor
metabolism without compromising essential metabolic pathways
in T cells at the same time (159). It is tempting to speculate that
Th2 cell-mediated anti-tumor responses could be enhanced by
higher glucose and/or oxygen levels as Th2 cells have been shown
to be impaired by glycolysis inhibition (30) and because oxygen
is essential for lipid metabolism predominantly performed by
Th2 cells (29).

Of note, especially large tumors consist of several hypoxic
areas. This might hinder Th2 cell mediated anti-tumor immunity
for two reasons (Figure 1): First, lipid oxidation is oxygen
dependent. Therefore, it still needs to be elucidated whether
lipid oxidation, as proposed above, could pose a salvage pathway
for Th2 cells in the TME. Yet, hypoxia was reported to induce a
Th2-skewing phenotype of DCs, which could promote anti-
tumor immunity (160, 161). Secondly, hypoxia normally
increases the expression and function of the transcription
factor HIF-1a. HIF-1a is on the one hand a positive regulator
of glycolysis but also negatively regulates lipid metabolism (162–
164). Thus, increased HIF-1a expression in Th2 cells within
hypoxic tumor areas could prevent the usage of lipid metabolism
by Th2 cells as an alternative energy pathway when glucose is
missing. On the other hand, HIF-1a inhibition could serve as
strategy to improve Th2-cell mediated immunity to tumors.
Although upregulation of glycolysis was shown to be critical
for initial T cell activation, and Myc together with HIF-1a
enables metabolic reprogramming of T cells (19–21), it is not
clear whether Th2 differentiation is dependent to the same
extend on HIF-1a activation. So far, HIF-1a-mediated
glycolysis was shown to be important mainly for Th17, but not
for Th1 and Th2 differentiation (21, 165). Another important
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metabolic regulator upstream of HIF1-a is mTORC, which
controls several key transcription factors including HIF-1a,
Myc, PPARa, PPARg and SREBP (46). In particular, mTORC2
has been suggested to selectively mediate Th2 polarization,
whereas mTORC1 was indicated to be important in Th1 and
Th17 differentiation (35, 38). Others, however, reported
mTORC1 to be important for Th2- and mTORC2 for Th1
differentiation (40, 47). While mTORC1 has been shown to
respond to various metabolic conditions like low energy supply
and hypoxia (37, 41), mTORC2 has been shown to be regulated
by metabolic cues such as glucose availability (41, 42). Moreover,
mTORC2 is discussed to act as a sensor for Acetyl-CoA and
NAD+ levels and therefore to detect the overall energy status of
cells (36).

In principle, Th2 cells may be used for advanced adoptive cell
transfer therapies. So far, CAR T cell therapies have been (often)
unsuccessful for treatment of solid tumors as the latter possess
several mechanisms to escape immune responses (166, 167). In
addition, there are only a few studies so far investigating Th2 cell
adoptive cell transfer to treat tumors in mice (49, 56, 61).

For tumor cells a high IDO expression was reported (145).
Importantly, IDO is also expressed by innate immune cells such
as DCs that take part in anti-tumor immunity (168). CD4+ T cells
co-cultured with IDO-deficient lung DCs produced less Th2
cytokines. High IDO activity in tumors and DCs could thus
secondarily amplify Th2 cell responses against tumors. However,
this assumption is complicated by the fact that there also exists
evidence that kynurenine metabolites can negatively regulate T
cell function by inducing apoptosis (169). In addition, studies
have shown that genetic or pharmacological deletion of IDO
restores anti-tumor immunity (170). This is the case as IDO is
involved in the generation of Tregs and MDSCs, which both
suppress the function of CTLs and other effector cells within the
TME (105, 171). In line with this observation studies reported that
kynurenine induces the transcription factor aryl hydrocarbon
receptor (AHR) that is important for differentiation of naïve T
cells into Tregs (172, 173). As IDO inhibitors are currently in
clinical trials for different cancer types including bladder cancer,
endometrial cancer or head and neck squamous cell carcinoma
(174) it would be of great interest to characterize the immune cell
repertoire in the TME upon IDO inhibition.

Another tissue factor that influences T cell function in the
TME is the ion composition and concentration. As calcium
signaling plays a role in metabolic reprogramming of T cells,
an effect of ions in the TME on T cell metabolism seems
plausible. However, while there is clear and strong evidence
that calcium and potassium regulates the function of CTLs (132,
175, 176), there is a gap in our understanding how ions influence
the function of Th2 cells in tumors.
CONCLUSIONS

To develop tailor-made cancer therapies that target specific
immune cell populations such as Th2 cells by modulating their
metabolism, a detailed understanding of the TME of various
tumor subtypes is needed, and still some challenges have to be
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overcome. One important questions is whether Th2 cells, based
on their metabolic profile, are able to function in the glucose and
amino acid and oxygen depleted TME.

Despite great advances in the field, a lot of evidence for the
metabolic regulation of various Th cells still is based on
experiments using in vitro culture systems and artificial media.
To overcome this, some strategies were recently discussed by
Jones and colleagues (108). First, the design of physiologic media
resembling the specific metabolite (and at best also ion-)
composition of different compartments can help in elucidating
the relationship of immune cells and their surrounding
environment. Second, tumor spheroids and organoid models
and the detailed characterization of the TME in vivo will
help to understand the complex relationship and metabolic
interdependency between tumors and immune cells better.

Furthermore, a detailed understanding of the TME of various
tumor subtypes is needed to identify tumors with a Th2
advantageous TME. The decision whether Th2 cells and type 2
immunity provides pro- or anti-tumor immune responses is
strongly dependent on the type and stage of the individual
tumor. Considering the utilization of lipid metabolism
pathways by Th2 cells and the capability of tumors to induce
lipolysis, especially tumors with adjacent adipose tissue could be
Frontiers in Immunology | www.frontiersin.org 8
of significant advantage. Especially melanoma might be
promising for two reasons: First, melanoma are close to a
source of lipids, namely the subcutaneous adipose tissue and
have been shown to induce lipolysis in adjacent adipocytes (124,
125). Second, adoptive cell therapy by using Th2 cells has already
been shown to be effective in melanoma animal models (49).

In conclusion, the special metabolic characteristics of Th2
cells might prove advantageous when therapeutically modulating
the TME to treat cancer. Especially Th2 cell utilization of lipids
might be useful. In future, a precise characterization of the TME
in different tumors, a specification of the role of lipid metabolism
in tissue Th2 cells and a more direct observation of Th2 cells in
the TME in vivo or during experiments with artificial
environments and a defined nutrient composition in vitro are
needed. Of note, in tumors where Th2 cells exert pro-tumor
effects, an inhibition of metabolic pathways used by Th2 cells is
thinkable, vice versa.
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