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Oxidative stress is a major component of cellular damage in T cells from patients with
systemic lupus erythematosus (SLE) resulting amongst others in the generation of
pathogenic Th17 cells. The NRF2/Keap1 pathway is the most important antioxidant
system protecting cells from damage due to oxidative stress. Activation of NRF2 therefore
seems to represent a putative therapeutic target in SLE, which is nevertheless challenged
by several findings suggesting tissue and cell specific differences in the effect of NRF2
expression. This review focusses on the current understanding of oxidative stress in SLE T
cells and its pathophysiologic and therapeutic implications.
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INTRODUCTION

Oxidative stress might be a central factor in the immunopathogenesis of Systemic Lupus
Erythematosus (SLE) (1). There are data supporting the hypothesis that excessive reactive oxygen
species (ROS) production is, along with many other factors, one of the factors that induce SLE (2).
Indeed, ROS production associates with enhanced apoptosis and might delay clearance of apoptotic
cells, both of which are hallmarks of SLE (3, 4). Apoptotic cells are a source of autoantigens (e.g.,
ribonucleoproteins, DNA), which can be recognized by auto-reactive T cells. Furthermore, apoptotic
cells release danger-associated molecular patterns (DAMPs), DAMPs are danger signals, which induce
inflammatory responses. Therefore, increased auto-antigenic exposure and decreased autoantigen
removal might contribute to autoantibody production and autoimmunity. Peripheral blood
mononuclear cells (PBMCs), T cells and neutrophils are exposed to increased concentrations of
free radicals which leads to aberrant activation of these cells. In addition to this, mitochondrial
dysfunction and ROS production of PBMCs themselves contribute to SLE pathogenesis, while
mechanistic reasons that cause mitochondrial ROS production have not been identified (5). It is
not clear if the chronic inflammation in SLE induces oxidative stress conditions or if ROS production
is vice versa a cause of lupus pathology. Nevertheless, there is mounting evidence for a defective redox
clearance in SLE. Patients with highly active disease show impaired activity of oxidative stress
regulating enzymes, such as superoxide dismutase (SOD) and gluthathione peroxidase (GPX) in
serum and saliva while PBMCs of active SLE patients reveal higher intracellular ROS than those of
healthy controls (6–9). Increased oxygen intermediates have also been identified in macrophages of
lupus mice (10). Therefore, studies even suggest considering assessment of redox status as a serological
marker to evaluate disease activity and nephropathy in SLE (11–13).

Ontheotherhand,ROSproductionhasbeenassociatedwith thepreventionofautoimmunediseases.
A genetically mediated deficiency of ROS production can contribute to initiation of autoimmunity and
can facilitatediseaseprogressing (14).Amissensemutation in thep47phox (NeutrophilCytosolicFactor
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1, NCF1) subunit of NADPH oxidase (NOX) predisposes to SLE
and other autoimmune diseases (15, 16). Mice with a mutation of
Ncf1, which is associated with low ROS production, develop an
accelerated lupus-like disease (16). In addition to this, point
mutations in NCF2 are associated with increased SLE risk (17),
since they reduce NOX activity and NCF-2 deficient or NCF-2
haplo-insufficient mice reveal accelerated lupus disease (18).

To sum up these findings, ROS play an ambivalent role in SLE,
which depends on source, location, amount and most probably
also time-point of their occurrence. As a consequence, balanced
ROS levels are important to sustain an immune equilibrium which
reduces tissue damage and prevents the development of
autoimmunity (19, 20). But how is a redox balance achieved in
our cells? To answer this question, we have to study NRF2, the
main transcription factor of the anti-oxidative stress response.

NRF2

Oxidative stress can activate different transcriptional regulators,
most importantly NRF2. In steady state conditions, NRF2 is
bound in the cytosol by Kelch ECH associating protein 1
(KEAP1), which induces ubiquitinilation and degradation of
NRF2 (21). Different cellular stimuli which induce oxidative
stress result in conformational changes of KEAP1, which foster
the release of NRF2 from KEAP1 followed by NRF2 translocation
into the cellular nucleus and activation of genes containing an
antioxidant response element (ARE) in their promoter regions
(22). NRF2 thereby induces expression of phase II detoxifying
enzymes and antioxidant proteins, which preserve cellular
homeostasis by reducing chemical or oxidative stress molecules.
These proteins include enzymes mediating glutathione (GSH)
synthesis, the thioredoxin enzyme system and detoxifying enzymes
such as heme oxygenases, or NAD(P)H: quinone oxidoreductase 1
(NQO1). In addition to induction of antioxidant genes, NRF2 also
modulates immune responses by regulating transcription of several
others including anti-inflammatory andmetabolic genes in immune
cells (23–26). So, being a critical regulator of cellular oxidative stress
responses and inflammatory reactions, it is not surprising that NRF2
is indispensable to prevent cellular damage and subsequent
inflammation. NRF2 deficient mice have problems to deal with
inflammatory cues and therefore show a more sever phenotype in
inflammation-mediated animal models like experimental asthma
(27), acute lung injury (28), sepsis (29), T cell-mediatedhepatitis (30),
or dextran sulfate sodium-induced colitis (31) and arthritis (32).
There are also several lines of evidence thatNRF2has a central role in
the pathogenesis of SLE. Interestingly, aged female NRF2 deficient
mice are prone to develop an autoimmune condition that closely
Abbreviations: DAMPs, danger-associated molecular patterns; ETC, electron
transport chain; GCLC, Glutamate-Cysteine Ligase Catalytic Subunit; GPX,
gluthathione peroxidase; GSH, gluthathione; GvHD, graft-vs-host disease;
Keap1, Kelch ECH associating protein 1; MDSC, myeloid derived suppressor
cells; mTOR, Mammalian Target of Rapamycin; NCF, Neutrophil Cytosolic
Factor; NK, natural killer; NOX, NADPH oxidase; NQO1, NAD(P)H: quinone
oxidoreductase 1; Nrf2, Nuclear factor erythroid 2-related factor 2; OXPHOS,
oxidative phosphorylation; PBMCs, peripheral blood mononuclear cells; ROS,
rective oxygen species; SLE, systemic lupus erythematosus; SOD, superoxid
dismutase; TCA, trichloroacetic acid.
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resemble human SLE (33). Furthermore, NRF2 deficiency increased
lupusnephritis andTh17cells inB6/lprmice (34).NRF2 furthermore
suppresses Lupusnephritis byneutralizingROSandpreventing renal
damage (35). A recent study revealed thatNRF2 activation promotes
resolution of chronic inflammation in lupus most probably by
repolarization of macrophages and reduction of the IFN signature
(36). In contrast, one study revealed a prolonged lifespan, improved
autoimmunenephritis, and reduced lymphadenopathyof lupusmice
in the absenceofNrf2 (37).However, these effects canbe explainedby
a Nrf2 mediated suppression of the autoimmune accelerating gene
lpr, which is used in this mouse model. It is therefore not clear, how
this study can be transferred to the human SLE disease. With that
regard, Gautam et al. found elevated ROS in SLE specificDCs, which
might be due reduced clearance of ROS related to impaired levels of
NRF2 (6). In addition, the association of the NRF2 -653G/A
polymorphism with lupus nephritis in pediatric-onset SLE has
been described (38). This polymorphism was only associated with
nephritis, while there was no significant association between NRF2
-653G/A polymorphism and susceptibility to SLE. Another study
identified three SNPs and one triplet polymorphism within the
promotor and upstream regions of the NRF2 gene, but no
association between risk of SLE and these polymorphisms.
However, authors state that their analysis is preliminary and only a
small numberofpatientswereobserved (39).Therefore, until nowwe
can only assume the association between Nrf2 polymorphism and
lupus nephritis.

In conclusion, there are several lines of evidence which support the
conclusion that NRF2 activation is beneficial in SLE pathogenesis.
However, it isnot clearwhetherNRF2-by inductionof theantioxidant
machinery - enhances cell survival and reduces apoptosis, which
contributes to the control of systemic inflammation and limitation of
autoimmune responses or by direct cellular mechanism including
transcriptional regulation of inflammatory responses in immune cells.

A very interesting study addressing this question was performed
by Suzuki et al., who analyzed NRF2 in the scurfy mouse model.
These mice lack functional regulatory T cells (Tregs) and therefore
develop mutiorgan-inflammation and autoimmunity at early ages.
Interestingly, while systemic activation of NRF2 by Keap1
knockdown ameliorated tissue inflammation, NRF2 activation via
cell lineage-specific Keap1 disruption (i.e., in T cells, myeloid cells,
and dendritic cells) achieved only partial or no improvement in the
inflammatory status of scurfy mice (40). This suggests NRF2
activation in multiple cell lineages appears to be required for
sufficient anti-inflammatory effects. Our group even observed a
pro-inflammatory effect of NRF2when we specifically deletedNRF2
in Tregs (26). This raises the question if it is beneficial to use NRF2
activation in SLE as a therapeutic intervention. It is therefore
important to first illuminate the exact role of NRF2 critically and
ROS signaling in T cells in SLE.

NRF2 ANDREDOXMETABOLISM IN TCELLS

Redox-dependent signaling pathways are of major importance in
immune cells and specifically in T cells. They control different
functions includingT effector cell differentiation andmigration, cell
cycle progression and inflammation. The role of ROS in T cell
signaling has been intensively reviewed elsewhere (41). We will
April 2021 | Volume 12 | Article 633845
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therefore only give a short overview about the current knowledge in
this field. The production of ROS is enhanced after T cell receptor
stimulation and is necessary for clonal expansion. ROS which is
produced in the mitochondrial electron transport chain (ETC) is
important for the activation ofNFAT, aT cell-specific transcription
factor that facilitates interleukin-2 (IL-2) expression and thus cell
cycleprogression,which results in rapidproliferationof theTcells (42).
However high ROS concentrations result in GSH depletion, since the
murine Glutamate-Cysteine Ligase Catalytic Subunit (GCLC) is not
expressed in murine T cells. GSH depletion negatively affects NFAT
activity, mTOR signaling and MYC protein expression and thus
inhibits T cell proliferation (43). The antioxidant GSH tightly
regulates ROS activity, which thus controls cell cycle progression of
T cells as well as their metabolic properties. The latter ones influence
their differentiation program and as a consequence, the manner of
protective immune responses. Thus, ROS influence metabolic
programming; too much can be detrimental, but if applied correctly,
it is important for protection of the host (19). For metabolic activity,
Tregs rely on oxidative phosphorylation (OXPHOS), which produces
ROSandwhich are also regulatedbyGSH.GSHgeneratedbyGCLC is
indispensable forproperTreg functionand lackofGCLCinTregs results
in autoimmunity (44).

Giving this critical role ofROS inT cells, it is obvious thatNRF2,
which regulates cellular redox homeostasis might also critically
regulate T cell functions. It is known that NRF2 expression is
increased in activated T cells inmice andmen (26, 45, 46), however
the exact role ofNRF2 inT cells remains controversial. Constitutive
activationofNRF2 inTcellswasprotective inamurine acutekidney
injurymodel and involvedhigher frequencies but not total numbers
of intrarenal Tregs, as well as reduced expression of inflammatory
cytokines in CD4+ T cells (47). However constitutive ablation of
NRF2 inT cells ameliorated graft-vs-host disease (GvHD) (46). Again,
a study with human cells indicates that high expression of NRF2 in
CD8+T-cellsmight be protective against chronicGvHD (48). The role
ofoxidative stress inTregs is controverselydiscussed.Mougiakakoset al.
have been reported that Tregs are more resistant to oxidative stress-
induced cell death than conventional T cells (49), while others have
found higher toxicity of free oxygen species in Tregs to, which was
attributed to a diminished NRF2-dependent antioxidant system (50).
The weakness of the NRF2-associated antioxidant system facilitates
Treg apoptosis but nevertheless causes enhanced immunosuppressive
capacitywithin the tumormicroenvironment.Ourownstudyindicates
that NRF2 is a negative regulator of Treg function and that Foxp3
specific activation of NRF2 results in a loss of Foxp3 expression and
spontaneous accumulation of IFN-g producing effector T cells and
spontaneous inflammation (26).

Consequently, NRF2 has shown pro- and anti-inflammatory
potential in T cells in different experimental inflammatory mouse
models. In addition to this, there are differences between the role of
NRF2 in human andmurine T cells. Thus, the exact role ofNRF2 in
T cells and T cell subsets in autoimmunity is not clear.

REDOX METABOLISM IN SLE T CELLS

ROSproduction and cellularmetabolism are intimately linked.More
interestingly NRF2 is also involved in the regulation of different
Frontiers in Immunology | www.frontiersin.org 3
metabolic pathways. For immune cells, NRF2 increased glucose
uptake and mitochondrial function, while reducing ROS in natural
killer (NK)Tcells andmyeloidderived suppressor cells (MDSCs) (25,
51). Immune cells undergo metabolic reprogramming in
autoimmune and autoinflammatory diseases. This is also the case
in SLE, where T cells are hyper-oxidative (52). T cells from SLE
patients differ from activated T cells from healthy persons (53, 54).
Activated T cells mostly use glycolysis and pentose phosphate
pathway to produce ATP and metabolic intermediates. SLE T cells
show a chronically activated phenotype with increased TCA
(trichloroacetic acid) cycle activity, they furthermore depend on
OXPHOS to fulfill their energetic demands (55). It is suggested that
SLE T cells therefore have lower antioxidant capacity with lower
NADPHandglutathione levels (1, 56).This is further indicatedby the
fact that SLE T cells display high oxidative stress (57, 58). Although
SLETcellshaveanenlargedmitochondrialmass, theATPgeneration
from OXPHOS is insufficient compared to healthy person and a
marked leakage of ROS is present in SLE T cells (58). ROS increase
mammalian Target of Rapamycin (mTOR) activity, which is
increased in CD4+ T cells in SLE patients (59). So reduced GSH
levels induce a redox-dependent mTOR activation. CD4+ T cells
from lupus patients show enhanced levels ofmTORactivationwhich
has been mechanistically linked with the disease process (60). As a
consequence, therapeutic interventionswithmTORinhibitors inSLE
patients normalized T cell activation and improved their clinical
disease activity (61, 62).

There seem to be T cell subtype specific regulations that also
need to be considered. Recently, Cailelli et al. identified CD4+ T cells
that are induced by oxidizedmitochondrial DNA-activated pDCs in
SLE patients and accumulate ROS, secrete succinate and produce
IL-10 and IFN-g. By doing so, they provide superb B cell help (63).

This suggests that ROS accumulation plays a pathogenic role in
SLETcells.As a consequence, enhancingNRF2activity and thereby
reducing intracellular redox metabolism could be beneficial.
DISCUSSION

Without a doubt redox metabolism critically regulates function,
proliferation, and apoptosis of T cells. Furthermore, oxidative
stress is a hallmark of SLE pathogenesis and T cells from SLE
patients reveal metabolic aberrations that also involve higher ROS
production. Therefore NRF2, as main transcriptional regulator of
the anti-oxidative stress response and beyond this as regulator of
metabolic and anti-inflammatory actions in immune cells, is most
likely a central player in abnormal SLE T cell function. In line, 509
unique patent applications that define NRF2 pathway as molecular
target and focus on medical conditions such as autoimmunity,
liver, kidney, lung and neurodegenerative diseases have been filed
since 2017 (64). Furthermore dimethyl fumarate (DMF), which
activates Nrf2, is already used clinically to treat inflammatory
diseases. DMF was approved for the treatment of patients with
moderate and severe psoriasis as well as patients with relapsing
remitting multiple sclerosis (65). In addition, there are clinical
trials ongoing with DMF for treatment of inflammatory
conditions, among others cutaneous lupus erythematosus (66).
April 2021 | Volume 12 | Article 633845
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On the other hand, medication currently in use to treat patients with
SLE clearly seems to affect Nrf2 signaling. In particular
corticosteroids, which are first line treatment drugs downregulate
Nrf2 transcriptional activation by direct and indirect means (67–
69). Moreover, Cyclophosphamide, which is used in severe cases
(lupus nephritis and CNS lupus) has severe side effects like
hepatotoxicity and myelosuppression, which can be ameliorated
by activation of NRF2 (70, 71). The same is true for methotrexate,
which is used in lupus arthritis and downregulates the antoxidative
Nrf2 response in the liver (72). On the other hand, mycophenolate
mofetile is increasingly used in SLE and preserves the Nrf2 system
in the liver as well as in the kidney, which might contribute to the
broad therapeutic tolerability of the drug (73, 74). Finally,
hydroxychloroquine also preserves the Nrf2 antioxidative system
(75). Nevertheless, the described effects have mainly been shown in
other systems than T cells and the immune system (liver, kidney
and cancer models) and therefore we can only speculate on their
effects on immune functions. Although it is well established that
NRF2 has anti-inflammatory effects, the cellular mechanism and
cell-specific actions are still not fully elucidated. Several
controversies exist regarding the ambivalent role of ROS
production in autoimmune diseases and the pathogenic effects of
ROS are supposed to be dependent on threshold, location, and time.
Furthermore, the cellular compartment seems to be of importance.
While a global NRF2 activation is beneficial in autoimmune
diseases, it is not clear if NRF2 has anti-inflammatory roles
specifically in T cells (Figure 1). Future experiments might focus
Frontiers in Immunology | www.frontiersin.org 4
on T cells and T cell subtype specific roles of NRF2. Noticeable, SLE
T cells display an altered redox metabolism. N-Acetylcysteine
reversed glutathione depletion and thereby blocked mTOR
activation in T cells and improved disease activity in SLE patients
(76). One main problem of SLE patients is their susceptibility to
infections. The use of glucocorticoids as immunosuppressive
therapy increases this risk. Instead of completely blocking and
suppressing the immune system a tight modulation of
inflammation while preserving the cells’ overall functionality
would be much more desirable to treat autoimmune diseases.
Therefore, a therapeutic control of NRF2 activity might be a
starting point to influence Redox metabolism in SLE T cells, but
in-depth analysis of pathways and possible side-effects is
absolutely necessary.
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FIGURE 1 | While systemic NRF2 activation can ameliorate pathogenesis, the exact role in T cells is not clear. (A) Oxidative stress is involved in SLE pathogenesis.
Due to increased free radicals or a weak antioxidant system, SLE patients reveal high levels of oxidative stress which leads to cell damage and apoptosis.
Subsequent release of autoantigens can enhance autoantibody formation and contribute to tissue damage. Tissue damage again can enhance oxidative stress.
Several lines of evidence indicate that activated NRF2 can break the vicious circle by inducing anti-oxidative responses. (B) SLE T cell are hyper-oxidative. SLE T
cells prefer the use of OXPHOS, which reduces NADPH and GSH pools, that are normally filled up during glycolysis and pentose phosphate pathway (PPP).
In addition, they reveal a marked leakage of ROS during OXPHOS. High ROS levels induce mTOR activation. It is not clear, if NRF2 is not sufficiently activated
or somehow fails to counteract high ROS levels in SLE T cells.
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