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One of the main targets for the use of phytogenics in aquafeeds is the mucosal tissues as

they constitute a physical and biochemical shield against environmental and pathogenic

threats, comprising elements from both the innate and acquired immunity. In the present

study, the modulation of the skin transcriptional immune response, the bacterial growth

capacity in skin mucus, and the overall health condition of gilthead seabream (Sparus

aurata) juveniles fed a dietary supplementation of garlic essential oil, carvacrol, and

thymol were assessed. The enrichment analysis of the skin transcriptional profile of fish

fed the phytogenic-supplemented diet revealed the regulation of genes associated to

cellular components involved in the secretory pathway, suggesting the stimulation, and

recruitment of phagocytic cells. Genes recognized by their involvement in non-specific

immune response were also identified in the analysis. The promotion of the secretion

of non-specific immune molecules into the skin mucus was proposed to be involved in

the in vitro decreased growth capacity of pathogenic bacteria in the mucus of fish fed

the phytogenic-supplemented diet. Although the mucus antioxidant capacity was not

affected by the phytogenics supplementation, the regulation of genes coding for oxidative

stress enzymes suggested the reduction of the skin oxidative stress. Additionally, the

decreased levels of cortisol in mucus indicated a reduction in the fish allostatic load due to

the properties of the tested additive. Altogether, the dietary garlic, carvacrol, and thymol

appear to promote the gilthead seabream skin innate immunity and the mucus protective

capacity, decreasing its susceptibility to be colonized by pathogenic bacteria.

Keywords: SALT, innate immunity, stress, aquaculture, Vibrio infection, teleost fish skin mucus, phytogenic
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INTRODUCTION

Fish infectious diseases are one of the main constraints of the
aquaculture sector, representing a serious economic, social, and
environmental challenge for the industry (1). Since fish farmers
depend on high survival rates and healthy animals, strategies
to improve their performance, immune status, and welfare are
highly demanded for supporting health management practices
that positively impact in the final revenue of the fish farm. On
this basis, the development of functional feed additives designed
to physiologically support fish to cope with pathogenic and other
external challenges intrinsic to aquaculture rearing conditions,
represents a promising tool to be implemented in a sustainable
and environmentally-responsible aquaculture industry (2).

Functional feeds containing essential oils, one of most
commonly used group of phytogenics in aquafeeds, have
received increased attention during these last years due to their
antimicrobial, immunostimulant, antioxidant, anti-stress, and
growth-promoting properties (3–5). Besides essential oils being
repeatedly demonstrated to stimulate both humoral and cellular
components of the fish innate immunity (6), numerous have
been also shown to display a noteworthy antimicrobial activity
against a wide range of fish pathogens (7, 8), putting them on
the spotlight for the development of sustainable prophylactics.
Particularly, phytogenics derived from garlic (Allium sativum L.,
Alliaceae, Liliaceae), oregano (Oreganum vulgare, Labiateae), and
thyme (Thymus vulgare, Labiateae) are among the most studied
and administrated, due to their recognized health-promoting
properties for aquatic species (6).

One of the main targets for this type of nutritional
strategies is the mucosal tissues, due to their importance in the
protection against the immediate contact with the environment
and potential pathogens. Besides acting as a physical barrier,
the mucosal layer also offers a biochemical shield, in which
elements from both the innate and acquired immunity are
present (9). In particular, the fish skin mucus represents
the largest mucosal barrier with its whole epidermis directly
exposed to the environment. It is responsible for the first
line of defense against external threats, determining pathogen
adhesion to the epithelial surfaces (10, 11). Furthermore,
skin mucus participates in important physiological processes
like osmoregulation, swimming, sensory reception (12), and
ecological intra and interspecific interactions (11). Additionally,
the fish skin is also characterized by its active mucosal immunity,
containing a skin-associated lymphoid tissue (SALT), which is
able to respond in case of infection (12, 13). In fact, the immune
response described in fish skin against antigen stimulation is
similar to other mucosa (14). That immune response involves
the secretion of innate immune molecules and the action of
specialized cells [(15) and references therein].

Therefore, the improvement of both the epidermal mucus
composition and the SALT response to environmental stressors
including infective agents by means of dietary tools such as
functional feed additives, represents a promising approach for
preventing bacterial-induced pathologies in farmed fish. In this
context, the aim of the present study was to evaluate the
inclusion of a functional feed additive composed by a blend of

garlic essential oil, carvacrol, and thymol (the main bioactive
compounds of Labiateae plants essential oils) in a standard on-
growing diet for gilthead seabream (Sparus aurata), assessing
its effects on the skin transcriptional response, pathogenic
bacterial growth capacity in skin mucus, and fish overall health
condition. This species was chosen since it is the most important
marine farmed fish species in the Mediterranean with an annual
production of 85,385.1 t in 2018 and an economic value of
502,398,000 US$ (16); thus, improving health management
strategies based on sustainable dietary approaches for this farmed
species is of relevance for this growing industry.

MATERIALS AND METHODS

Diets and Fish Rearing
Juveniles of gilthead seabream were purchased from a
Mediterranean fish farm (Piscicultura Marina Mediterránea
S.L., Andromeda Group, Valencia, Spain) and on-grown at
IRTA–Sant Carles de la Ràpita facilities for research purposes
(17). Before the onset of the trial, fish were individually measured
in body weight (BW) and standard length (SL) to the nearest
0.1 g and 1mm, respectively (BW = 40.3 ± 0.1 g; SL = 12.0 ±

0.2mm). Then, 150 juveniles were randomly distributed among
six 450 L tanks (25 fish per tank; initial density = 2 kg m−3;
three replicate tanks per experimental group) connected to an
IRTAmar R© system working under an open-flow regime.

Fish were fed two experimental diets, one devoid of the
functional feed additive (control diet) and a second one
supplemented with 0.5% of a microencapsulated functional
additive containing synthetic garlic essential oil, carvacrol, and
thymol (AROTEC-G R©, TECNOVIT-FARMFAES, S.L., Spain).
Both diets were tested in triplicate tanks and administered
for a period of 65 days. Fish were hand-fed two times per
day at the daily rate of 3.0% of the stocked biomass, which
approached apparent satiation. The control diet was formulated
with high levels of marine-derived protein sources (30% fishmeal,
2.5% soluble protein concentrate—CPSP 90 R© and 2.5 krill
meal), containing 46% crude protein, 18% crude fat, and
21.5 MJ/kg gross energy (Table 1). Both tested experimental
diets were formulated to fulfill the nutritional requirements
of juvenile gilthead seabream for summer conditions (18).
Diets were manufactured by Sparos Lda. (Olhão, Portugal). In
particular, main ingredients were ground (below 250µm) in a
micropulverizer hammer mill (SH1; Hosokawa Micron, B.V.,
Doetinchem, The Netherlands). Powder ingredients and oils
were then mixed according to the target formulation in a paddle
mixer (RM90; Mainca, S.L., Granollers, Spain). All diets were
manufactured by temperature-controlled extrusion (pellet sizes:
2.0mm) by means of a low-shear extruder (P55; Italplast, S.r.l.,
Parma, Italy). Upon extrusion, all feed batches were dried in a
convection oven (OP 750-UF; LTE Scientifics, Oldham, UK) for
4 h at 45◦C.

The nutritional assay was performed under natural
photoperiod (August–September), with daily monitoring of
the water temperature (25.1 ± 1.5◦C, range: 22.6–28◦C), oxygen
(6.8± 1.7mg/L;>80% saturation) (OXI330, Crison Instruments,
Barcelona, Spain) and pH (7.5 ± 0.01) (pHmeter 507, Crison
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TABLE 1 | Formulation of the control diet used during the nutritional assay.

Ingredients Control diet (%)

Fishmeal 70 LT FF Skagen 20.0

Fishmeal CORPESCA Super Prime 10.0

CPSP 90 2.5

Squid meal 2.5

Soy protein concentrate (Soycomil) 5.0

Wheat Gluten 5.0

Corn gluten 8.0

Korfeed 60 4.5

Soybean meal 48 8.0

Rapeseed meal 4.0

Sunflower meal 3.0

Wheat meal 7.0

Whole peas 2.5

Fish oil–COPPENS 9.0

Soybean oil 1.5

Rapeseed oil 2.5

Vitamin and mineral Premix PV01 2.0

Soy lecithin–Powder 2.0

Antioxidant powder (Paramega) 0.4

Dicalcium phosphate 0.6

Proximate composition, % in dry basis

Crude protein 46.2

Crude fat 18.4

Gross energy (MJ/kg) 21.5

Instruments). Salinity (35‰) (MASTER-20 T; ATAGO Co. Ltd,
Tokyo, Japan), ammonia (0.13 ± 0.1mg NH+

4 /L), and nitrite
(0.18 ± 0.1mg NO−

2 /L) levels (HACH DR9000 Colorimeter,
Hach R©, Spain) were weekly measured.

Sampling
At the end of the trial, all fish were anesthetized (buffered
150 mg/L MS-222, Sigma-Aldrich, Madrid, Spain) and
measured for individual body weight and standard length
(BWcontrol diet = 157.8± 14.2 g and SLcontrol diet = 17.3± 0.6 cm;
BWsupplemented diet = 150.8± 14.9 g and SLsupplemented diet = 17.1
± 0.6 cm) as published in (17). Then, eight fish from each tank
(n = 24 per dietary treatment) were randomly selected and skin
mucus sample collected following the method described in (19).
In brief, skin mucus was collected from the over-lateral line of
anesthetized fish in a front to caudal direction using sterile glass
slides, and mucus was carefully pushed and collected in a sterile
tube (2mL), avoiding the contamination with blood and/or
urine-genital and intestinal excretions. The above-mentioned
procedure lasted <2min in order to avoid the degradation
of mucus metabolites. Mucus samples were homogenized
using a sterile Teflon pestle to desegregate mucus mesh before
centrifugation at 14,000 × g during 15min at 4◦C. The resultant
mucus supernatants were collected, avoiding the surface lipid
layer, aliquoted, and stored at −80◦C for further analysis. For
transcriptional analysis purposes, other four fish were randomly

selected from each tank (n = 12 fish per dietary treatment) and
euthanized with an anesthetic overdose. A ca. 1 cm2 section of
the skin from the mid region of the body over the lateral line of
the right side from each fish was dissected, and the muscle tissue
attached to it removed. Samples were immersed in RNAlaterTM

(Invitrogen, Thermo Fisher Scientific, Lithuania), incubated
overnight (4◦C) and stored at−80◦C for further RNA extraction.

Skin Transcriptomic Analysis
RNA Isolation and Quality Control
Total RNA from the skin of twelve randomly selected fish
per dietary treatment was extracted using the RNeasy R©

Mini Kit (Qiagen, Germany). Total RNA was eluted in a
final volume of 35 µL nuclease-free water and treated with
DNAse (DNA-freeTM DNA Removal Kit; Invitrogen, Lithuania).
Total RNA concentration and purity were measured using
Nanodrop-2000 R© spectrophotometer (Thermo Scientific, USA)
and stored at −80◦C until analysis. Prior to hybridization
with microarrays, RNA samples were diluted to 133.33
ng/µL concentration, checked for RNA integrity (Agilent 2100
Bioanalyzer; Agilent Technologies, Spain) and selected by
the criteria of a RIN value >8.5. Three different pools of
samples per dietary treatment were established (n = 4 fish
each pool).

Microarray Hybridization and Analysis
Skin transcriptional analysis from both experimental groups
was carried out using the Aquagenomics Sparus aurata
oligonucleotide microarray v2.0 (4 × 44K) (SAQ) platform.
Detailed information and transcriptomic raw data are available
at the Gene Expression Omnibus (GEO) public repository at
the US National Center for Biotechnology Information (NCBI),
accession numbers GPL13442, and GSE162504, respectively.
The sampling labeling, hybridization, washes, and scanning
was performed as described in (19). Briefly, a one-color
RNA labeling was used (Agilent One-Color RNA Spike-In
kit; Agilent Technologies, USA). RNA from each sample pool
(200 ng) was reverse-transcribed with spike-in. Then, total
RNA was used as template for Cyanine-3 (Cy3) labeled cRNA
synthesis and amplified with the Quick Amp Labeling kit
(Agilent Technologies). cRNA samples were purified using the
RNeasy R© micro kit (Qiagen). Dye incorporation and cRNA
yield were checked (NanoDrop ND-2000 R© spectrophotometer).
Then, Cy3-labeled cRNA (1.5mg) with specific activity >6.0
pmol Cy3/mg cRNA was fragmented at 60◦C for 30min,
and hybridized with the array in presence of hybridization
buffer (Gene expression hybridization kit, Agilent Technologies)
at 65◦C for 17 h. For washes, microarrays were incubated
with Gene expression wash buffers, and stabilization and
drying solution according to manufacturer instructions (Agilent
Technologies). Microarray slides were then scanned (Agilent
G2505B Microarray Scanner System), and spot intensities
and other quality control features extracted (Agilent Feature
Extraction software version 10.4.0.0).

The Search Tool for the Retrieval of Interacting Genes
(STRING) public repository version 11.0 (https://string-db.
org) was used to generate the skin transcripteractome for the
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fish fed the phytogenic-supplemented diet. A Protein-Protein
interaction (PPI) Networks Functional Enrichment Analysis for
all the differentially expressed genes (DEGs) was conducted
with a high-confidence interaction score (0.9) using Homo
sapiens as model organism (17, 20). Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis of all the DEGs obtained were also assessed through
STRING (P < 0.05). In order to confirmmatch of gene acronyms
between both Homo sapiens and gilthead seabream species,
human orthology identification based on gene/protein name
was accessed through the Genecards (www.genecards.org) (21)
andUniprot (www.uniprot.org) databases. Additionally, protein-
protein BLAST (BLASTp) were run (E < 10−7; query cover
> 95%).

Skin Mucus Parameters
Bacterial Growth Assessment in Skin Mucus
Two bacterial fish pathogens were used for the growth
curve assay, Vibrio anguillarum (CECT number: 522T), and
Pseudomonas anguilliseptica (CECT number: 899T) from the
Spanish Type Culture Collection (CECT, University of Valencia,
Valencia, Spain), and the non-pathogenic bacterium for fish,
Escherichia coli (DSMZ number: 423) from the German
Collection of Microorganisms and Cell Cultures (Leibniz
Institute DSMZ, Germany). The two pathogenic bacteria were
cultured at 30◦C for 24 h in marine broth (MB-2216, Becton
and Dickinson, USA) and the E. coli was cultured at 37◦C for
24 h in trypticasein soy broth (TSB, Laboratorios Conda, Spain).
For the culture in skin mucus, bacterial suspension with optical
density (OD) of 0.2 were centrifuged and the pellet resuspended
in sterile PBS, diluted in new growthmedium and adjusted to 106
colony-forming units (CFU) mL−1. Then, to study the bacterial
growth capacity in the skin mucus, aliquots of 100 µL of the
previously cultured bacteria were incubated in 100 µL of skin
mucus (3 pools of 6 individual fish per dietary treatment). In
parallel, 100µL of the same cultured bacteria were also incubated
in 100 µL of its respective culture media, as a positive control.
Triplicates of 100 µL of each fish mucus samples added to 100
µL of culture media were used as negative control and values
subtracted from the bacteria–mucus aliquot results. The bacterial
growth was measured by absorbance at λ = 400 nm every 30min
for 14 h at 25◦C in flat-bottomed 96-well plates using an Infinity
Pro200TM spectrophotometer. Similar temperature values for
bacterial growth cultures (25◦C) and fish rearing (25.1◦C) were
chosen in order to standardize mucus analyses with regard to fish
rearing conditions used in the nutritional trial.

Skin Mucus Metabolites and Cortisol Analyses
Glucose concentration on fish skin mucus was determined by an
enzymatic colorimetric test (LO-POD glucose, SPINREACT R©,
St. Esteve de Bas, Spain) as described in (19). The OD of the
reaction was determined at λ = 505 nm with a microplate
reader and glucose values expressed as µg glucose per mL
of skin mucus. Lactate concentration was determined by an
enzymatic colorimetric test (LO-POD lactate, SPINREACT R©)
following the manufacturer’s instructions but with slight
modifications for fish skin mucus (19). The OD was determined

at λ = 505 nm and lactate values expressed as µg lactate
per mL of skin mucus. Protein concentration of previously
homogenized mucus samples was determined using the
Bradford assay (22) using bovine serum albumin (Sigma
Aldrich, Madrid, Spain) as standard. In particular, mucus
samples or standard solutions (from 0 to 1.41mg mL−1)
were mixed with 250 µL of Bradford reagent and incubated
for 5min at room temperature. The OD was determined
at λ = 596 nm in a microplate reader. Protein values were
expressed as mg protein per mL of skin mucus. Cortisol levels
were measured using an ELISA kit (IBL International, Tecan
Group, Switzerland) following the manufacturer’s instructions
for saliva determinations. Values of OD were determined at
λ = 450 nm with a microplate reader. Cortisol values were
expressed as ng cortisol per mL of skin mucus. All standards
and samples were analyzed in triplicate (methodological
replicates) and spectrophotometric measurements were
conducted with an Infinity Pro200TM spectrophotometer
(Tecan, Männedorf, Switzerland).

Mucus ratios referred to protein (glucose/protein,
lactate/protein and cortisol/protein) were calculated in order to
avoid the putative dilution or concentration derived from mucus
sampling. As an indicator of the metabolic aerobic response, the
glucose/lactate ratio was also calculated (19).

Ferric Antioxidant Power (FRAP) was measured by means
of an enzymatic colorimetric test (Ferric antioxidant status
detection kit, Invitrogen, Thermo Fisher Scientific, Spain),
following the manufacturer’s instructions for plasma, with
minor modifications. Briefly, 20 µL of mucus sample or
standard solutions (from 0 to 1,000µM µL−1 of FeCl2) were
mixed with 75 µL of FRAP color solution and incubated
at room temperature for 30min, in triplicate. The OD
was measured at λ = 560 nm. Antioxidant values were
expressed as nmol FRAP per mL of mucus, and nmol
FRAP per mg of mucus protein. All measurements were
performed with a microplate spectrophotometer reader (Infinity
Pro200TM spectrophotometer).

Statistical Analysis
Differences between growth performance parameters were
analyzed through an unpaired t-test (P < 0.05) with GraphPad
PRISM 7.00 assuming data homoscedasticity. Differences
between skin mucus metabolites and cortisol, and differences in
bacterial growth inhibition between the two dietary treatments
were assessed with SPSS Statistics for Windows, Version 22.0
(IBM Corp, Armonk, NY, USA) through an unpaired t-test (P
< 0.05). Microarrays extracted raw data were imported and
analyzed with GeneSpring version 14.5 GX software (Agilent
Technologies). The 75% percentile normalization was used to
standardize arrays for comparisons and data were filtered by
expression. An unpaired t-test was conducted without correction
to identify those DEGs between both dietary treatments. A P <

0.05 was considered statistically significant. The representation
for the principal component analysis (PCA) and the hierarchical
heatmap were generated using GeneSpring version 14.5
GX software.
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RESULTS

Skin Transcriptomic Profile
Under present experimental conditions, in order to determine
the modulatory effect of the dietary supplementation of a blend
of garlic essential oil, carvacrol, and thymol upon the skin
transcriptome, a microarray-based transcriptomic analysis was
conducted in gilthead seabream. In total, 534 differentially-
expressed genes (DEGs) were found in the skin from both
experimental groups (P< 0.05; Supplementary Table 1). Among
these, 393 genes were up-regulated with 390 belonging to the 1.0–
1.5-fold change (FC) interval. The other 3 DEGs were grouped
in the 1.5 ≤ FC ≤ 2.0 interval. On the other hand, 141 genes
were down-regulated (P < 0.05) and grouped in the range of−1.5
≥ FC ≥ −1.0. Although genes were observed to be mostly up-
regulated in the group fed with the blend of phytogenics (73.6%
of DEGs), gene modulation was moderated in terms of fold-
change intensity (Figure 1A). Common segregation among the
pool samples within the same dietary treatment was observed in
the hierarchical clustering for the skin transcriptomic response
based in similitude patterns of the DEGs response (P < 0.05)
(Figure 1B). The observed differential profile among dietary
treatments is supported by the PCA analysis for the analyzed
samples (Figure 1C).

When considering the complete list of annotated DEGs,
a functional network (transcripteractome) containing 203
nodes was generated (Figures 2, 3), which resulted in 341
interactions (edges). The remaining 331 DEGs, annotated
as unknown genes, were excluded from the analysis. The
enrichment analysis identified in the transcripteractome
two main representative processes that were considered to
encompass the several Gene Ontology (GO) annotations
obtained (Supplementary Table 2), denoted as (a) Transcription
Regulation, and (b) Secretory Pathway.

The “RNA processing” biological process (GO:0006396;
12 up-regulated genes; 14 down-regulated genes) was the
exclusive differentially regulated GO term for the skin of
fish fed the diet supplemented with the additive (Figure 2).
Molecular functions “protein binding” (GO:0005515) and
“protein-containing complex binding” (GO:0044877) were
also obtained.

In order to elucidate the location relative to the cellular
structures in which the DEGs perform their function,
several cellular components were identified in the functional
network, representing the association between them (Figure 3).
The analysis included the, “ribonucleoprotein complex”
(GO:1990904; 10 up-regulated genes; 9 down-regulated genes),
“vesicle” (GO:0031982; 20 up-regulated genes; 20 down-
regulated genes), “transport vesicle membrane” (GO:0030658;
2 up-regulated genes; 5 down-regulated genes), “COPII-coated
ER to Golgi transport vesicle” (GO:0030134; 2 up-regulated
genes; 3 down-regulated genes), “Golgi-associated vesicle”
(GO:000579810; 3 up-regulated genes; 4 down-regulated
genes), “endosome” (GO:0005768; 10 up-regulated genes;
9 down-regulated genes), “vacuole” (GO:0005773; 9 up-
regulated genes; 12 down-regulated genes), “lysosome”
(GO:0005764; 7 up-regulated genes; 7 down-regulated

FIGURE 1 | Skin transcriptomic profile of gilthead seabream (Sparus aurata)

fed a diet supplemented with a blend of garlic essential oil, carvacrol and

thymol. (A) Differential expression analysis of the gilthead seabream skin

transcriptomic response fed a diet supplemented with a blend of garlic,

carvacrol and thymol. (B) Hierarchical clustering for the control and

phytogenic-supplemented diets, based in similitude patterns of the differentially

expressed genes (DEGs) detected from three sample pools per dietary group.

Data of the six microarrays are depicted, one for each represented pool. Both

increased and decreased gene expression pattern is shown in green and red,

respectively. All transcripts represented are statistically significant (P < 0.05).

(C) Principal component analysis (PCA) of the DEGs of gilthead seabream skin

response to the control diet (yellow) and phytogenic-supplemented diet (pink).

Please refers to Supplementary Table 1 for details.

genes), and “proton-transporting two-sector ATPase complex”
(GO:0016469; 1 up-regulated genes; 3 down-regulated genes).

In order to identify the pathways significantly impacted
by the total DEGs obtained, the functional analysis of KEGG
pathways revealed also significant differences in the regulation
of genes associated with “protein processing in endoplasmic
reticulum” (hsa04141; 3 up-regulated genes; 5 down-regulated
genes), “phagosome” pathway (hsa04145; 3 up-regulated genes; 5
down-regulated genes), and “Vibrio cholerae infection” pathway
(hsa05110, belonging to the “infectious disease: bacterial” group;
1 up-regulated gene; 4 down-regulated genes) in the skin of the
group fed with the blend of tested phytogenics (Figure 4 and
Supplementary Table 3).

Additionally, from the total DEGs obtained from the skin
transcriptomic profile of fish fed the phytogenic-supplemented
diet, a set of genes were selected by their involvement in
the “immune system process” (GO:0002376; 12 up-regulated
genes; 5 down-regulated genes). Among the processes related to
immunity, “antigen processing and presentation of exogenous
peptide antigen via MHC class I” (GO:0002479; 1 up-
regulated genes; 2 down-regulated genes), “leukocyte activation”
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FIGURE 2 | Functional biological network of the differentially expressed genes (DEGs) in the skin of juvenile gilthead seabream (Sparus aurata) fed a diet

supplemented with a blend of garlic essential oil, carvacrol, and thymol. Green-shaded nodes represent up-regulated genes and red-shaded nodes represent

down-regulated genes. Graphic keys and network stats: number of nodes = 203; number of edges = 341; average node degree = 3.36; average local clustering

coefficient = 0.4; expected number of edges = 286; PPI enrichment p-value = 0.000807. Gene Ontology (GO) definition, count of DEGs within the biological process

and respective false discovery rate are described in the graphical figure legend (bottom). For details, please refers to Supplementary Table 2.

(GO:0045321; 6 up-regulated genes; 1 down-regulated genes),
“regulation of NIK/NF-kappaB signaling” (GO:1901222; 2 up-
regulated genes; 1 down-regulated genes), “positive regulation
of T cell cytokine production” (GO:0002726; 2 up-regulated
genes; 0 down-regulated genes), and “regulation of T cell
proliferation” (GO:0042129; 2 up-regulated genes; 1 down-
regulated genes) biological processes were highlighted (Figure 5
and Supplementary Table 4).

Bacterial Growth Capacity on Skin Mucus
The transcriptome response arose the modulation of genes
associated to immune processes involved in the response to
infectious bacterial diseases. Thus, we evaluated whether such

response implies a functional protective mechanism against
pathogenic bacterial growth on skin mucus. Considering that our
data registered a specific response to Vibrio, we included in our
analysis the fish pathogen V. anguillarum. In addition, we also
included as control P. anguilliseptica (another pathogenic marine
fish bacteria) and E. coli as non-pathogenic fish bacterium.

When cultured with the skin mucus from fish fed the
phytogenic-supplemented diet, a reduction on the growth of
the pathogenic bacteria V. anguillarum was observed (t-test; P
< 0.05; Figures 6A,B). Growth decrease was recorded between
4 and 14 h of bacterial culture; the most accentuated decrease
in growth values compared with control diet (over 30%)
were found between 8 and 12 h (Figures 6A,B). Regarding
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FIGURE 3 | Functional network representing cellular components related to secretory pathways of the differentially expressed genes (DEGs) in the skin of juvenile

gilthead seabream (Sparus aurata) fed a diet supplemented with a blend of garlic essential oil, carvacrol and thymol. Node colors indicate the cellular component for

each DEG represented. Green-shaded nodes represent up-regulated genes and red-shaded nodes represent down-regulated genes. Graphic keys and network

stats: number of nodes = 203; number of edges = 341; average node degree = 3.36; average local clustering coefficient = 0.4; expected number of edges = 286;

PPI enrichment p-value = 0.000807. Gene Ontology (GO) definition, count of DEGs within the biological process and respective false discovery rate are described in

the graphical figure legend (bottom). For details, please refers to Supplementary Table 2.

P. anguilliseptica, a decline in bacterial growth was observed
in both gilthead seabream skin mucus samples from fish fed
the control and phytogenic-supplemented diets (Figures 6C,D).
However, P. anguilliseptica growth decline was observed to be
more accentuated in the mucus from fish fed the phytogenic-
supplemented diet than in that of the control group at 12–14 h

of culture (t-test; P < 0.05), with a maximum decrease in growth
of 50.2± 1.6% at 14 h (Figure 6D).

Gilthead seabream mucus from both nutritional groups
showed a decrease of E. coli growth during all the culture
period (Figures 6E,F), though the most emphasized bacterial
growth decrease was observed in the initial interval of 4–8 h
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FIGURE 4 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways networks of the differentially expressed genes (DEGs) in the skin of juvenile gilthead

seabream (Sparus aurata) fed a diet supplemented with a blend of garlic essential oil, carvacrol and thymol. (A) Gray cores represent the KEGG pathways significantly

impacted by the DEGs obtained from the skin of fish fed the phytogenic-supplemented diet. Green-shaded nodes represent up-regulated genes and red-shaded

nodes represent down-regulated genes. (B) Nodes colors indicate the KEGG pathways for each DEG represented within the overall transcripteractome. Pathways

description, count of DEGs within each pathway and respective false discovery rate are described in the graphical figure legend. (C) Interactions exclusively among

the DEGs within each KEGG pathway. Nodes colors indicate the KEGG pathways for each DEG represented. Pathways description, count of DEGs within each

pathway and respective false discovery rate are described in the graphical figure legend. Green-shaded nodes represent up-regulated genes and red-shaded nodes

represent down-regulated genes. For details, please refers to Supplementary Table 3.

with decreased growth value of 60.3 ± 2.5%, reducing gradually
(Figure 6F).

Mucus Stress Biomarkers
The skin mucus stress-related biomarkers and their ratios, as
well as the ferric antioxidant power are summarized in Table 2.

The content of soluble protein was not significantly affected by
the functional feed additive (t-test, P > 0.05). However, glucose,
lactate and cortisol levels were observed to be significantly
lower in the mucus of gilthead seabream fed the phytogenic-
supplemented diet (t-test, P < 0.05). No differences among
dietary groups were observed in terms of the ferric skin mucus
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FIGURE 5 | Functional biological network of differentially expressed genes (DEGs) recognized by their involvement in the immune response in the skin of juvenile

gilthead seabream (Sparus aurata) fed a diet supplemented with a blend of garlic essential oil, carvacrol, and thymol. Green-shaded nodes represent up-regulated

genes and red-shaded nodes represent down-regulated genes. Graphic keys and network stats: number of nodes = 30; number of edges = 24; average node

degree = 1.6; average local clustering coefficient = 0.4; expected number of edges = 9; PPI enrichment p-value = 1.25e-05. Gene Ontology (GO) definition, count of

DEGs within the biological process and respective false discovery rate are described in the graphical figure legend (bottom left). For details, please refers to

Supplementary Table 4. Gene description, respective acronym, fold-change intensity (FC), modulation (color scale), and P-value are described (right).

antioxidant power (t-test, P > 0.05). When data on skin mucus
biomarkers were normalized with the protein content of the
sample, only cortisol levels (cortisol/protein) were observed to be
significantly reduced in skin mucus from fish fed the phytogenic-
supplemented diet when compared to the control diet (t-test,
P < 0.05). Metabolic aerobic response, measured in mucus as
glucose/lactate ratio, was neither significantly affected by the
dietary treatment.

DISCUSSION

The fish skin mucosal surface is in direct contact with the aquatic
environment and represents the first line of defense against
external threats, determining pathogen adhesion to the epithelial
surface (10, 12). As a mucosal tissue, the skin is characterized
by its ability to produce mucus, which apart from being an
intrinsic physical barrier, it contains glycosaminoglycans, lectins,
antibacterial enzymes, immunoglobulins, and several structural,

metabolic, stress-related, and signal transduction proteins
[(23–25); among others]. In addition to mucus continuous
secretion and replacement (26), its components provide an
impermeable capacity against most bacteria and other pathogens,
immobilizing them and inhibiting their proliferation before they
can contact epithelial surfaces (10). Importantly, an intimate
crosstalk between skin tissue and its exuded mucus in response
to stimulus has been recently proposed (27), reinforcing the
coordinated response capacity that takes place in this mucosal-
associated lymphoid tissue.

In the present study, we evaluated the protective benefits
of a blend of dietary garlic essential oil, carvacrol, and thymol
on gilthead seabream in terms of skin transcriptome and skin
mucus secretions. The potential increased skin mucus protective
capacity observed in our gilthead seabream fed with phytogenic-
supplemented diet could be attributed to the exudation of a
variety of biologically active substances and several molecules
of the innate and acquired immune system. In fact, many of
them have an already reported biostatic and biocidal activities
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FIGURE 6 | Bacterial growth on skin mucus of juvenile gilthead seabream (Sparus aurata) fed a diet supplemented with a blend of garlic essential oil, carvacrol and

thymol, and a control diet devoid of the feed additive. Mucus samples were obtained from 3 pools of 6 individual fish. Data correspond to the mean ± SEM of

triplicate bacterial growth curves of V. anguillarum (A), P. anguilliseptica (C) and E. coli (E). Gray circles correspond to bacteria growth in medium devoid of mucus;

purple squares correspond to bacteria growth in the mucus of fish fed the control diet; and green rhombus correspond to bacteria growth in the mucus of fish fed the

phytogenic-supplemented diet. Details on the statistical differences in bacterial growth between the experimental dietary groups is provided by the percentage of

decrease in growth of V. anguillarum (B), P. anguilliseptica (D), and E. coli (F). Asterisks indicate significant differences in bacterial growth between dietary groups

(t-test, P < 0.05).

(28). Under this context, our transcriptomic analysis for the skin
revealed that several genes coding proteins potentially involved in
an enhanced skin mucosal protective capacity. For instance, the
H3 Histone Family Member 3A gene (h3f3a) was up-regulated
in the skin of fish fed the phytogenic-supplemented diet.
Histones, full-length proteins and/or fragments, are recognized
antimicrobial molecules (29), which are found in the mucus
of several fish species (30, 31), including gilthead seabream
(32, 33). Calpain 1 (capn1), a non-lysosomal cysteine protease,

was observed to be up-regulated by the functional additive as
well. Several calpain proteins were mapped in gilthead seabream’s
epidermal mucus (34) while its presence in the skin mucus of
cod (Gadus morhua) was suggested to be a key protective element
against V. anguillarum infection (35).

Iron is an essential micronutrient required for most bacteria
to grow; in the host, this metal is associated to iron-binding
proteins, such as transferrin found in fish skin and mucus (23,
30, 32), limiting its availability to invading pathogenic bacteria
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TABLE 2 | Skin mucus stress biomarkers of gilthead seabream fed an

experimental diet supplemented with a blend of garlic essential oil, carvacrol and

thymol, and the control diet devoid of the feed additive (n = 24 per dietary

treatment).

Diet

Control Phytogenics

Skin mucus stress biomarkers

Protein (mg/mL) 16.73 ± 2.22 12.86 ± 1.77

Glucose (µg/mL) 13.43 ± 3.95 6.88 ± 1.63*

Lactate (µg/mL) 9.80 ± 2.62 3.62 ± 1.09*

Cortisol (ng/mL) 3.47 ± 0.85 0.35 ± 0.05*

FRAP (µmol/mL) 1,923 ± 244 1,790 ± 315

Skin mucus stress biomarkers ratios

Glucose/Protein (µg/mg) 0.74 ± 0.16 0.60 ± 0.17

Lactate/Protein (µg/mg) 0.46 ± 0.05 0.31 ± 0.12

Glucose/Lactate (mg/mg) 0.69 ± 0.14 0.77 ± 0.15

Cortisol/Protein (ng/g) 208 ± 48.80 31.85 ± 7.03**

FRAP/Protein (µmol/mg) 114 ± 16.9 139 ± 23.1

Asterisks indicate significant differences between experimental diets (*P < 0.05, **P <

0.01; t-test).

(36). For instance, V. anguillarum iron-uptake system is crucial
for sequestering iron from these proteins and accomplishing
skin colonization and penetration (37). Interestingly, some
genes related with iron metabolism were observed to be down-
regulated in the skin of fish fed the functional diet. In our
transcriptional analysis, the Iron-Responsive Element-Binding
Protein 2 (ireb2) gene was down-regulated in fish fed the
phytogenic-supplemented diet. When cell’s iron levels are low
or depleted, this RNA-binding protein binds to iron-responsive
elements, found for instance in transferrin mRNAs, regulating
the translation and stability of those mRNAs and consequently
regulating iron availability (38). In zebrafish, the increase of
ireb2 expression in spleen was proposed to be linked to an
augmented iron uptake from V. anguillarum (39). Hence, the
down-regulation of ireb2 observed in the skin of fish fed
the phytogenic-diet could be suggesting a decrease in the
cellular iron uptake as a consequence of the reduction of
pathogenic bacteria load in the mucosal tissue. This hypothesis
is supported by the decreased growth capacity for pathogenic
bacteria in skin mucus observed in the fish fed the tested
functional diet.

On the other hand, iron plays an important role in
hemoglobin production. The Hemoglobin Subunit Alpha (hba1)
was up-regulated in the skin of fish fed the phytogenic-
supplemented diet. Hemoglobin functionality is not restricted
to oxygen transport, since it also binds to pathogen-associated
molecular patterns (PAMPs), triggering an immune Toll-like
receptor (TLR)-mediated signal transduction (40). In addition,
the STEAP4 Metalloreductase (steap4) transcripts increased
by the phytogenic-diet. This metalloreductase is involved in
iron and copper homeostasis, playing also a role in the
protection against inflammatory-mediated cellular damage (41).
In Atlantic salmon (Salmo salar) skin, steap4was up-regulated by
dietary phytogenics, which was associated to iron sequestration,

inflammation and an increased protective capacity against lice
infection (42). The hba1 and steap4 up-regulation in the skin
observed in our study may be implicated in a reduction in
iron availability in the skin surface and mucus of fish fed
the phytogenics, hampering pathogenic bacteria growth as
observed in the potential mucus antibacterial capacity observed
in our study.

Fish SALT is characterized by both humoral and cellular
components which intimately communicate to mount an
immune response in which both innate and adaptive defense
mechanisms are involved (15). For instance, the Interferon
Related Developmental Regulator 1 (ifrd1) was up-regulated
by the functional diet. Ifrd1 gene encodes a protein related to
interferon family. In fish is widely recognized by its involvement
in the innate immune antiviral response (43), while it is
also highly expressed in differentiating neutrophils, playing an
important role in neutrophils effector function (44). An increase
of ifrd1 transcripts was observed in the skin of zebrafish (Danio
rerio) infected by Aeromonas hydrophila (45), whereas its up-
regulation was also related to its role in the immediate response
of the fish immune system to stress (46). Moreover, transcripts of
the Complement Factor H (cfh) increased in the skin of gilthead
seabream fed the phytogenic-supplemented diet. CFH, a major
regulator of the complement system, is essential for directing
the complement system toward pathogen-related infections,
since its transcription is induced by lipopolysaccharide (LPS)
(47), whereas it increases the contact between neutrophils
and pathogens, increasing cell’s phagocytosis capacity and
antimicrobial activity (48). CFH is also reputed for protecting
host cells and tissues from the self-innate immunity (49). This
occurs due to the interaction of the factor H with the C3
convertase and the C3b component (50). Although CFH is
predominantly expressed in the liver compared to other tissues
and organs like the muscle, intestine, fins, eyes, and gills (47),
present data indicate that the skin may also play a relevant role
in the regulation of the alternative pathway of complement in
skin secretions. This data is in agreement with different studies
that have identified several complement factors in fish skin
mucus secretions for several species (30, 51), including gilthead
seabream (23, 24).

Our study also revealed that Cathepsin A (ctsa) was up-
regulated in the skin of fish fed the phytogenic-supplemented
diet. An increase in turbot (Scophthalmus maximus) ctsa
expression in skin was described in response to infection
challenges, while ctsa genes microbial binding capacity was also
observed, in which a high affinity to LPS, and a lower affinity to
lipoteichoic acid (LTA) and peptidoglycan (PGN), was suggested
to be implicated in the sensing and phagocytosis of bacterial
pathogens (52). By contrast, in our study the expression of
Cathepsin L (ctsl) was down-regulated. Different cathepsins have
been detected in the mucus of several fish species, which were
observed to exhibit high bacteriolytic activity against several fish
pathogens (53, 54), evidencing their key role in fish mucosal
innate immunity. Fish skin ctsl transcripts were observed to be
significantly up-regulated after challenges with several bacterial
pathogens, including V. anguillarum (54, 55). Moreover, as for
ctsa genes, it was demonstrated that ctsl genes have strong
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in vitro binding capacity to microbial ligands, suggesting an
important role of ctsl in fish mucosal immunity (55). The
different gene expression pattern observed for ctsa and ctsl could
be related to a time-dependent response, as suggested previously
for genes involved in the immune response in fish subjected
to feeding trials (56). The differential expression between both
cathepsins could be also attributed to the mucosal tissue response
specificity. In this way, it has been reported that the same
stimulus may differentially modulate the expression for the same
genes depending of the mucosal tissue evaluated (57). However,
if both genes are linked with the decrease in the bacterial growth
observed at skin mucus deserves further investigations.

Fish professional phagocytes include macrophages,
granulocytes, dendritic cells and B cells, and as for other
vertebrates, phagocytosis in fish is recognized as a critical
component of the innate and adaptive immune responses against
pathogens, known to elicit several antimicrobial mechanisms.
Under this context, the KEGG “Phagosome” pathway obtained
from our functional analysis suggests the modulation of
phagocytic events by the administered phytogenics. For instance,
despite the extracellular roles of cathepsins (58), these proteins
are mainly found in endolysosomal structures where they are
crucial for protein degradation and Major Histocompatibility
Complex (MHC) Class II mediated immune responses (59).
Interestingly, the MHC Class II Alpha gene (mhc-IIa) was
the second most up-regulated gene in the skin of fish fed
the phytogenic-supplemented diet. While MHC-IIa protein
was identified in gilthead seabream skin mucus proteome
(34), the main function of fish MHC Class II molecules
is to present the peptides generated in the endolysosomal
structure on the cell surface of B cells and phagocytes for
their recognition by the CD4+ T cells (60). In fact, the
gilthead seabream acidophilic granulocytes, considered the
main professional phagocytic cell type for this fish species,
were demonstrated to show high mhc-IIa gene expression
(61). Moreover, they have also proved to have phagocytic
activity against bacterial pathogens such V. anguillarum
(62), being able to release antimicrobial peptides into the
phagosome of the ingested pathogenic bacteria (63). The
“leukocyte activation”, “regulation of T cell proliferation”,
and “antigen processing and presentation of exogenous
peptide antigen via MHC class I” biological processes obtained
from our enrichment analysis, might suggest the activity of
acidophilic granulocytes and/or other immune cells in the skin
of gilthead seabream fed the functional diet. Similarly, previous
transcriptional results on the effect of the same functional
feed additive in gilthead seabream mucosal tissues such gills
(17) suggested the recruitment and activation of acidophilic
granulocytes as a consequence of the immunostimulatory effect
of this additive.

The functionality and modulation of genes related to the
“endosome” and “lysosome” cellular components reinforce the
hypothesis of an increased professional phagocytic activity
in the skin of fish fed the phytogenic-supplemented diet.
Among them, Rab-interacting proteins coding genes (rilp,
rab11fip1) were up-regulated. These genes are involved in
several processes like (i) endosomal recycling (64), (ii) endocytic

transport to degradative compartments (65) and (iii) in
the control of membrane trafficking along the phagocytic
pathway (66). In addition, the Microtubule Associated Protein
1 Light Chain 3 Gamma (map1lc3c) was up-regulated. This
autophagy-related protein is involved in the LC3-associated
phagocytosis, in which LC3 is recruited to the phagosome
membrane during phagocytosis of pathogens, enhancing the
fusion between phagosome and lysosomes (67). In fact, fish
epidermal macrophages are characterized by well-developed
endoplasmic reticulum and Golgi areas and several lysosome-like
vesicles and phagosomes (68). Remarkably, the up-regulation of
the MAF BZIP Transcription Factor B (mafb), a myeloid lineage-
specific transcription factor, which expression levels increase
during macrophage differentiation and maturation (69), was also
observed in the skin of fish fed the phytogenic-supplemented
diet. Therefore, the regulation of LC3 proteins-coding genes and
the up-regulation of mafb by the phytogenics might support the
participation of phagocytic cells in the immune response from the
skin observed in our study. The down-regulation of Microtubule
Associated Protein 1 Light Chain 3 Beta (map1lc3b) opens the
possibility to selective and differential mechanisms of activation
aimed to the promotion of the phagocytic activity in response to
phytogenic supplementation.

Garlic, carvacrol, and/or thymol have been several times
described to improve immune cells phagocytic capacity. For
instance, dietary garlic (0.5 and 1% inclusion) enhanced the
activity of head kidney macrophages phagocytic in rainbow trout
(Oncorhynchus mykiss) (70). Similar results were observed for
blood leukocytes of juvenile hybrid tilapia (Oreochromis niloticus
x Oreochromis aureus) fed a 0.5% garlic-supplemented diet
(71). Likewise, carvacrol and thymol supplementation (0.2%) in
juvenile hybrid tilapia’s diet significantly enhanced phagocytosis
of head kidney macrophages (72). The phagocytic activity of
serum leukocytes from common carp (Cyprinus carpio) was
increased due to dietary oregano’s essential oil, which is rich
in carvacrol and thymol, in a dose-dependent manner (73). A
similar enhanced head kidney leukocytes’ phagocytosis was also
found in gilthead seabream fed a diet supplemented with oregano
powder (0.5 and 1%) (74).

Phagocytic events are driven by rearrangements of the actin
cytoskeleton (75). Calponin 2 (cnn2), an actin cytoskeleton-
associated regulatory protein that restricts the pro-inflammatory
activation of macrophages (76), was up-regulated in the skin
by the phytogenics. Similarly, the Actin Beta (actb) gene was
also up-regulated. Actin is commonly found in the mucus of
several fish species, including gilthead seabream (23, 32), which
has led to speculations on its immune function in fish defense.
In fact, ACTB levels were observed to be significantly increased
in sea lice challenged Atlantic salmon (30, 51). In gilthead
seabream, actb expression in skin mucus was favored by a dietary
probiotic administration (24). Furthermore, the extracellular
cytoplasmic actin in insects was observed to bind to bacteria
surface, mediating its phagocytosis and killing (77), suggesting
that actin could be functionally active in fish skin mucus
as well. However, this hypothesis needs further investigation.
In summary, our transcriptional analysis could be indicating
an enhanced phagocyte function in the skin of fish fed the
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phytogenic-diet, which would suggest the promotion of the host’s
defense ability in resisting bacterial infections.

In order to prevent the stable colonization of potential
pathogens, mucus is continuously synthesized, secreted and
replaced (26). This continuous regulation of mucus secretions
represents one of the first barriers against potential pathogens
and toxins (10). Accordingly, our functional analysis determined
the modulation of the KEGG “Protein processing in endoplasmic
reticulum” pathway and several cellular components connected
to the secretory pathway, such as transport vesicles, Golgi-
associated vesicles and vacuoles. The regulation of the secretory
machinery could be supporting the active biosynthesis and
release of immune-related factors on the skin mucus that would
mediate in the response observed in our study. The mucus
secretion is a complex process that represents the endpoint of
the interaction between the innate immune system, endocytosis
and autophagy events, ROS generation and mucin secretion
(78). From the immunological point of view, cytokines, and
chemokines are molecules trafficked in secretory granules and
vesicles through secretory pathways in immune cells (79)
that could be also involved in the response observed. Under
this context, transcripts of the pro-inflammatory cytokine
Interleukin 1 Beta (il-1β) were observed to be increased in
the skin of fish fed the phytogenic-supplemented diet. In
fish, IL-1β is a recognized chemoattractant for leukocytes
(80). Additionally, the Aminoacyl tRNA Synthetase Complex
Interacting Multifunctional Protein 1 (aimp1) gene was also
up-regulated. Secreted AIMP1 possesses inflammatory cytokine
activity responsible for activating monocytes and inducing the
production of pro-inflammatory cytokines, mainly the Tumor
Necrosis Factor (TNF) (81). In accordance, genes that are
activated in response to the pro-inflammatory cytokine TNF,
such the TNF Alpha Induced Protein 2 (tnfaip2) and TNFAIP3-
Interacting Protein 2 (tnip2) were also up-regulated by the
phytogenics in our study. The last inhibits the NF-kB pathway
activation (82), negatively regulating the transcription of other
pro-inflammatory cytokines and, consequently, controlling the
inflammatory response. Thus, such response could be intimately
related with the role of AIMP1 in dermal fibroblast proliferation
and wound repair (83).

Other mediators of the inflammatory response were also
observed to be regulated in the skin of fish fed the phytogenic-
diet. For instance, the Negative Regulator of Reactive Oxygen
Species (nrros) gene expression was increased. The NRROS
protein regulates ROS production by phagocytes during
inflammatory response, allowing phagocytes to produce high
amounts of ROS in case of infection, while minimizing host’s
tissue damage (84). NRROS is also suggested to play a role in the
maintenance of the immune homeostasis through the inhibition
of TLR-mediated MAPK and NF-kB activation (85). Another
negative mediator of the inflammatory response, the NLR Family
CARD Domain Containing 3 (nlrc3) was also observed to be up-
regulated in fish fed the phytogenic-supplemented diet. NLRC3
is known to negatively regulate NLR-mediated inflammatory
responses (86). In several fish species, the overexpression of
nlrc3 was observed to be systematically induced by bacterial
and LPS challenges (87, 88), including in mucosal tissues

(89), demonstrating its important role in the fish innate
immune response and homeostasis maintenance. The DEAD-
Box Helicase 1 (ddx1), reported to enhance NF-kB mediated
transcriptional activation (90) and recently associated to antiviral
responses in fish (91), was also down-regulated in the skin of
fish fed the phytogenic-supplemented diet. Therefore, according
to the overall response observed considering the transcriptomic
profiling of il-1β , aimp1, tnfaip2, tnip2, nrros, nlrc3, and ddx1, the
regulation of these pro- and anti-inflammatory genes suggests an
active cytokine secretion, an immune cell-cell signaling, and the
tight control of such response.

Regardless of its critical function protecting the host, the
skin mucus also represents an important portal of entry for
pathogens since it can provide a favorable microenvironment
for some bacteria, the main disease agents for fish, which
may induce the development of biofilms depending on the
pathogen adhesion capacity (10). Interestingly, the down-
regulation of genes of the KEGG “Vibrio cholerae infection”
pathway was obtained from the analysis of the DEGs of fish
fed the phytogenic-based additive. Although the analysis was
performed using Homo sapiens as model organism, the down-
regulation of several genes of the “Vibrio cholerae infection”
KEGG pathway could also be applied, from a comparative point
of view, to an infection process involving a Vibrio species in
a mucosal tissue, such as V. anguillarum, as a consequence of
the protective effect of the additive. For instance, the down-
regulation of several coding genes for V-type H+ ATPase
subunits (atp6v1c1, atp6v1b1, atp6ap1) in fish fed the phytogenic-
supplemented diet was obtained. The V-type H+ ATPase
complex in endosomes and lysosomes is responsible for the
vesicle import of protons and maintenance of the internal acidic
pH, crucial for degradative enzymes activity (92). Apart from
the “proton-transporting two-sector ATPase complex” cellular
component obtained from our enrichment analysis, the down-
regulation of the above-mentioned genes also figured in the
KEGG “Phagosome” pathway, which could be suggesting a
decreased phagosomal activity at the sampling time evaluated
(65 days of diet administration). Such gene modulation could
be associated to a decrease in skin bacterial pathogens in our
fish fed with phytogenic-supplemented diet. This hypothesis is
in agreement with the results obtained from the bacterial growth
assessment in the epidermal mucus in vitro.

Bacterial growth in gilthead seabream mucus was evaluated
for both dietary groups, control and phytogenic-supplemented
diets, using two pathogenic fish bacteria, V. anguillarum and P.
anguilliseptica, as well as a non-pathogenic fish bacterium, E. coli.
Our study revealed that the tested feed additive reduced bacteria
growth capacity, suggesting an enhanced skin mucus inhibitory
capacity against both V. anguillarum and P. anguilliseptica. The
chosen pathogenic bacteria are widely recognized as disease
causing agents in several fish species (93, 94), including gilthead
seabream (95). The observed reduced growth capacity of V.
anguillarum in the skin mucus of gilthead seabream fed the
phytogenic-supplemented diet is especially relevant because of
the evidence that Vibrio strains exhibit a chemotactic response
to mucus (37). In the last years, disease records indicate
that Vibrio spp. infections are the most common bacterial
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infections in gilthead seabream, mostly reported during the
hatchery phase (96). Besides, P. anguilliseptica is one of the
main agents responsible for outbreaks associated with “winter
disease” in gilthead seabream farming, being considered a more
opportunistic pathogen whose infections in gilthead seabream
usually occur when fish are under environmental stress (97).
The different growth curves behavior of V. anguillarum and P.
anguilliseptica in gilthead seabream mucus may be attributed
to different virulence of pathogenic bacteria, differences in
chemotaxis to skin mucus and adherence capacity.

Our results suggest that the phytogenic-supplemented diet
may reduce the settlement of the studied bacteria in the skin
surface, decreasing the risk of infection. Previous nutritional
studies in which diets containing garlic, carvacrol, or thymol
provided effective mucus antibacterial characteristics against
fish pathogens. For instance, dietary garlic supplementation (5
and 10 g kg-1) was demonstrated to significantly increase skin
mucus antimicrobial activity against several bacterial pathogens
in the freshwater Caspian roach (Rutilus rutilus) (98). A similar
increased bactericidal activity against Photodamselae subsp.
piscicida was observed in the skin mucus of gilthead seabream
juveniles fed diets supplemented with oregano powder (0.5 and
1% inclusion) for 15 and 30 days (74). In addition, an enhanced
skin mucus bactericidal activity against V. parahaemolyticus
and Aeromonas hydrophila was observed in Pacific red snapper
(Lutjanus peru) fed a diet supplemented with a medicinal
plant extract rich in carvacrol and thymol (0.5, 1, and 2%
inclusion) (99). On the contrary, other studies incorporating
Oliveria decumbens, which is rich in carvacrol (18.8 and 52.9%
included in an essential oil and aromatic water fractions,
respectively) and thymol (20.3 and 37.6% included in an
essential oil and an aromatic water fractions, respectively), in
Nile tilapia (O. niloticus) diets reported the absence of changes
in mucus bactericidal activity against Streptococcus iniae. By
contrast, the compounds showed high antibacterial capacity
when evaluated in vitro (100). Similarly, Beltrán et al. (74)
did not find an enhancement of antibacterial activity against
V. anguillarum in the mucus of gilthead seabream fed a diet
supplemented withOriganum vulgare at 0.5 and 1.0%, although a
significant increased bactericidal activity against Photobacterium
damselae subsp. piscicida was observed. The above-mentioned
contradictory results could be a consequence of different factors,
such as different phytogenics and their content in bioactive
compounds, supplementation period of the functional diet,
dietary compounds delivery and bioavailability, or an evidence of
the synergy between the phytogenics tested that might improve
such bactericidal capacity.

Moreover, the E. coli, a non-pathogenic bacterium for fish, was
also used as an indicator of the potential antibacterial capacity of
the skin mucus, neglecting a potentially acquired immunization.
Although no significant differences were observed among the
experimental diets, a decreasing trend in E. coli growth was
observed due to the presence of mucus from both dietary groups
in the culture medium. Interestingly, garlic-supplemented diets
caused a significant increase in the Caspian roach fry skin mucus
antibacterial activity against E. coliwhen compared to the control
group (98). In addition, carvacrol and thymol were reported to
have a bacteriostatic and bacteriolytic in vitro activity against

most Gram positive and negative bacteria, including E. coli (101).
Nevertheless, the absence of an inhibitory response against E. coli
growth in our study could be suggesting the promotion of the
skin innate immunity against fish pathogens (102).

From a physiological perspective, bacterial pathogens such
V. anguillarum are able to elicit strong cortisol-mediated stress
responses when they adhere to the mucosal surface (36). For
this reason, in this current study we also measured classic skin
mucus stress biomarkers in order to establish a correlation
between the gene expression profile, antibacterial response
and the fish physiological status. Therefore, only cortisol was
observed to be significantly reduced in fish fed the phytogenic-
supplemented diet. Although the exact mechanisms involved in
cortisol exudation through fish mucus are still unclear, cortisol
is the main glucocorticoid and the final product of the HPI
axis response to stress, varying considerably among species and
according to the duration and severity of the stressor (103).
Cortisol decrease also favors the fish local mucosal immunity,
promoting more effective defense responses against pathogens
(104). Besides the hypothesized decrease in skin pathogenic
bacteria and its potential impact on cortisol-induced responses,
and vice versa, several phytogenic active substances have been
reported to have sedative properties in fish (105). For instance,
garlic powder inclusion in common carp diet (0.5, 1, and
1.5%) decreased plasma cortisol and glucose levels, mitigating
ammonia stress-induced effects (106). Similar results were
obtained in rainbow trout fed 3% garlic powder supplemented
diets (107). Accordingly, the dietary supplementation of a
similar additive containing garlic and Labiatae plant essential
oils (0.02% inclusion) reduced significantly plasma cortisol
levels in European seabass (Dicentrarchus labrax) challenged
by confinement (108). Although the diet effect on fish stress
response is usually evaluated in blood, a positive correlation
between cortisol levels on plasma and fish mucus was
demonstrated (109, 110) including for gilthead seabream (111).
Therefore, the observed decrease in mucus cortisol may suggest
a decrease in the allostatic load due to the properties of the
phytogenics used in this current study and/or as a consequence
of the promotion of the non-specific innate immunity, although
these two hypotheses are not mutually excluding.

During stress adaptation, cortisol has been suggested as a
signal factor that induces tissue specific molecular programming
in fish (112). Cortisol is able to induce a skin local stress
response in fish (57, 94, 109, 113), which is particularly
characterized by the increase of the secretory activity, related
vesicles, apoptosis (114), and transcriptional alterations (57).
Under this context, the observed changes in mucus cortisol
secretion might be contributing to the obtained secretory-related
transcriptional response as well. Furthermore, since a correlation
between cortisol secretion and skin mucus oxidative stress was
demonstrated (115), a reduction of the skin oxidative stress in
response of an increase in antioxidative power induced by the
tested phytogenics would be also expected. In fact, in our current
study genes coding for antioxidative enzymes were observed
to be up-regulated in the skin of fish fed the phytogenic-
supplemented diet, as for example the Glutathione S-Transferase
Kappa 1 (gstk1). GSTK1 belongs to the as Glutathione S-
Transferase (GST) superfamily of oxidative stress enzymes,
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which are mainly known for their important role in cellular
detoxification (116). GSTs have been used as markers for
fish antioxidative capacity (117), including the evaluation of
phytogenics in aquafeeds (118). Under stress-imposed conditions
or injury, the transcription of skin gst is usually decreased and
associated to immunosuppression in gilthead seabream (33).
The Nuclear Factor Erythroid 2 Like 2 (nfe2l2), an important
transcription factor that positively regulates the expression of
cytoprotective genes (119), and the N-Acetyltransferase 1 (nat1),
known for its participation in the detoxification of drugs and
other xenobiotics (120), were also observed to be up-regulated
by the functional diet. In addition, Heat Shock Protein family
genes (dnajc8, dnajb9, and hspa14) were down-regulated in the
fish fed the phytogenic-supplemented diet. In particular, HSPA14
is member of the Hsp70 family, which proteins levels have
been described to increase in fish under stress or pathological
conditions (121, 122). Therefore, the regulation of these genes is
supporting the involvement of immune cells in the skin response
observed, suggesting a reduction of the skin oxidative stress in
response of the reduced mucus cortisol secretion and/or by the
antioxidative characteristics of the tested phytogenics. In fact, the
inclusion of garlic (106, 123), carvacrol, and thymol (73, 124)
in aquafeeds have been continuously demonstrated to enhanced
fish antioxidant status. In the present study, the epidermal
mucus antioxidant capacity was also measured by mean of the
FRAP analysis (102, 115). Although our transcriptional analysis
revealed the regulation of several markers of oxidative stress,
according to FRAP’s analyses the mucus antioxidant power was
not significantly changed by the tested additive. Our results are
in agreement with some previous studies which reported that
the dietary supplementation of carvacrol and/or thymol-rich
compounds did not affect the skin mucus biochemical contents
or mucus antioxidant status (74, 100).

Collectively, these data clearly suggest a relationship between
the tested phytogenics, the increased skin innate immunity
and a cortisol-mediated response, promoting the overall animal
welfare. In fact, according to the only biological process
significantly regulated among the experimental diets, the RNA
processing biological process, several genes implicated in
ribosomal proteins synthesis (riok1, rcl1, rrp1, nop56, nsa2,
tsr2) were mainly up-regulated in fish fed the phytogenic-
supplemented diet. Since ribosome biogenesis is the cell’s
most costly process in terms of energy expenditure, this
process must be tightly regulated in order to avoid wasted
energy (125). Consequently, the up-regulation of such genes
could be suggesting less stressed cells able to direct their
energy into this process. Since skin from the control group
appear to be more susceptible to be colonized by pathogenic
bacterial strains, it could be spending more energy in defense
mechanisms and bacterial clearance than fish fed the phytogenic-
supplemented diet.

In summary, our analysis of the skin transcriptional profiling
as well as the skin mucus biomarkers and lower pathogenic
bacterial growth capacity revealed a multifactorial response to
the dietary administration of garlic essential oil, carvacrol, and
thymol, mainly through the transcriptional regulation of factors
of the innate immunity and the stimulation of the secretory
pathway. Our results suggest that the phytogenic-supplemented

diet induces the activation of the mucosal immune response that
promotes the secretion of non-specific immune molecules into
the skin mucus, resulting in the decrease of bacterial growth
capacity inmucus. From our transcriptomic enrichment analysis,
the regulation of genes related with the secretory pathway
suggests that the tested phytogenics could be also stimulating
the recruitment of phagocytic cells. The reduction in skin
mucus cortisol is in line with the recognized properties of the
phytogenics. Since the exact mechanisms promoted by the tested
phytogenics were not yet demystified, further analysis should
be made in order to assess the effect of the experimental diet
on skin phagocytes and phagocytosis potential. More efforts
are also needed for determining the impact of the functional
additive on the skin defensive status against other pathogenic
bacteria that threaten the success of aquaculture under intensive
farming regime.
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