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The breakdown of immunological tolerance leads to autoimmune disease, and the
mechanisms that maintain self-tolerance, especially in humans, are not fully
understood. Genome-wide association studies (GWAS) have identified hundreds of
human genetic loci statistically linked to autoimmune disease risk, and epigenetic
modifications of DNA and chromatin at these loci have been associated with
autoimmune disease risk. Because the vast majority of these signals are located far
from genes, identifying causal variants, and their functional consequences on the correct
effector genes, has been challenging. These limitations have hampered the translation of
GWAS findings into novel drug targets and clinical interventions, but recent advances in
understanding the spatial organization of the genome in the nucleus have offered
mechanistic insights into gene regulation and answers to questions left open by GWAS.
Here we discuss the potential for ‘variant-to-gene mapping’ approaches that integrate
GWAS with 3D functional genomic data to identify human genes involved in the
maintenance of tolerance.

Keywords: genome-wide association studies, single nucleotide polymorphism, autoimmunity, multi-omics, immune
tolerance, variant-to-gene mapping
INTRODUCTION

Immune tolerance is established through clonal deletion during development of the immune
repertoire, and is reinforced in the periphery through cell-intrinsic and -extrinsic mechanisms that
limit activation and differentiation. Breakdown of central or peripheral tolerance can lead to
autoimmunity (1), thus understanding the molecular and cellular mechanisms that control
tolerance promises opportunities to therapeutically reprogram the immune system to treat
inflammatory disease. The study of rare spontaneous or engineered monogenic mutations in the
mouse have contributed significantly to our understanding of tolerance and autoimmunity.
However, autoimmune disease in humans is relatively common, and the genetics of
predisposition is complex, polygenic, and heavily influenced by environmental factors. Hundreds
of genetic loci influencing susceptibility to various autoimmune and inflammatory disorders have
been discovered by genome-wide association studies (GWAS) in humans, and in many cases have
confirmed mouse models and yielded novel insights into mechanisms underpinning disease (2).
Despite this, the identity of causal variants and their target genes remain largely unknown because
variants rarely alter protein coding sequences. Instead, approximately 90% of immune disease-
associated variants are located in non-coding regions, and integration of GWAS with cis-regulatory
org April 2021 | Volume 12 | Article 6332191
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element annotations in immune cell types has shown that ~60%
map to immune cell enhancers (3–8). Identification of causal
variants and their target genes are the next, necessary steps for
understanding the molecular mechanisms by which genetic
variation regulates immune tolerance, and for identifying new
drug targets for treating autoimmune disease. This perspective
discusses cellular and molecular mechanisms involved in the
breakdown of immunological tolerance, as well as the potential
of functional genomic approaches to define target genes in
specific immune cell types to better understand the mechanism
of autoimmunity.
MAINTENANCE OF IMMUNOLOGIC
TOLERANCE IN HUMANS AND ITS ROLE
IN AUTOIMMUNITY

Central tolerance takes place in the thymus and bone marrow
through apoptotic deletion of autoreactive lymphocytes. Without
negative selection, T and B cells respond to self-antigens and
attack self-tissues, resulting in autoimmune pathologies (9–12).
Autoreactive lymphocytes that escape negative selection in the
primary lymphoid organs are normally held in check by
additional, peripheral tolerance mechanisms that operate to
dampen activation in secondary lymphoid tissues. The
discovery of regulatory T cells (Tregs) represents a
fundamental advance in our understanding the cellular basis of
immune tolerance in the context of autoimmunity,
transplantation, and cancer (13). The monogenic immune
disorder IPEX (Immunodysregulation, Polyendocrinopathy,
Entereopathy, X-linked syndrome) provides an example of a
breach in tolerance in which mutations in the forkhead box P3
(FOXP3) gene leads to loss of Treg and/or their function (14, 15).
A recent study used the combination of deep flow cytometric and
single-cell RNA-seq profiling of Tregs and conventional CD4+ T
cells from IPEX patients to identify gene signatures associated
with IPEX (16). Using CRISPR-Cas9 genome editing, Goodwin
et al. modified the FOXP3 gene in human hematopoietic stem
cells to enhance the stability of FOXP3 expression and the
suppressive capacity in Tregs (17). A similar gene editing
approach in a mouse model resulted in the generation of
“super Tregs” capable of resolving the severe inflammation in
IPEX-like disorders by modulating the chromatin modifier Brg1
(18). Studies of monogenic disorders like IPEX could lead to new
biomarkers and therapeutic strategies for managing polygenic
autoimmune disorders. Dysregulation of the IL-1B,
inflammasome-related proteins (NLR genes), and type-I
interferon pathway represent additional mechanisms known to
contribute to the loss of self-tolerance (19, 20), and need to be
further studied to understand the role of dysregulated tolerance
in human autoimmunity disease.

In contrast to monogenic diseases, autoimmune disorders
such as systemic lupus erythematosus (SLE), rheumatoid
arthritis (RA), multiple sclerosis (MS), and type 1 diabetes
(T1D) are heritable diseases involving more than one gene and
cell type in their etiology. Immune dysregulation observed in
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patients include enhanced activation of autoreactive Th1 and Th17
CD4 cells (21, 22), CD8 suppressor T lymphocytes targeting self-
antigens in the CNS (23, 24), defective regulatory T cells (25–27),
autoreactive B cells (28, 29), and aberrant T lymphocyte signaling
and cytokine production (30–34). Given the complexity and
heterogeneity associated with polygenic autoimmune disease,
there is a need for better therapeutic approaches that specifically
target pathogenic mechanisms. Understanding the specific cell
types and functions dysregulated in autoimmune disease offers
the potential for new drug targets and therapeutic approaches (35,
36). Tregs have been shown to be defective in the autoimmune
disease settings, and ex vivo-expanded Tregs isolated from T1D
patients have been used in phase I clinical trial as adoptive
immunotherapy in T1D. In this trial expanded cells were found
to retain their phenotype, TCR diversity, and functional capacity in
patients for long periods (37). A transcriptomic study conducted in
SLE patients showed that gene signatures associated with interferon
signaling is significantly dysregulated (38), although current efforts
targeting IFN in SLE have not been successful. A more recent study
in this field profiled six major immune types in SLE patients by
single-cell RNAseq and found a unique set of genes in monocytes,
including two well-known immune modulators for SLE and RA
therapeutics (TNFSF13B/BAFF: belimumab and IL1RN: anakinra,
respectively) (39). A single cell transcriptomic study in Crohn’s
patients revealed a gene program associated with inflamed tissue,
consisting of genes expressed by plasma cells, inflammatory
mononuclear phagocytes, and activated T cells (40). These
cutting-edge approaches are changing our appreciation of the
complexity and heterogeneity of autoimmune disorders, and are
helping to discover new therapeutic strategies and identifying new
therapeutic biomarkers.
COMPLEX GENETICS AND EPIGENETICS
OF THE LOSS OF IMMUNOLOGIC
TOLERANCE IN HUMANS

Genetic predisposition and epigenetic modifications are
implicated in the loss of tolerance and autoimmunity, and
emerging genomic technologies are enabling comprehensive
interrogation of genetic variants that contribute to
autoimmune disease risk. Genome-wide association studies
have implicated hundreds of loci in disease susceptibility,
many of which are disease-specific. However, a number of risk
loci are shared across multiple diseases, suggesting the
involvement of common pathways associated with the loss of
tolerance. The MHC locus is genetically associated with all
autoimmune diseases (41, 42). Much of this linkage is thought
to be driven by HLA coding polymorphisms that affect self-
peptide binding, however, this region contains over 200 genes,
and high polymorphism and linkage disequilibrium across the
locus presents technical challenges for identifying risk alleles and
alternative causal genes. CTLA4 has been linked with T1D (43)
and auto-antibody positive RA (44). This immunoglobulin
superfamily member is expressed on the surface of
conventional and regulatory T cells that transmits an
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inhibitory signal for T cell activation and strips costimulatory
ligands from antigen presenting cells. A non-synonymous
variant in PTPN22 was shown to be associated with many
autoimmune diseases, including T1DM, RA, SLE and Graves
disease (45–47). The risk variant in PTPN22 gene affects the
binding of lymphoid phosphatase (LYP) to the signaling
suppressor SRC kinase and ultimately affects the signaling
pathways during T cell and B cell receptor response.

Several approaches have been used to map autoimmune
disease variants to effector genes in recent years. The advent of
the Illumina Infinium SNP Immunochip has helped to fine map
many autoimmune GWAS loci including SLE. In a study of
lupus, researchers used a random forest machine learning
method to integrate Immunochip genotyping and T and B cell
RNA-seq analysis from SLE patients and healthy control
subjects, identifying three novel genes (ZNF804A, CDK1,
and MANF) that were not previously been associated with SLE
or any other autoimmune disorder (48). To functionally validate
the allele specific expression pattern of 3,000 genes identified by
genotype data from the Immunochip, an eQTL analysis was
performed in B and T cells from healthy donors which leads to
the involvement of cis-regulatory SNPs in gene regulation.
Conclusively, six SLE associated genes found to be regulated by
cis-rSNPs were IKZF1, NCF2, IL12A and TNIP1 in B cells and
ANK3, and PHRF1 in T cells (48). The combination of machine
learning and allele-specific transcriptome analysis represents a
valuable tool for validation of target genes associated with disease
risk and offers a functional follow-up strategy to test these
molecular targets under clinical settings.

A growing body of work links epigenetic modifications in
immune cells with autoimmune disease risk. Epigenetic
processes like DNA methylation and histone modification
contribute to the expression of genes associated with disease
(49, 50), and characterization of epigenetic factors could provide
deeper insight into the onset and progression of disease. An
example is the association of SLE with perturbed DNA
methylation, a process that influences expression of cytokines
like IL-2, IFN-gamma, IL-4 and IL-13 (51–53), and the Treg
transcription factor FOXP3 (54). Naïve T cells from SLE patients
exhibit global hypomethylation due to decreased DNMT1
activity (55), with specific genes such as CD11a (ITGAL),
perforin (PRF1), CD70 (TNFSF7), and CD40LG (TNFSF5)
showing decreased DNA methylation (56). In addition, altered
DNA methylation patterns at STAT3, IL6 and CXCL12 has been
associated with RA pathogenesis (57), and expression of the
epigenetic enzymes DNMT1, MBD3 and MBD4 were found to
be decreased in systemic sclerosis patients. The latter was
associated with increased expression of CD40L, CD11a,
and CD70 (58). As these epigenetic modifications alter gene
expression programs of immune cells, epigenetics-based drugs
and editing tools are emerging as a promising therapeutic option
to restore healthy epigenetic landscapes under disease settings.

Integration of transcriptomic and epigenomic data with
GWAS data provides a genome-scale view of the potential
function of autoimmune risk variants in disease relevant cell-
types. The Encyclopedia of DNA Elements (ENCODE) database
has been used to corelate known genetic variants with histone H3
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lysine 4 tri-methylation (H3K4me3) marks to identify cell types
associated with particular autoimmune disease. Examples are
studies that colocalized 31 RA-associated SNPs with H3K4me3
marks in CD4+ T cells (59), and colocalization of RNA-seq and
ChIP-seq signals for the H3K4me1 and K3K27Ac enhancer
marks in neutrophils and CD4+ T cells with JIA-associated
variants in patients (60). Yuen et al. used publicly available
ENCODE and Roadmap Epigenomics data generated in CD4+
T cells and B cells along with the ChIP-seq data generated in
human neutrophils to examine the “epigenetic landscape” of SLE
SNPs in a cell type-specific manner in adult immune cells (61).
To identify whether immune disease variants regulate activation
and differentiation, researchers profiled chromatin accessibility
by ATAC-seq along with active enhancers and promoters by
ChIPmentation-seq analysis in naïve and memory CD4+ T cells
and macrophages. Using a newly developed statistical SNP
enrichment method (CHEERS), the authors provided a
comprehensive view of epigenetic mark enrichment at immune
disease variants under specific activation and polarization
conditions (62). The advent of single-cell genomics and gene
editing technologies like CRISPR will allow functional validation
of regulatory variants that influence immune tolerance and
localize their effects to specific immune cell subsets.
STATISTICAL LINKAGE OF AUTOIMMUNE
RISK VARIANTS WITH TOLERANCE
GENE EXPRESSION

GWAS identifies large blocks (10–1,000 kb) of the genome that
contain hundreds or thousands of SNPs, any of which could be
causal (63), and colocalization studies like those described above
have helped to identify potentially regulatory SNPs at GWAS loci.
However, the vast majority of disease-associated SNPs and their
associated epigenomic features are not located in gene promoters,
and therefore the genes they regulate are not known. cis-eQTL
(expression quantitative trait loci) analyses have been used to
statistically link gene expression with SNP genotype. Most large
eQTL studies so far have used peripheral blood expression data
(64–67), and have linked ~42% of autoimmune sentinel SNPs to
expression of a gene at the locus. A number of studies have shown
that causal SNPs (e.g., in celiac disease and rheumatoid arthritis)
disrupt transcription factor binding sites (68–70) and massively
parallel reporter assays have identified SNPs that affect the activity
of regulatory elements (69). However, the majority of autoimmune
loci lack eQTL support, likely due to use of data from
undifferentiated and/or non-activated immune cells, as
colocalization studies show that risk SNPs are enriched for
functional marks mainly in stimulated and differentiated cell
types (3). Using RNA-seq data collected from PBMC of 629
healthy patients, Ricano-Ponce et al. performed conditional cis-
eQTL mapping and implicated 233 causal genes (e.g., IL6, CXCR4,
BCL-XL, MYC), including 53 long non-coding RNAs, from 120
loci associated with 14 autoimmune disorders (64). Another study
linked 39 lupus-associated variants to genes through the
integration of GWAS and eQTL data from TwinsUK microarray
April 2021 | Volume 12 | Article 633219
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and exon-level RNA-seq cohort in lymphoblastoid cell lines. This
study identified novel, SLE-associated splice variants and novel
candidate SLE eGenes, including SOCS1, CSK, and the
transcription factor IKZF2 involved in Treg stabilization during
inflammatory responses (71, 72). Importantly, these studies
showed that more than half of the associated genes were not
those nearest to the candidate SNP.
BIOPHYSICAL LINKAGE OF
AUTOIMMUNE VARIANTS TO
TOLERANCE GENES THROUGH
CHROMOSOME CONFORMATION-
BASED APPROACHES

The human genome is organized in three-dimensional (3D)
space in the nucleus into active and inactive compartments
(73). Within active compartments, chromatin is organized into
loops that can connect long-range regulatory elements with
distant gene promoters. Recent high-throughput approaches
for measuring the 3D structure of the genome in cells have
provided new insights into global genome organization and the
role of chromatin topology in genome function and dysfunction
in health and disease. Two examples are studies by Jung et al. and
Javierre et al. using a low-resolution Capture-HiC approaches to
map the interactomes of ~18,000 human gene promoters in 27
human tissue/cell types (74), and ~30,000 promoter
Frontiers in Immunology | www.frontiersin.org 4
connectomes in 17 hematopoietic cell types (75). Genomic
regions caught interacting with promoters were enriched for
open chromatin, active histone marks, and disease-associated
SNPs and eQTLs. Both studies were able to detect cell-type
specific regulatory architectures, and the latter study also
assembled a set of core genes connected to SNPs associated
with multiple autoimmune disorders into an “autoimmune
network” (75). Importantly, both studies found that less than
10% of disease-associated SNPs were connected to the nearest
gene, further emphasizing that one cannot assume that risk SNPs
(or other genomic features) regulate their nearest gene.
Significant associations have been found between complex
traits and gene deserts (>500 kb of genomic region which
either lack protein coding sequence or annotated gene) which
suggests that disease causing SNPs can affect gene expression by
altering transcription factor binding to long-distance regulatory
elements (76–78). Thus, integrating complexity of 3D genome
into functional validation of GWAS studies can help uncover
new insights in autoimmune disease pathogenesis.

In a more recent study, Su et al. used the combination of
high-resolution promoter-Capture-C and ATAC-seq to map
regulatory SLE variants to their target genes (79). Importantly,
this study focused on follicular T helper cells (TFH) ‘caught in
the act’ of helping B cells to produce antibodies in human
tonsil. Unlike undifferentiated T cells or cell lines commonly
used for these types of genome-scale studies, TFH play an active
role in generating the pathogenic auto-antibodies characteristic
of SLE, and represents a highly relevant target tissue for
FIGURE 1 | From genome to function: Graphical depiction of a pipeline leveraging genetic and epigenetic datasets to connect auto-immune disease associated
variants to their target genes with focus toward drug development and repurposing. Genome wide association studies (GWAS) can identify multiple common genetic
variants that confer risk for various diseases (as shown by Manhattan plot) including auto-immune disorders, but which variants are causal and which genes are
involved remains largely unknown. Expression quantitative trait locus (eQTL) studies, high-resolution analysis of epigenomic and spatial organization can connect
potentially functional SNPs with expression of putative disease genes in relevant cell types. Disease pathway exploration and experimental validation may lead to
drug development and repurposing efforts.
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functional genomic analyses. This study identified ~400
accessible SLE variants connected to a network of 330 genes
enriched for high expression in TFH and roles in T cell
differentiation, humoral immunity, systemic autoimmune
disorders , rheumatic disease , and type 1 diabetes .
Remarkably, the physical SLE SNP-gene linkages measured in
this one cell type confirmed one out of three linkages
established statistically (eQTL) in a prior study (8). CRISPR/
CAS9 genome editing validated novel SLE-associated
regulatory elements that regulate TFH and SLE genes like
BCL6, CXCR5, and IKAROS. A separate study combined
the SNPs associated with 19 autoimmune diseases with
cell-specific multi-omics approaches to develop an epigenetic
weighted scoring method to evaluate the functionality of
all noncoding autoimmune SNPs. The analysis also suggested
long-range chromatin interactions between functional SNPs
and distal target genes, highlighting the unique regulatory roles
of noncoding SNPs associated with autoimmune diseases (80).

In addition to revealing the disease-associated regulatory
architectures of known autoimmune genes, spatial maps of
variant accessibility and gene connectivity in immune cell
types can be used to identify novel genes involved in tolerance
and autoimmunity. For example, the study by Su et al.
highlighted a set of genes identified by virtue of their physical
connection to SLE variants that had no prior known role in lupus
or TFH function. Two of these genes encode the kinases HIPK1
and MINK1, and genetic or pharmacologic inhibition of their
function in human TFH cells resulted in reduced secretion of IL-
21, a signature TFH cytokine required for class-switched
antibody production by B cells. Targeting of HIPK1 in TFH
reduced expression of the SLE genes PTPN22, IL6R, IL2R,
BACH2, and PD1 (79). The coalescence of state-of-the-art,
genome-scale 3D-omic data from relevant immune cell types
holds promise to further our basic understanding of the
mechanisms that control immune tolerance, and point to novel
targets for therapeutic intervention to treat and/or prevent
autoimmune and inflammatory disorders (Figure 1).
Frontiers in Immunology | www.frontiersin.org 5
CONCLUSION

Detailed characterization of the functional effects of autoimmune
disease-associated genetic variation on gene expression and
immune cell function is of paramount significance to our
understanding of immune tolerance. Interpreting SNP-trait
associations requires integration of functional information
from resources and repositories such as Genotype-Tissue
Expression (GTEx), ENCODE, the Epigenomics Roadmap
Project, and focused variant-to-gene (V2G) mapping
studies like those described here. To overcome challenges
like co-regulation of multiple genes and tissue heterogeneity,
techniques must be fine-tuned to identify the most specific
drug targets and biomarkers. Single-cell transcriptomic
(scRNA-seq) and epigenomic (scATAC-seq) approaches
offer the potential to dissect the contributions of cell, SNP,
gene, and functional heterogeneity to immune disease. Tools
for detecting and analyzing global genetic and epigenetic
diversity are continuously evolving, and are on track
to revolutionize our understanding of normal immune
development and function, immune dysregulation and the
breakdown of tolerance, and targets for new therapeutics to
treat inflammation.
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