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Influenza A virus (IAV) has a higher genetic variation, leading to the poor efficiency of
traditional vaccine and antiviral strategies targeting viral proteins. Therefore, developing
broad-spectrum antiviral treatments is particularly important. Host responses to IAV
infection provide a promising approach to identify antiviral factors involved in virus
infection as potential molecular drug targets. In this study, in order to better illustrate
the molecular mechanism of host responses to IAV and develop broad-spectrum antiviral
drugs, we systematically analyzed mRNA expression profiles of host genes in a variety of
human cells, including transformed and primary epithelial cells infected with different
subtypes of IAV by mining 35 microarray datasets from the GEO database. The
transcriptomic results showed that IAV infection resulted in the difference in expression
of amounts of host genes in all cell types, especially those genes participating in immune
defense and antiviral response. In addition, following the criteria of P<0.05 and |
logFC|≥1.5, we found that some difference expression genes were overlapped in
different cell types under IAV infection via integrative gene network analysis. IFI6, IFIT2,
ISG15, HERC5, RSAD2, GBP1, IFIT3, IFITM1, LAMP3, USP18, and CXCL10 might act as
key antiviral factors in alveolar basal epithelial cells against IAV infection, while BATF2,
CXCL10, IFI44L, IL6, and OAS2 played important roles in airway epithelial cells in
response to different subtypes of IAV infection. Additionally, we also revealed that some
overlaps (BATF2, IFI44L, IFI44, HERC5, CXCL10, OAS2, IFIT3, USP18, OAS1, IFIT2)
were commonly upregulated in human primary epithelial cells infected with high or low
pathogenicity IAV. Moreover, there were similar defense responses activated by IAV
infection, including the interferon-regulated signaling pathway in different phagocyte
types, although the differentially expressed genes in different phagocyte types showed
a great difference. Taken together, our findings will help better understand the
fundamental patterns of molecular responses induced by highly or lowly pathogenic
IAV, and the overlapped genes upregulated by IAV in different cell types may act as early
detection markers or broad-spectrum antiviral targets.
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INTRODUCTION

Influenza A virus (IAV) infection causes severe respiratory
symptoms and persistent morbidity as well as mortality during
annual seasonal or pandemic outbreaks, resulting in a severe
threat to public health and safety, and even huge economic
burden (1). Over the past decade, influenza outbreaks and
pandemics have been caused by different subtypes of IAV,
including H1N1, H3N2, swine-origin H1N1, and highly
pathogenic avian influenza viruses (2–4), suggesting that the
deeper biologic and epidemiologic mechanisms should be
revealed to confidently and accurately predict the next
influenza outbreak. Accumulative evidence has shown that
IAV is capable of eliciting cellular immune response thought
changing the expression of multiple genes in diverse types of
cells, which in turn inhibit IAV infection. Airway epithelial cells
are the preferred location for IAV replication and dissemination,
and IAV infection induced toll-like receptors (TLRs)-related
genes expression in responses to the pathogen (5). Moreover,
other cell types, including endothelial cells, macrophages,
monocytes, dendritic cells, and neutrophils, play important
roles in response to IAV infection (6–10). During IAV
infection, interferon, interferon-stimulated genes, and
cytokines were secreted and activated in epithelial cells and
immune cell types such as macrophages, monocytes,
and neutrophils to facilitate antiviral responses. However, IAV
could also elicit inflammation and cause various disorders of the
respiratory system. Therefore, the systematic comparison of host
responses of various types of cells to a range of strains of IAV still
need to be further investigated.
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Microarray technology with maturity is a powerful tool for the
global view of gene expression levels, and enormous amounts of
genome-wide gene expression microarray studies were distributed
and archived in the gene expression omnibus (GEO) repository at
the National Centre for Biotechnology Information (NCBI) in the
last few decades, providing the chance for investigators revisiting
these data to solve scientific questions. In this current study, we
collected various transcriptomic datasets that were involved in
diverse types of cells infected with subtypes of IAV, in order to
examine common aspects of host cell responses to various subtypes
of IAV infection. By integrating the global gene expression data, our
results suggested that although the differentially expressed genes
involved in host responses might not conform, the similar immune
responses of diverse cell types were triggered by the infection of
different subtypes of IAV.
MATERIALS AND METHODS

Data Preparation
The public gene expression resource of human cells infected with
different IAV subtypes are mainly collected from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/). Totally, after
searching for keywords related to IAV, we selected 35 data
series about IAV for this research (Tables 1–3, and 5). The
normalization of data of target profiles from the GEO database
was performed using the limma package (30) to detect
differentially expressed genes (DEGs). Then, significant DEGs
were obtained using this set of parameters: P value < 0.05 and abs
[log fold change (logFC)] > 1.5.
TABLE 1 | The details of gene expression profiles on A549 cells from the GEO database.

GEO_no. Platforms Cells Strains Hours post-infection (Hpi)

GSE31470 (11, 12) GPL570 A549 A/WSN/33 (H1N1) 10 hpi
GSE31471 (11, 12) GPL570 A549 A/Duck/Malaysia/01 (H9N2) 10 hpi
GSE31472 (11, 12) GPL570 A549 A/Duck/Malaysia/F118/08/2004 (H5N2) 10 hpi
GSE31473 (11, 12) GPL570 A549 A/Duck/Malaysia/F59/04/1998 (H5N2) 10 hpi
GSE31474 (11, 12) GPL570 A549 A/Duck/Malaysia/F189/07/2004 (H5N2) 10 hpi
GSE31475 (11, 12) GPL570 A549 A/Duck/Malaysia/F119/3/1997 (H5N3) 10 hpi
GSE32878 (13) GPL14715 A549 A/WSN/33 (H1N1) 10 hpi
GSE31518 (11, 12) GPL570 A549 A/Singapore/478/2009 (H1N1) 10 hpi
GSE58741 (14) GPL17077 A549 A/WSN/33 (H1N1) 12 hpi
GSE106279 (15) GPL17586 A549 A/Puerto Rico/8/1934 (H1N1) 24 hpi
July 2021 |
TABLE 2 | The details of gene expression profiles on Calu-3 cells from the GEO database.

GEO_no. Platforms Cells Strains Hours post-infection (Hpi)

GSE19580 (16) GPL8432 Calu-3 A/Sharp-Tailed Sandpiper/Australia/6/2004 (H11N9) 6 and 24 h
GSE28166 (17) GPL6480 Calu-3 A/VN/1203/04 (H5N1) 7, 12, and 24 h
GSE33142 (18) GPL6480 Calu-3 A/VN/1203/04 (H5N1) 7, 12, and 24 h
GSE37571 (19) GPL6480 Calu-3 A/CA/04/2009 (H1N1) 7, 12, and 24 h
GSE40844 (17, 19) GPL6480 Calu-3 A/Netherlands/602/2009 (H1N1);

A/California/04/2009 (H1N1)
7, 12, and 24 h
7, 12, and 24 h

GSE49840 (20) GPL17077 Calu-3 A/Anhui/01/2013 (H7N9);
A/Netherland/219/2003 (H7N7);
A/Vietnam/1203/2004 (H5N1);
A/Panama/2007/1999 (H3N2)

7, 12, and 24 h

GSE80697 (21) GPL13497 Calu-3 A/California/04/2009 (H1N1) 7, 12, and 24 h
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Overlap Genes and Functional
Enrichment Analysis
DEGs with abs (logFC) > 1.5 and P value < 0.05 from each data
series were obtained to analyze the overlap genes. Then, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) biological pathway analyses were performed to predict
the functionalities of differentially expressed overlap genes using
the R package clusterProfiler (31). In this study, a Venn diagram,
heatmap, and volcano plot were constructed using R language
and R packages, including VennDiagram (32), ggplot2 (33), and
pheatmap (34).
RESULTS

Host Transcriptional Response to
Influenza Virus Infection on Human
Lung Epithelial Cells (A549)
To illustrate host cell response to influenza virus infection, the global
gene expression profiles from four cell-based time-series gene
expression datasets in A549, a lung epithelial cell known to be
highly susceptible to IAV, were analyzed (Table 1) (11–15).
Matched with the criteria of P<0.05 and |logFC|≥1.5, the Venn
diagram showed that 17 genes (IFI6, IFIT2, HERC5, ISG15, RSAD2,
GBP1, IFIT3, IFNB1, IFITM1, LAMP3, USP18, CXCL10, IER5L,
HAMP, MX2, FERMT3, and ZC3HAV1) were differentially
expressed genes (DEGs) and overlapped in these different
databases (Figure 1A). Then, to further identify whether the
mRNA expression of these genes had the same expression pattern
in different subtypes of influenza virus infection, the databases with
the other subtypes of influenza virus were analyzed and the result
showed that the mRNA expression of 11 overlapped genes (IFI6,
IFIT2, ISG15, HERC5, RSAD2, GBP1, IFIT3, IFITM1, LAMP3,
USP18, and CXCL10) were also remarkably upregulated in A549
cells infected with A/Puerto Rico/8/1934 (H1N1), H5N2, H5N3,
and H9N2 (Figure 1B) compared with mock, respectively. Overall,
these results indicated that IFI6, IFIT2, ISG15, HERC5, RSAD2,
Frontiers in Immunology | www.frontiersin.org 3
GBP1, IFIT3, IFITM1, LAMP3, USP18, and CXCL10 might play
key roles in IAV infection.

Host Transcriptional Response to
Influenza Virus Infection on Human Airway
Epithelial Cells (Calu-3)
Airway epithelial cells are key to regulate pulmonary
inflammatory and immune responses against influenza virus
challenges. To acquire the knowledge on how airway epithelial
cells contribute to the defense against IAV infection, the data
from Calu-3 cells infected with influenza virus strains (H1N1,
H3N2, H5N1, H7N7, H7N9, and H11N9) were collected and
analyzed (Table 2) (16–21). In the Calu-3 cells infected with
H1N1, the results from four transcriptomic datasets (GSE80697,
GSE40844_CA, GSE40844_NL, and GSE37571) showed that
twelve overlapping DEGs containing USP18, RSAD2, IFIT2,
OAS1, MX1, IFI44, MX2, IFIT1, DHX58, IFITM1, IFI44L, and
FOLR2 were identified to have a higher expression compared
with the uninfected cells at 12 h post-infection (hpi). In addition,
at 24 hpi, there were 66 overlapping DEGs (Supplementary File 1)
significantly regulated by IAV (Figure 2A), according to the criteria
of P<0.05 and |logFC|≥1.5. Interestingly, all of those 12 common
DEGs at 12 hpi were also significantly upregulated by IAV infection
at 24 hpi. In addition, hierarchical clustering analysis was used to
assess the expression profiling of the common DEGs in different
samples with different infection time-points in four H1N1 infection
data series, and heatmap diagrams revealed that a large proportion
of the overlapping DEGs mRNA expression exhibited an infection
time-dependent upregulation (Figure 2B). Subsequently, host
transcriptome profiles in Calu-3 cells infected with H5N1 from
GSE28166, GSE33142, and GSE49840 were analyzed. The results
showed that a total of 158 overlapping DEGs were identified in
Calu-3 cells at 12 hpi, while there were 2233 overlapping DEGs at 24
hpi upon H5N1 strains infection following the criteria of P<0.05
and |logFC|≥1.5 (Figures 3A, B). In addition, KEGG pathway
analysis showed that the overlapping genes were mainly
concentrated on type I interferon-mediated signaling and host
response to the virus at 12 hpi, while the genes related with the
TABLE 3 | The details of gene expression profiles on epithelial and endothelial cells from the GEO database.

GEO_no. Platforms Cells Strains Hours post-infection (Hpi)

GSE19392 (22) GPL3921 Human bronchial epithelial cells (HBECs) A/PR/8/34 (H1N1) 18 h
GSE24533 (23) GPL6244 Human type I-like alveolar epithelial cells A/HK/415742/2009 (H1N1);

A/HK/54/1998 (H1N1)
8 h

GSE30723 (24) GPL570 Human type II-like alveolar epithelial cells A/PR/8/34 (H1N1) 24 h
GSE41475 (25) GPL16163 Primary human airway epithelial cells CA09 (H1N1);

TN09 (H1N1);
BSB07 (H1N1);
IT95 (H1N1)

24 h

GSE48466 (26) GPL570 Well-differentiated primary human bronchial epithelial cells (wd-NHBE) A/BN/59/07 (H1N1);
A/KY/180/10 (H1N1);
A/KY/136/10 (H1N1)

36 h

GSE65699 (27) GPL10558 Human retinal pigment epithelium cell line (RPE) A/WSN/33 (H1N1) 10 h
GSE13637 (28) GPL570 Human umbilical vein endothelial cells (HUVEC) PR8 (H1N1);

FPV (H7N7);
H5N1

5 h

GSE59226 (29) GPL570 Human umbilical vein endothelial cells (HUVEC) H9N2 24 h
July 2021 |
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FIGURE 1 | The common gene expression in A549 cells infected with IAV. (A) The Venn diagram shows the overlapping genes in 4 H1N1-infected datasets, 17
genes were common to the 4 H1N1-infected groups; (B) Volcano plots showing differentially expressed genes for H1N1, H9N2, H5N3, and H5N2-infected A549
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steroid biosynthetic process and adaptive immune response were
enriched in H5N1-infected Calu-3 cells at 24 hpi (Figures 3A, B).
Moreover, hierarchical clustering analysis showed that a large
proportion of the overlapping DEGs mRNA expression exhibited
an infection time-dependent upregulation in three H5N1 infection
data series (Figure 3C).Additionally, H3N2, H7N7, H7N9, and
H11N9-induced gene expression profiles at 24 hpi were overlapped
to identify 15 upregulated genes (IFNB1, IL6, CMPK2, IL28A,
IFIT3, IL29, RSAD2, MX2, IFI44, IFIT2, IFIH1, IFIT1, IFI44L,
CXCL10, BATF2) following the criteria of P<0.05 and |logFC|≥1.5
(Figures 4A–E). Furthermore, integration of the overlapping DEGs
regulated with the six subtypes of influenza virus at 24 hpi identified
eight overlapped genes (BATF2, IFNB1, IL28A, IL29, IFIT2,
CXCL10, IFI44L, and IL6) that were significantly overexpressed in
IAV-infected Calu-3 cells.

Host Transcriptional Response to
Influenza Virus Infection on Human
Primary Epithelial Cells and
Endothelial Cells
To further illustrate the effect of transcriptome alteration in
influenza virus infection on human respiratory tract epithelial
Frontiers in Immunology | www.frontiersin.org 5
cells, we analyzed gene expression profiles of influenza virus-
infected primary epithelial cells (Table 3) (22–29), including
primary human bronchial epithelial cells (HBEC), well-
differentiated human bronchial epithelial cells (wd-NHBE),
human primary airway epithelial cell, human type I-like
alveolar epithelial cells, and human type II-like alveolar
epithelial cells, all of which were infected by H1N1 influenza.
As above, matching the criteria of P<0.05 and |logFC|≥1.5, in
total 17 overlapping genes (IFI44L, IFI44, HERC5, OASL,
CXCL10, MX2, CXCL11, OAS2, XAF1, IFIT3, USP18, IFIH1,
OAS1, DDX58, MX1, IFIT2, and IFIT1) were identified to be
significantly increased with influenza virus infection in all
human primary epithelial cells (Figures 5A–D) and these
commonly responsive genes were largely related with
interferon-stimulated response. To identify whether other
strains of influenza virus also induced the same response in
other epithelium and endothelial cells lines, human retinal
pigment epithelium cell line (RPE) and human umbilical vein
endothelial cells (HUVEC) were infected with other subtypes of
influenza virus (H7N7, H5N1, and H9N2) and the genome-wide
gene expression pattern of infected cells was analyzed. The
results showed that 14 of 17 overlapping genes (IFI44L, IFI44,
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FIGURE 3 | The common gene expression from three different data series in Calu-3 cells infected with H5N1. (A) A Venn diagram of the overlap genes between
different data with 12 hpi. A total of 158 genes were common to the four H5N1-infected Calu-3 cells at 12 hpi; KEGG pathways of differentially expressed overlap
genes. The vertical axis shows the number of genes, and the horizontal axis shows the GeneRatio. (B) A Venn diagram of the overlap genes between different data
with 24 hpi. In total, 2233 overlapped genes were common to the four H5N1-infected Calu-3 cells at 24 hpi. KEGG pathways of differentially expressed overlap
genes. The vertical axis shows the number of genes, and the horizontal axis shows the GeneRatio. (C) Heatmap of differentially expressed patterns of the overlap
genes in IAV-infected Calu-3 cells. Row represents the overlap genes and each column corresponds to a sample.
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HERC5, OASL, CXCL10, MX2, OAS2, XAF1, IFIT3, USP18,
IFIH1, OAS1, IFIT2, and IFIT1) in primary epithelial cells were
remarkably upregulated in H1N1, H7N7, H5N1, and H9N2-
infected RPE or HUVEC (Figures 6A–C), indicating that these
overlapped DEGs may play key roles in regulating epithelium
cells response against IAV infection. Moreover, we found that
BATF2 could be significantly upregulated with H1N1 and other
strain infections in all collected datasets of human primary
epithelial cells and endothelial cells, expect one dataset
(GSE19392) where the BATF2 gene was not included in the
microarray platform (Table 4). Overall, our results suggested
that a similar host response was induced by different influenza
strains in human epithelial and endothelial cells, regardless of
high or low pathogenicity.
Frontiers in Immunology | www.frontiersin.org 6
Host Transcriptional Response to
Influenza Virus Infection on Phagocytes
Phagocytes containing monocytes, macrophages, dendritic cells,
and neutrophils are critical in the recognition, engulfment, and
destruction of invading pathogens. To uncover the antiviral
activities of phagocytes against different subtypes of influenza
viruses, the transcriptome analysis of gene expression profiles
was performed in human phagocytic cells (PBMC, monocytes,
macrophages, pDC, and neutrophils) that were infected with
different subtypes of influenza viruses, including H1N1, H5N1,
and H7N7 (Table 5) (24, 27, 35–41). Following the criteria
of P<0.05 and |logFC|≥1.5, 12 genes (C19orf66, IL6, HESX1,
IFNB1, IFITM3, ISG20, ISG15, HERC5, IFIT1, CCL8, IFIT2, and
CXCL10) were overlapped and upregulated in H1N1-infected
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FIGURE 4 | Fifteen overlap genes were identified to significantly upregulate in H3N2, H7N7, H7N9, and H11N9-infected Calu-3 cells. (A) Venn diagram of the
overlap genes; (B) Volcano plots of the overlaps between mock and H3N2-infected cells; blue and red dots indicate significantly downregulated and upregulated
genes, respectively. (C) Volcano plots of the overlaps between mock and H7N7-infected cells; blue and red dots indicate significantly downregulated and
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monocyte-derived macrophages and primary alveolar
macrophages (Figure 7A). Moreover, BAFT2 was also
significantly increased in multiple data series of macrophages,
except GSE27702 where the BATF2 gene was not included in the
microarray platform. On the side, 29, 54, and 35 overlapped
DEGs were significantly regulated in H1N1-infected monocytes,
monocyte-derived DCs, and neutrophils, respectively
(Supplementary File 2), and further Gene Ontology (GO) and
Venn diagram analysis showed that H1N1 infection triggered a
stronger host response with an elevated expression of cytokines
and interferons signaling molecules in phagocytic cells, which in
turn blocked IAV infection (Figures 7B–D). Five common genes
(OASL, IFIT3, RSAD2, HERC5, and IFIT1) identified in
macrophages were also found to be upregulated in monocytes,
monocyte-derived DCs, and neutrophils infected with H1N1.

In addition, to illustrate whether there was a similar response
of phagocytes to other subtypes of influenza A virus infection,
the globe gene expression profiles of avian H5N1 and H7N7-
infceted monocytes and monocyte-derived macrophages were
Frontiers in Immunology | www.frontiersin.org 7
analyzed. The Venn diagram revealed that a total of 125 different
expression genes were found to overlap in the avian flu-infected
cells (Figure 8A). Moreover, the results of GO and KEGG
pathway analysis showed that the overlap genes were mainly
concentrated on cytokine-mediated signaling, type I interferon-
mediated signaling, defense response to virus, and necroptosis
(Figures 8B, C). A similar antiviral response, including the type I
interferon-mediated signaling pathway, cytokine signaling pathway,
and antiviral defense in H1N1-infceted phagocytes was also induced
in human phagocytes during highly or lowly pathogenic influenza
virus infection, although an overlapped gene was not found in
H1N1, H5N1, and H7N7-infceted phagocytes.
DISCUSSION

Host defense responses elicited by IAV are critical to protect
the host against IAV. However, the mechanisms underlying how
the host response is activated among IAVs was not fully
A B

C D

FIGURE 5 | The overlap regulation gene expression of diverse primary epithelial cells in response to H1N1 infection. (A) Volcano plots of the overlaps between
mock and H1N1-infected human bronchial epithelial cells. The vertical dashed lines correspond to 1.5-fold up and down expression and the horizontal dashed line
represents a p-value of 0.01. Blue and red dots indicate significantly downregulated and upregulated genes, respectively. The 17 overlapped genes identified in
different IAV subtype infections are exhibited in the Volcano plots. (B) Heatmap of the overlaps in mock or H1N1-infected human type I-like alveolar epithelial cells.
Row represents the overlap genes and each column corresponds to a sample; (C) heatmap of the overlaps in mock or H1N1-infected primary human airway
epithelial cells. Row represents the overlap genes and each column corresponds to a sample; (D) heatmap of the overlaps in mock or H1N1-infected well-
differentiated primary human bronchial epithelial cells. Row represents the overlap genes and each column corresponds to a sample.
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FIGURE 6 | The overlap regulation gene expression of epithelium and endothelial cells lines in response to IAV infection. (A) Volcano plots of the overlaps between
mock and the H1N1-infected human retinal pigment epithelium cell line. The vertical dashed lines correspond to 1.5-fold up and down expression and the horizontal
dashed line represents a p-value of 0.01. Blue and red dots indicate significantly downregulated and upregulated genes, respectively. The 13 overlapped genes
identified in different IAV subtype infections are exhibited in the Volcano plots. (B) Volcano plots of the overlaps between mock and H9N2-infected human umbilical
vein endothelial cells. The vertical dashed lines correspond to 1.5-fold up and down expression and the horizontal dashed line represents a p-value of 0.01. Blue and
red dots indicate significantly downregulated and upregulated genes, respectively. The 13 overlapped genes identified in different IAV subtype infections are exhibited
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TABLE 4 | The mRNA expression of the BATF2 gene infected with influenza virus.

GEO_no. Cells Strains BATF2 mRNA expression (logFC)/P-value

GSE19392 Human bronchial epithelial cells (HBECs) A/PR/8/34 (H1N1) No value*
GSE24533 Human type I-like alveolar epithelial cells A/HK/415742/2009 (H1N1);

A/HK/54/1998 (H1N1)
0.82/0.029
1.21/0.004

GSE30723 Human type II-like alveolar epithelial cells A/PR/8/34 (H1N1) 3.83/3.63E-07
GSE41475 Primary human airway epithelial cells CA09 (H1N1);

TN09 (H1N1);
BSB07 (H1N1);
IT95 (H1N1)

2.4/1.73E-08
1.75/2.4E-07
2.9/1.67E-10
3.09/9.62E-09

GSE48466 Well-differentiated primary human bronchial epithelial cells (wd-NHBE) A/BN/59/07 (H1N1);
A/KY/180/10 (H1N1);
A/KY/136/10 (H1N1)

4/7.94E-13
5.69/3.01E-14
5.38/5.05E-14

GSE65699 Human retinal pigment epithelium cell line (RPE) A/WSN/33 (H1N1) 2.42/5.06E-21
GSE13637 Human umbilical vein endothelial cells (HUVEC) A/PR/8/34 (H1N1);

A/FPV/Weybridge (H7N7);
A/Thailand/1(KAN-1)/2004 (H5N1)

5.22/3.39E-09
3.76/6.83E-08
3.96/4.3E-08

GSE59226 Human umbilical vein endothelial cells (HUVEC) A/Chicken/Hebei/4/2008 (H9N2) 3.96/1.33E-05
Frontiers in Im
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understood. In this study, we collected and analyzed a large
amount of gene expression data of different host cells infected
with different subtypes of IAV. We found that IAV infection
could affect host response and generate special differentially
expressed genes in the distinct cell lines. And then we
identified some upregulated genes (IFIT2, HERC5, and
BATF2) that may exhibit antiviral activities in different cell
types against IAV infection. Moreover, with the available data
collections from distinct types of cells with different strains of
IAV infection, we compared gene expression difference and the
potential response difference of distinct types of cells to
IAV stains.

Epithelial cells are the primary targets of IAV infection and can
produce a protective environment by continuously secreting
antiviral substances to initiate defense responses against
infection. Many studies have shown that epithelial cells could
produce many host cellular restriction factors in response to IAV
infection (42). We summarized gene expression profiles of
different human epithelial cells including human lung epithelial
cells (A549), human airway epithelial cells (Calu-3), primary
human bronchial epithelial cells (HBEC), well-differentiated
human bronchial epithelial cells (wd-NHBE), human primary
airway epithelial cells, human type I-like alveolar epithelial cells,
and human type II-like alveolar epithelial cells. The results showed
that various subtypes of IAV infection affected the amount of
differentially expression genes, mainly involved in the interferon
signaling pathway and cytokine and chemokine signaling pathway
in different epithelial cells. But some overlapped genes (IFIT2,
HERC5, and BATF2) were found to upregulate during different
subtypes of IAV infection.

Interferon-induced protein with tetratricopeptide repeats 2
(IFIT2) is an interferon-stimulated gene (ISG) with a possible
RNA-binding capacity and acts as an important restriction factor
for many viruses, including rabies virus, Sendai virus, mouse
hepatitis virus, hepatitis B virus, West Nile virus, and influenza
virus (43–48). However, recent genome-wide knockout screens
provided a novel proviral function of IFIT2, and knockout of
IFIT2 remarkedly reduced diverse influenza viruses infection by
decreasing the translational efficiency for viral mRNA and IFIT2-
Frontiers in Immunology | www.frontiersin.org 9
bound mRNAs. The influenza virus hijacked IFIT2 to
preferentially bind viral mRNAs and prevent ribosome pausing
for increasing viral replication (49).

HERC5, an interferon-induced HECT E3 enzyme was
identified to upregulate in distinct cell types infected with
different subtypes of IAV and might potentially play an
important role for IAV replication. Existing research has
revealed the antiviral activity of HERC5 against IAV;
knockdown of HERC5 weakens IFN-beta-induced antiviral
activities against IAV. HERC5 activated the ISGylation system
by catalyzing conjugation of ISG15 onto IAV-NS1 proteins,
leading to ISG15 modification of NS1 protein and blocking of
the nuclear import of the NS1A protein (50, 51). In addition, our
result that HERC5 acts as a key antiviral factor in IAV infection
was in accordance with the result of a previous report, which
identified HERC5 as a potential novel biomarker for the
treatment of IAV by employing weighted gene co-expression
network analysis (WGCNA) (52). Moreover, we found that
although some microarray platforms did not include the
BATF2 gene owing to the design of the array, the mRNA
expression of BATF2, a member of AP-1 family transcription
factor (53), was still significantly upregulated in multiple cells
infected with different subtypes of IAV. BATF2 was proved as an
antibacterial gene and was able to induce inflammatory
responses in lipopolysaccharides and mycobacterium
tuberculosis infection (54). IFNg induced high levels of BATF2
mRNA expression to downregulate trypanosoma cruzi-induced
IL-23 production in innate immune cells by blocking the
recruitment of the c-JUN-ATF-2 heterodimer to the IL23a
promoter and preventing the formation of the c-JUN-ATF-2
complex, and IFN-g–induced BATF2 expression plays a key role
for controlling Th17-mediagted immune responses during
trypanosoma cruzi infection (54). In addition, BATF2 was
broadly highly expressed in multiple tissues, including the
spleen, lung, small intestine, cecum, and large intestine, and
IFN-g–induced BATF2 also disturbed T cell-mediated intestinal
inflammation through the regulation of the IL-23/IL-17 axis
that was associated with intestine inflammation (55). Previous
studies reported that BATF2 was a proapoptotic gene and
TABLE 5 | The details of gene expression profiles on phagocytes from the GEO database.

GEO_no. Platforms Cells Strains Hours post-infection (Hpi)

GSE27702 (35) GPL571 Monocyte-derived macrophages A/PR/8/34 (H1N1);
A/FPV/Weybridge (H7N7);
A/Thailand/1(KAN-1)/2004 (H5N1)

5 h

GSE30723 (24) GPL570 Primary alveolar macrophages A/PR/8/34 (H1N1) 4 h
GSE62127 (27) GPL10558 Monocyte-derived macrophages A/WSN/33 (H1N1) 8 h
GSE79854 (36) GPL10558 Monocyte-derived macrophages A/WSN/33 (H1N1) 6 h
GSE35283 (35) GPL570 Monocytes A/PR/8/34 (H1N1);

A/FPV/Weybridge (H7N7);
A/Thailand/1(KAN-1)/2004 (H5N1)

5 h

GSE35473 (37) GPL6884 Monocytes A/PR/8/34 (H1N1) 6 h
GSE41067 (38) GPL10558 Monocyte-derived DCs A/New Caledonia/20/1999 (H1N1) 8 h
GSE66486 (39) GPL10558 PBMC A/CA/4/2009 (H1N1) 8 h
GSE68849 (40) GPL10558 Monocyte-derived DCs A/PR/8/34 (H1N1) 8 h
GSE100865 (41) GPL16686 Neutrophils A/Kawasaki/UTK-4/2009 (H1N1);

A/Mexico/4108/2009 (H1N1)
6 h
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overexpression of BATF2 could lead to inhibition of DNA
binding activation protein (AP1), which causes growth
inhibition and induces apoptosis particularly in cancerous cells
(53). Additionally, BATF2 could dephosphorylate phosphor-
STAT3 to promote DUSP2 expression and upregulate of NF-
kB activity, and could also be modified by N6-methyladenosine
(m6A) to suppress its expression (56, 57). During feline
infectious peritonitis virus (FIPV) infection, BATF2 showed
continuous high expression and might be an important
regulation factor of the death stages of infected cells (58). Our
Frontiers in Immunology | www.frontiersin.org 10
transcriptome analysis also showed that BATF2 was significantly
increased in distinct cell types with IAV stains infection,
indicating that it will be increasingly interesting to illustrate
the role of BATF2 during IAV infection.

In conclusion, we demonstrated the gene expression pattern
and molecular responses of distinct cells types among different
subtypes of IAV infection. In general, IAV strains triggered a
similar defense response among distinct cells types via the
production of various antiviral cytokines and interferon-related
genes, although few overlapped genes were present in distinct
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cells types. We identified that IFIT2, HERC5, and BATF2 might
act as key antiviral factors to regulate IAV infection, but the
molecular regulatory mechanisms of IFIT2, HERC5, and BATF2
involved in IAV infection still need to be validated.
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