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Background: Pancreatic islets are exposed to strong pro-apoptotic stimuli: inflammation
and hyperglycemia, during the progression of the autoimmune diabetes (T1D). We found
that the Cdk11(Cyclin Dependent Kinase 11) is downregulated by inflammation in the T1D
prone NOD (non-obese diabetic) mouse model. The aim of this study is to determine the
role of CDK11 in the pathogenesis of T1D and to assess the hierarchical relationship
between CDK11 and Cyclin D3 in beta cell viability, since Cyclin D3, a natural ligand for
CDK11, promotes beta cell viability and fitness in front of glucose.

Methods:We studied T1D pathogenesis in NOD mice hemideficient for CDK11 (N-HTZ),
and, in N-HTZ deficient for Cyclin D3 (K11HTZ-D3KO), in comparison to their respective
controls (N-WT and K11WT-D3KO). Moreover, we exposed pancreatic islets to either
pro-inflammatory cytokines in the presence of increasing glucose concentrations, or
Thapsigargin, an Endoplasmic Reticulum (ER)-stress inducing agent, and assessed
apoptotic events. The expression of key ER-stress markers (Chop, Atf4 and Bip) was
also determined.

Results: N-HTZ mice were significantly protected against T1D, and NS-HTZ pancreatic
islets exhibited an impaired sensitivity to cytokine-induced apoptosis, regardless of
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Real Time-Polymerase Chain Reaction; W
UPR, Unfolded Protein response; ER, En
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glucose concentration. However, thapsigargin-induced apoptosis was not altered.
Furthermore, CDK11 hemideficiency did not attenuate the exacerbation of T1D caused
by Cyclin D3 deficiency.

Conclusions: This study is the first to report that CDK11 is repressed in T1D as a
protection mechanism against inflammation-induced apoptosis and suggests that CDK11
lies upstream Cyclin D3 signaling. We unveil the CDK11/Cyclin D3 tandem as a new
potential intervention target in T1D.
Keywords: apoptosis, beta cell, CDK11, cyclin D3, inflammation, type 1 diabetes, glucose, insulin
INTRODUCTION

In T1D, the proinflammatory milieu has been reported to impair
the functioning of beta cells and induce apoptosis (1–4). One of
the best animal models of T1D is the NOD (Non-Obese
Diabetic) mouse model (5). A series of reports have focused on
studying the effects of the main proinflammatory cytokines alone
or in combination on the proteome/transcriptome of
insulinoma/islet cells in vitro (6–9). Those reports included a
discrete combination of cytokines that partially resembles the
complex inflammatory niche hosting the pancreatic islet; and
most studies used insulinoma tumor cell lines. Therefore, we
explored the in vivo effects of inflammation on the transcriptome
of NOD endocrine cells by applying cDNA microarray
technology (10) and found that the mRNA expression of
Cdk11 (cyclin-dependent kinase 11) was downregulated in the
pancreatic endocrine cells (PEC) from NOD female mice upon
inflammation. CDK11 is a ubiquitous PITSLRE cyclin-
dependent kinase with two gene products: p58 and p130 in
mice, and p58 and p110 in humans (11). The p58 gene product
originates from a differential ribosome entry through an IRES
(Internal Ribosomal Entry Sequence) in the mRNA of Cdk11
during its translation in mitosis (12).

CDK11p110 binds to cyclin L, which is the main CDK11p110

regulatory subunit, and several pre-mRNA splicing factors to
regulate pre-mRNA transcription and processing in proliferating
cells (13–17). CDK11p110 is expressed during all cell cycle phases
(11), while CDK11p58 is only expressed during mitosis (18).
CDK11p58 is required during mitosis for the maintenance of the
sister chromatid cohesion and participates in cytokinesis and
mitosis termination (18, 19). The activity of CDK11p58 depends
on its interaction with Cyclin D3 to promote its kinase activity,
migrate into the nucleus and regulate the cell cycle progression
through the G2/M phase (20, 21). The CDK11-deficiency in mice
is embryonically lethal, while CDK11-hemideficient mice are
viable (22).

Furthermore, CDK11p58 is associated with the downregulation
of the expression of Bcl-2 during apoptosis (23), and both
Kinase 11; T1D, Type 1 Diabetes; PEC,
bese Diabetic; qRT-PCR, quantitative
T, Wild Type; HTZ, Heterozygous;
doplasmic Reticulum; Bip, Binding-
Transcription Factor 4; Chop, C/EBP
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CDK11p58 and CDKp110 are activated by Caspase-3 mediated
cleavage into CDK11p46, in response to pro-apoptotic stimuli,
which amplifies the apoptotic process through phosphorylation of
regulating proteins such as the eukaryotic Initiation Factor 3f
(eIF3f) (24–26). Moreover, CDK11p110 cleavage by Caspase 3
releases CDK11p60, a regulatory moiety that mediates
cytochrome c release from mitochondria and apoptosis (27).
Since islet beta cells undergo cytokine-induced apoptosis in T1D
(28, 29), CDK11 cleavage by Caspase-3 is expected to exacerbate
apoptosis in beta cells. Therefore, since beta cell replication has
been reported to occur in response to the autoimmune attack (30),
mitotic beta cells would express CDK11p58, which, in turn, would
amplify apoptosis.

Moreover, beta cells synthesize insulin upon demand; this
submits them to Endoplasmic Reticulum (ER)-stress and the
Unfolded Protein Response (UPR). In T1D, insidious insulitis
and hyperglycemia induce ER-stress and UPR activation, leading
to beta cell apoptosis through the upregulation of CHOP (C/EBP
homologous protein), a key transcription factor responsible for
ER-stress induced-apoptosis through Bcl-2 inhibition (31, 32). In
T1D, both, inflammation and ER-stress crosstalk and feed-back
each other positively, resulting in exacerbation of beta cell
death (33).

In this study, we aim to explore whether there is a causal
relationship between the downregulation of Cdk11 in beta cells
and the onset of T1D. Moreover, we aim to determine whether the
simultaneous downregulation of both, Cdk11 and Cyclin D3 at the
onset of T1D has a pathophysiological meaning. To this end, we
developed CDK11-hemideficient NOD mice and assessed their
phenotype in terms of beta cell viability, autoimmune repertoire,
and autoimmune diabetes. Furthermore, we developed NODmice
that were hemideficient in CDK11 and deficient in Cyclin D3 and
assessed their phenotype in terms of T1D onset.
MATERIALS AND METHODS

Mice
Mice were housed under specific pathogen-free (SPF) conditions.
All animal experimentation procedures performed in this study
were overseen and approved by the Institutional Ethical
Committee for Animal Experimentation of the University of
Lleida (CEEA) in accordance with European and U.S.A.
regulations on Animal Experimentation. All results involving
February 2021 | Volume 12 | Article 634797
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animal experiments were obtained with female mice. Mice
heterozygous for the CDK11-deficiency (HTZ) with the mixed
129SvxC57BL/6 genetic background (22) were backcrossed to
the NOD background for 15 generations to identify the Idd
susceptibility loci (34). The null mutation of Cdk11 was detected
by PCR (22) using the CPrev: CAAGAGAAGCCTGA
GCAAATAG and the mp70: GAGATACTCTTTACAT
GCCAACC primers. Cyclin D3 deficient mice in the NOD
background (D3KO) were genotyped by PCR as previously
reported (10).

Quantitative Real-Time PCR (qRT-PCR)
See Supplementary Methods.

Assessment of Pancreatic Infiltration
Immunohistochemical analysis of pancreatic infiltration was
performed on paraffin sections by hematoxylin & eosin
counterstaining (Sigma-Aldrich, St. Louis, MO, USA) for the
infiltration studies (Leica, Wetzler, Germany). To score the islet
infiltration, the following values were assigned: 0 for non-
infiltrated islets, 1 for peri-insulitic lesions, 2 for intra-insular
insulitis with less than 50% of the islet area infiltrated, and 3 for
insulitis with more than 50% of the islet area infiltrated. A
minimum of eight sections per mouse at four different levels
(>150 islets per genotype) were examined. For each individual
mouse, the following formula was applied to calculate the
infiltration score, and then, the mean ± SEM of each genotype
was plotted:

(X islets of score 0 �  0)  +  (Y islets of score 1 �  1)  +  (Z islets of score 2�  2)  +  (W islets of score 3�  3)
(X + Y + Z +W)
Diabetes Assessment, Adoptive Transfer
Experiments, and Pancreatic Islet Isolation
All these procedures were performed as previously
described (34).

Magnetic Cell Separation of Pancreatic
Endocrine Cells (PECs: CD45- Fraction)
Islets were isolated and disaggregated by trypsin digestion, and
the resulting cell suspension was incubated with an anti-mouse
CD45-phycoerythrin (PE) antibody (Becton Dickinson (BD),
CA, USA), subsequently washed and incubated with the anti-
PE antibody coupled to magnetic beads, and submitted to
AUTOMACS magnetic negative selection according to the
manufacturer’s instructions (AUTOMACS; Miltenyi Biotec,
Bergisch Gladbach, Germany).

Western Blot Assays
See Supplementary Methods.

Islet Cell Staining
The isolated islets were trypsinized, fixed and permeabilized prior to
the cellular staining with the anti-mouse Glut-2 (beta-cell marker;
R&D Minneapolis, MN, USA), anti-mouse Ki67 (proliferation
Frontiers in Immunology | www.frontiersin.org 3
marker; Dako, Glostrup, Denmark), phycoerythrin-conjugated
CD45 (hematopoietic marker; BD), and 7AAD (cell death
marker; BD) antibodies. The data were acquired using a
FACSCanto II flow cytometer (BD).

TUNEL Assays
Determination of late (TUNEL) apoptotic events was performed
using the In Situ Cell Death Detection Kit, Fluorescein (ref,
11684795910, Roche-Sigma). Insulin was detected with anti-
insulin antibody (A0564, Dako), and nuclear staining was
performed with Hoechst 33342 (B2261, Sigma).

Isolation of Islet-Infiltrating
Lymphocytes (IILS)
The islet-infiltrating lymphocytes (IILs) were isolated by
trypsinization of the previously isolated islets using 500 µl of
trypsin/EDTA (Lonza, Verviers, Belgium) for 5 min at 37°C to
obtain single cell suspensions.
Assessment of Immune Cell Subsets by
Flow Cytometry
See Supplementary Methods.

DNA Fragmentation Assays
Handpicked islets were cultured in supplemented DMEM in the
presence or absence of a cytokine cocktail containing IFN-g
100U/ml, TNF-a 1000 U/ml, IL1b 100U/ml, afterwards islets
were harvested and lysed by hypotonic shock, stained with
Propidium Iodide (Sigma) and acquired by flow cytometry to
measure nuclei fragmentation (% DSubG1) as previously
reported (35). Results were calculated as percentage on
increment in SubG1 induction by cytokines as follows:

(% SubG1 events upon exposure to cytokines) − ( % SubG1 events in basal condition)
(% SubG1 in basal condition)

� 100

ER-Stress Induction
Handpicked islets from 5–7-week-old female mice donors were
cultured in supplemented DMEM containing 11mM glucose,
either in the presence or absence of 1mM Thapsigargin (Sigma)
for the indicated time (either 24 h for ER-stress marker induction
or 96 h for subG1 measurements).
Statistical Analysis
Mann-Whitney U-tests were performed to evaluate the
differences between pairs of groups. The log-rank test was
applied to assess the difference between the diabetes
cumulative incidence curves. The one-way ANOVA test was
used to assess the differences in TUNEL studies. The two-way
ANOVA test was used to analyze the differences in infiltration
score studies, and SubG1 studies respectively. All analyses
were performed using the GraphPad Prism (v5.0a) statistical
package. The threshold for statistical significance was set
at 0.05.
February 2021 | Volume 12 | Article 634797

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sala et al. Antagonism Between CDK11 and Cyclin D3
RESULTS

Cdk11 Is Downregulated in b Cells by
Autoimmune Insulitis in a Dose-Dependent
Manner Without Impairing b Cell
Proliferation
At 11 weeks of age, the NOD female pancreatic islets are heavily
infiltrated, while those from age-matched NOD/SCID female
mice are insulitis-free, because they lack lymphocytes (36, 37).
Using the cDNA microarray technology, we observed that the
mRNA expression levels of Cdk11 were 2.4-fold lower in the
PECs from the 11-week-old pre-diabetic NOD female mice
compared to those from age-matched NOD/SCID female mice
(see Supplementary Table 1). We confirmed the microarray
results by performing quantitative real time PCR (qRT-PCR)
assays (Figure 1A) and found that the PECs from the 11-week-
old NOD females exhibited a threefold reduction in the mRNA
expression levels of Cdk11 compared to those from age-matched
Frontiers in Immunology | www.frontiersin.org 4
NOD/SCID females (0.223 ± 0.047 vs. 0.674 ± 0.09, respectively).
CDK11p130 protein expression was also reduced in PECs from
NOD mice (Figures 1B, C). Nevertheless, CDK11p58 protein
levels were higher in NOD PECs compared to those from NOD/
SCID, underscoring the role of inflammation in post-
transcriptional regulation of CDK11 (Figures 1B, C).

We further aimed to determine whether the mRNA
expression of Cdk11 was inversely correlated with the severity
of the leukocyte infiltration into the islets. Therefore, we
performed qRT-PCR to detect Cdk11 in the PECs of the NOD/
SCID islets from the 11-week-old female mice that had been
adoptively transferred with increasing amounts of total
leukocytes from prediabetic NOD female donors 2 weeks
before the islet isolation. We observed a significant inverse
relationship between Cdk11 expression levels in PECs and the
amount of transferred leukocytes (Figure 1D).

To address whether the downregulation of Cdk11 mRNA
prior to T1D onset altered the NOD beta cell replicative activity,
A B C

D E

FIGURE 1 | Cdk11 is downregulated by the islet infiltration at the mRNA level, without affecting the proliferative activity of b cells in NOD mice. CDK11p58 protein
expression is enhanced, while CDK11p130 is downregulated, compared to NOD/SCID in NOD PECs (A). Pancreatic islet cells from either 11-week-old NOD female
mice (n = 6) or 11-week-old NOD/SCID female mice (n = 10) were extracted, and the CD45- cell subset (PECs) was selected by magnetic sorting to perform a qRT-
PCR analysis to assess the expression of cdk11. (B, C) Pancreatic islet cells from either 11-week-old NOD female mice (n = 16 mice; 1212 islets) or 11-week-old
NOD/SCID female mice (n = 15 mice; 1586 islets) were extracted, and the CD45- cell subset (PECs) was selected by magnetic sorting to perform western blot
analysis to detect both CDK11p58 and CDK11p130 proteins. (C) CDK11p58 and CDK11p130 expression values were respectively normalized to b-actin levels in
PECs from either NOD (black columns) or NOD/SCID (white columns). (D) Assessment of the expression levels of cdk11 in PECs from NOD/SCID mice that were
adoptively transferred with different amounts (×106) of total splenocytes (TSC (i.e., total spleen cells that were previously depleted of red blood cells) from 8-week-old
NOD female donors; the numbers of recipient mice per condition 2 weeks before the islet extraction at 11 weeks of age were as follows: 0, n = 5; 1, n = 5; 3, n = 6;
5, n = 6, and for 10, n = 5). The mRNA expression of cdk11 in the PECs was measured by qRT-PCR. All comparisons were related to TSC: 0. A linear regression
was performed according to the equation y=-0.036367x+1.106, resulting in p = 0.0177. (E) The percentages of the proliferating beta cells (CD45- Glut2+ Ki67+) were
measured by flow cytometry. Pancreatic islets were isolated from 11-week-old NOD (n = 6) and NOD/SCID (n = 4) mice, trypsinized and stained for CD45, Glut2,
and Ki67). The data are represented as the mean ± SEM in (A, E); in (D), individual values are plotted. In (A) and (E), the value of the NOD/SCID group was used as
a reference. *p ≤ 0.05, **p ≤ 0.01.
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we assessed the beta cell proliferation rates using Ki67 staining of
GLUT-2+ CD45- (beta) cells from 11-week-old NOD and NOD/
SCID mice and analyzed these rates by flow cytometry (Figure
1E). We found no differences in the beta cell proliferation rates
between the groups.

CDK11 Hemideficiency Protects N-HTZ
Mice Against Diabetes Without Affecting
the Diabetogenicity of the Autoimmune
Repertoire
To ascertain whether the mRNA downregulation of Cdk11 at the
onset of T1D was causally related to beta cell death in vivo, we
developed a NOD mouse model that was genetically
hemideficient in CDK11 (N-HTZ) (Figure 2A), since the
homozygous CDK11 deficiency is embryonically lethal (22).
We also obtained NOD/SCID mice that were hemideficient in
CDK11 (NS-HTZ) and checked protein expression levels in NS-
HTZ versus NS-WT islet cells. CDK11p58 protein levels were
reduced while CDK11p130 reduction was minimal in NS-HTZ
compared to NS-WT mice (Figures 2B, C). This outcome
Frontiers in Immunology | www.frontiersin.org 5
revealed a differential translational regulation in CDK11
hemideficency favoring CDK11p130 over CDK11p58.

We monitored the spontaneous onset of T1D in the N-HTZ
and N-WT littermate mice. In parallel we assessed the
spontaneous incidence of diabetes in NS-HTZ compared to
that in NS-WT littermates, in case an intrinsic defect in beta
cell generation was related to CDK11 hemideficiency.

We found that the N-HTZ mice exhibited a significantly
delayed kinetics of the disease and lower cumulative incidence of
diabetes (70.8% vs. 81.4% respectively) compared to the N-WT
littermates (Figure 2D). None of the NS-HTZ mice developed
spontaneous diabetes (see Supplementary Table 2), which
evidenced that no major intrinsic defect in beta cell mass and/
or function is associated to the CDK11 hemideficiency.

To determine whether the protection against T1D shown by
the N-HTZmice was due to a milder insulitic attack compared to
the N-WT mice, we first scored the islet leukocyte infiltration
associated with both genotypes at three different time points
prior to the onset of diabetes (5, 8, and 10 weeks of age).
Dramatic differences were found in the severity of the insulitic
A B C D

E F G H

FIGURE 2 | CDK11 hemideficiency protects against the onset of T1D without altering the diabetogenicity of the autoimmune repertoire. (A) Pancreatic islet cells
were isolated from 6-week-old NS-WT and NS-HTZ (n = 5) mice. qRT-PCR analysis was performed to assess the mRNA expression of cdk11. (B) Pancreatic islet
cells were isolated from 35-week-old NS-WT and NS-HTZ mice, each lane contains protein corresponding to pooled islets from two mice (130 islets per lane).
Western blot analysis was performed to detect CDK11p58, CDK11p130, cyclin D3. (C) CDK11p58, CDK11p130, and Cyclin D3 expression values were respectively
normalized to b-actin levels in pancreatic islets from either NS-WT (black columns) or NS-HTZ (white columns). The cumulative incidence of spontaneous diabetes in
N-WT (n = 43) and N-HTZ (n = 48) mice was assessed. (E) Pancreata from 5-, 8-, and 10-week-old mice (minimum of n = 9 mice and maximum n = 16 per
experimental group) were extracted, and the leukocyte infiltration levels were scored. (F) 4- to 5-week-old NOD/SCID recipient (n = 9 recipient mice for N-WT
leukocyte donors; and n = 10 recipient mice for N-HTZ leukocyte donors) mice were adoptively transferred with 10 million of total cells from pancreatic lymph nodes
(PLNs) from either 9-week-old N-WT or N-HTZ donors. The cumulative incidence of adoptively transferred diabetes is plotted. (G) Percentage of T regulatory
lymphocytes (CD3+CD4+CD25+FoxP3+) in the PLNs (n = 12) is plotted. (H) Percentage of T regulatory lymphocytes (CD3+CD45+CD25+FoxP3+) in the lymphocytic
infiltrate of the pancreatic islets [N-WT (n = 7) and N-HTZ (n = 6)] is shown. In (G) and (H), 7-week-old N-WT and N-HTZ mice were used. The data are shown as
the mean ± SEM in (A, E, G, H); as the percentages of cumulative diabetic mice at a particular time point in (D, F). *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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attack between both genotypes independently of the age tested,
being the infiltration score significantly lower in the N-HTZ
genotype compared to the N-WT (Figure 2E).

We further assessed the diabetogenicity of the N-HTZ
leukocyte repertoire compared to that of N-WT littermates by
performing adoptive transfer of diabetes into NOD/SCID
recipients. In total, 10 million cells isolated from Pancreatic
Lymph Nodes (PLNs) from either 9-week-old N-HTZ or N-WT
donors were transferred into NOD/SCID recipient mice (Figure
2F). The onset of the adoptively transferred diabetes was
monitored, and no difference between both genotypes was
observed in their diabetogenic capacity, which was supported
by the unaltered representation of Tregs in the PLNs and
insulitic infiltrate from N-HTZ females compared to the N-
WT genotype (Figures 2G, H respectively). We also evaluated
the frequency of effector and naïve T cells in PLNs and in the
insulitic infiltrates; the in vitro proliferative activity and
apoptotic rates of PLN cells in front of stimulation by islet
autoantigens (Supplementary Figure 1); and no major
difference was found between both genotypes. Moreover, in
vitro Th1 response was not impaired in PLN cells from N-
HTZ mice (Supplementary Figure 2).

Therefore, the target tissue itself, the beta cell compartment,
and no an impaired autoimmune repertoire in the N-HTZ mice,
should account for the protection against diabetes exerted by the
CDK11 hemideficiency. NOD macrophages are less efficient in
engulfing apoptotic cells leading to inflammation (38). The
release of smaller amounts of beta cell antigens by N-HTZ
islets due the lower apoptosis rates, would not sustain islet
inflammation as is fostered by the inefficient scavenger
capability of N-WT macrophages, leading, hence, to a lower
infiltration score in N-HTZ.

CDK11 Promotes Cytokine-Induced Beta
Cell Apoptosis
We further explored the relationship between the viability of beta
cells and the expression levels of CDK11. We determined the
number of late apoptotic beta cells using the TUNEL assay in WT
and HTZ mice from both 5-week-old NOD and NOD/SCID
strains (Figure 3A) (Suplementary Figure 3). In the NOD
strain, the N-WT beta cells exhibited a dramatic increase (10.8
times) in apoptotic activity compared to those from N-HTZ
(173 × 10-5 ± 69 × 10-5 vs. 16 × 10-5 ± 9 × 10-5, respectively).
The differences in the apoptosis rates between the WT and HTZ
genotypes were abrogated in the NOD/SCID strain (3 × 10-5 ± 2 ×
10-5 vs. 95 ± 74 × 10-5, respectively) (Figure 3A). These results
reveal that the protection against T1D exerted by the CDK11
hemideficiency in NOD mice is caused by a negative interference
with cytokine (inflammation)-induced apoptosis, since, in the
NOD/SCID strain, as expected, the apoptosis levels are
negligible regardless of CDK11 expression levels, because there
is no inflammation.

Altogether, these observations suggested a scenario in which
the inflammation-driven cleavage of CDK11p58 and CDKp130

into CDK11p46 and, the induction of CDK11p58 in a mitotic
effort to compensate for the initial beta cell loss induced by
Frontiers in Immunology | www.frontiersin.org 6
inflammation in T1D (30), would enhance beta cell apoptosis.
Therefore, the physiological downregulation of CDK11 should
have a protective effect against T1D onset.

In order to confirm the hypothesis that CDK11
hemideficiency protects from cytokine-induced apoptosis, we
cultured pancreatic islets from either wild type (NS-WT) or
CDK11 hemideficient (NS-HTZ) NODSCID female mice in the
presence of a proinflammatory cytokine cocktail (TNFa+IL-
1b+IFNg) at either low (5mM), medium (11mM) or high
(25mM) glucose concentration, respectively, for 24 h.
Subsequently, the induction of DNA fragmentation was
assessed by flow cytometry as a measurement of late apoptotic
events (Figures 3B–D). The induction of apoptosis due to the
exposure to pro-inflammatory cytokines was significantly lower
in the NS-HTZ group compared to the NS-WT control group,
independently of the glucose concentration. Therefore, an
impairment in the pro-inflammatory trigger of apoptosis does
account for the protection exerted by the CDK11 hemideficiency
against beta cell apoptosis. This finding highlighted the role of
CDK11 in promoting apoptosis once the proinflammatory
milieu pervades the pancreatic islets during the progression of
the autoimmune attack.

Since CDK11p58 has been proven to be essential for sister
chromatid cohesion (18, 19), we investigated whether the
hemideficiency in the CDK11 resulted in impaired beta cell
proliferation too. The percentage of proliferating beta cells
(CD45-Glut-2+Ki67+) was assessed by flow cytometry (Figure
3E), but, surprisingly, no differences were found in the beta cell
proliferation rate between the genotypes, which implied that the
role that CDK11 plays in beta cell viability is cell-
cycle-independent.

CDK11 Is Involved in the Upregulation of
Atf4 and Chop in Beta Cell Response to
ER-Stress, Although ER-Stress Induced
Apoptosis Is Not Altered by CDK11
Hemideficiency
In order to ascertain whether CDK11 hemideficiency also
inhibits UPR-induced apoptosis in beta cells, we cultured
pancreatic islets from either wild type (NS-WT) or CDK11
hemideficient (NS-HTZ) NODSCID female mice in the
presence or absence of Thapsigargin, a drug that induces ER-
stress. 24 h later, the islets were collected and the RNAs of all
experimental groups extracted to quantify the relative expression
levels of three key UPR markers: BiP (Binding-immunoglobulin
protein, a chaperone) (31); Atf4 (Activating transcription Factor
4) (39); and Chop (C/EBP Homologous Protein) (32). ATF4
leads to CHOP expression, which leads to apoptosis in
terminal UPR.

The results obtained showed a significant reduction in the
upregulation of both, Chop (132.1 ± 39.61 vs. 411.6 ± 140.4)
(Figure 3F) and Atf4 (23.79 ± 17.51 vs. 144.2 ± 40.17) (Figure
3G), upon ER-stress induction in the NS-HTZ compared to the
NS-WT islets, respectively. In NS-HTZ, the induction of both
transcription factors by ER-stress is severely impaired. However,
ER-stress-induced BiP upregulation, was not significantly
February 2021 | Volume 12 | Article 634797
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different between the NS-HTZ genotype compared to the NS-
WT islets (1191 ± 277,4 vs. 2407 ± 647,4, respectively) (see
Figure 3H).

This outcome evidenced that CDK11 could have a role in
promoting UPR-induced beta cell death, since CDK11
hemideficiency would protect beta cells from apoptosis by
inhibiting UPR-induced CHOP expression. To further assess
this hypothesis, we cultured pancreatic islets from both, NS-WT
and NS-HTZ in either the presence or absence of Thapsigargin for
96 h (4 days), collected the islets, and measured %subG1 events by
flow cytometry (Figure 3I). Surprisingly, no differences in the
levels of Thasigargin-induced apoptosis were observed between
both genotypes. This outcome revealed that CDK11
hemideficiency had not a significant role in inhibiting ER-stress
induced apoptosis in beta cells.
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Cyclin D3 Promotes the Viability of Beta
Cells Independently of CDK11 Signaling
Cdk11, similarly to Cyclin D3, is downregulated in beta cells
following an autoimmune attack in T1D. However, while the
downregulation of Cyclin D3 compromises the beta cell viability,
the downregulation of CDK11 is protective against beta cell
death. This is an intriguing finding since Cyclin D3 is a
regulatory partner of CDK11p58 (40–44), which, in turn, is
required for cell cycle progression and is involved in apoptosis.
Therefore, in the absence of Cyclin D3, CDK11p58-promoted
apoptosis should be impaired, and NOD mice that are deficient
in Cyclin D3 should exhibit milder T1D due to its role in
activating CDK11p58. However, we previously showed (10) that
the Cyclin D3 deficiency dramatically exacerbates T1D in NOD
mice, while its overexpression in beta cells protects them against
February 2021 | Volume 12 | Article 634797
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FIGURE 3 | CDK11 hemideficiency protects beta cells against inflammation-induced apoptosis. (A) TUNEL assessment of apoptotic beta cells was performed in
pancreatic sections from 5-week-old N-WT, N-HTZ, NS-WT and NS-HTZ mice (n = 7 mice per genotype; N-WT: 275 islets, N-HTZ: 237 islets, NS-WT: 201 islets,
NS-HTZ 232 islets) and quantified using epifluorescence microscopy. TUNEL-positive nuclei per insulin-positive area were measured in each experimental group.
(B–D) Induction of DNA fragmentation as a measurement of apoptosis induction by proinflammatory cytokines. NS-WT and NS-HTZ pancreatic islets (25 islets per
condition) from 5-week-old female mice were cultured either in the presence or absence of cytokines (IFN-g + TNF-a + IL1b) (n = 7 experiments) for 24 hours at the
indicated glucose concentrations, then, cells were harvested and stained to quantify DNA fragmentation by Flow Cytometry. (B) Gating strategy is presented: Gate
P1 comprehends the apoptotic SubG1 events used for subsequent calculations. Both panels correspond to NS-WT islets cultured in 5mM glucose for 24 h, in the
presence (bottom panel) or absence (upper panel) cytokines. Results are plotted either as percentage of increment in SubG1 events upon cytokine exposure (C) or
raw data comparing basal levels of subG1 to those after cytokine exposure (D). (E) Islet cells from 6-to-8-week-old NS-WT and NS-HTZ (n = 12) mice were stained
to assess the beta cell proliferative activity; the percentages of CD45- Glut2+ Ki67+ proliferating cells are plotted from one experiment that is representative of three
independent experiments. (F–H) Upregulation of UPR markers upon ER-stress induction. NS-WT and NS-HTZ pancreatic islets (50 islets per conditon) from
5–7-week-old female mice were cultured for 24 h either in the presence or absence of 1 mM Thapsigargin, harvested for RNA isolation and qRT-PCR of Chop (F),
Atf4 (G), and BiP (H) was performed. The graphs plot the induction of RNA levels compared to those of untreated controls. Data are means samples ± SEM (n = 4
independent experiments). (I) DNA fragmentation (%subG1) as a measurement of apoptosis induction by thapsigargin. NS-WT (n = 4 mice) and NS-HTZ (n = 3 mice)
pancreatic islets (30 islets per condition) from 5-week-old female mice were cultured for 96 h either in the presence or absence of thapsigargin (1µM). ***p < 0.005,
**p < 0.01, and *p < 0.05.
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diabetes; furthermore, neither of these conditions, i.e., deficiency
or overexpression, has any effect on beta cell replication (10),
which strongly suggests that the role of Cyclin D3 in beta cells is
independent of CDK11p58.

Thus, we speculated about the relationship between
CDK11 and Cyclin D3 regarding beta cell viability and
whether a hierarchy exists among the respective signaling
pathways that are engaged by these two molecules in beta cells.
Our working hypothesis is that CDK11 may work as a decoy
receptor for Cyclin D3, quenching Cyclin D3 anti-apoptotic
activity in beta cells. In the N-HTZ genotype, the levels of
free, unbound Cyclin D3 are higher than in N-WT, and hence,
beta cell survival is promoted. Therefore, if this was the
case, we would not expect any amelioration of the
severity of the disease in Cyclin D3 deficient mice upon
CDK11 hemideficiency.

We answered this question by obtaining NOD mice deficient
in Cyclin D3 that were either hemideficent (K11HTZ-D3KO) or
not (K11WT-D3KO) for CDK11.

We monitored the spontaneous incidence of diabetes in these
two experimental groups and observed that regardless of the
CDK11 hemideficiency, the Cyclin D3 deficiency had a
dominant effect on the onset of diabetes and exacerbated the
disease compared to normal NOD mice (K11WT-D3WT) since
the CDK11 hemideficiency did not alleviate the T1D in the
Cyclin D3 deficient mice (Figure 4).

Altogether, this observation suggested that at least one of the
signaling pathways responsible for the survival of beta cells in
which Cyclin D3 is involved is independent of the CDK11
signaling pathway.
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DISCUSSION

Role of CDK11 in the Beta Cell
Compartment
CDK11 is a pleiotropic kinase that is involved in gene
expression, cell division and cell death. The function of
CDK11 and its regulation in these processes remain unclear
in beta cells. Beta cells have been shown to increase their
proliferation rates prior to the onset of T1D (30), therefore, it
is plausible that while the overall mRNA expression of Cdk11 is
downregulated due to insulitis, the translation of CDK11p58 is
favored at the expense of CDK11p130 in an attempt to subdue
the loss of beta cells. However, this defense mechanism may be
detrimental to beta cell survival because CDK11p58 also signals
for mitosis-coupled apoptosis (24) and becomes a substrate for
the amplification of caspase-3, which would result in cytokine-
induced beta cell death in T1D. Therefore, downregulation of
Cdk11mRNA would prevent massive CDK11p58 translation
under inflammatory circumstances. In the spinal cord and
astrocytes, the CDK11p58 protein is also upregulated during
inflammation. Moreover, in Schwann cells, a pro-inflammatory
stimulus, such as LPS, could upregulate CDK11p58, and the
partnership CDK11p58/Cyclin D3 inhibits of the cell cycle and
promotes apoptosis (43). In this sense we found that the
increased CDK11p58 expression levels in NOD PECs prior to
the onset of diabetes did not alter beta cell replication.
Moreover, genetic CDK11 hemideficiency, (affecting mostly to
the CDK11p58 protein compartment, while CDK11p130 remains
roughly untouched in endocrine cells), protected beta cells from
apoptosis in the NOD proinflammatory niche. Furthermore,
when exposed to a powerful proinflammatory mileu NS-HTZ
islets exhibited significantly lower apoptotic rates compared to
those from the NS-WT control group, confirming the
involvement of CDK11p58 in cytokine-induced apoptosis.
Therefore, the scenario in which CDK11 would be cleaved
upon inflammation promoting apoptosis with a dominant
effect over the other CDK11 roles, is evidenced as a
mechanism responsible for protection against beta cell
apoptosis in the CDK11 hemideficient NOD mice.

ER-stress and inflammation are responsible for most of the
beta cell failure in T1D. Both, inflammation and ER-stress
crosstalk and feed-back each other positively, resulting in
exacerbation of beta cell death (33). It has been reported that
interfering the UPR signaling reverses T1D in the NOD mouse
model (45). Both, CDK11p58 (24) and, CHOP (32), a molecule
causally related to ER-stress-induced apoptosis, have been
reported to promote apoptosis by interfering with the
expression of Bcl-2, a key anti-apoptotic molecule in ER-stress
(46). However, we have not observed an impairment in the
induction of apoptosis by ER-stress associated to the CDK11
hemideficiency, which suggests that other (not dependent on
CHOP) apoptotic cascades in terminal UPR, such as those
downstream IRE1 (47), remain unaltered, and CDK11 would
be mainly involved in cytokine-induced apoptosis.

The expression of the CDK11 promoter is hindered by
inflammation, probably through Ets-1 transcription factor
FIGURE 4 | CDK11 hemideficiency protection against T1D depends on
Cyclin D3 availabilty. The cumulative diabetes incidence in K11HTZ-D3KO
(n = 19), K11WT-D3KO (n = 23) and K11WT-D3WT (n = 34) mice was
assessed. The data are shown as the percentages of the cumulative diabetic
mice at a particular time point. *p ≤ 0.05.
February 2021 | Volume 12 | Article 634797
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(48–51), resulting in a protection against apoptosis in beta cells. In
the other cell types, cyclin D3 interacts with CDK11p58 to promote
cell division and/or apoptosis. In adult mouse beta cells, we did not
observe changes in replication due to either Cyclin D3 or the
CDK11 hemideficiency, which suggests that the protection against
diabetes is not related to proliferation. Moreover, a priori, one
would expect that the deficiency in Cyclin D3, which is a putative
activator of CDK11p58, should promote a phenotype that is similar
to that observed in the CDK11 hemideficient mice, and the
deficiency of both should add up to the same direction.
However, this is not the case since both molecules have opposite
effects on the onset of T1D. This observation shows that the
downregulation of CDK11 exerts its protection against T1D in a
Cyclin D3-dependent fashion. This outcome would be compatible
with a scenario in which CDK11p58 binds Cyclin D3 to prevent its
signaling to promote beta cell survival, and, to activate CDK11p58

pro-apoptotic activity. Therefore, the anti-apoptotic role of Cyclin
D3 should be more prominent in non-cycling cells, a scenario
when CDK11p58 is not expressed.
Role of CDK11 in the Autoimmune
Repertoire
The diabetogenicity of the autoimmune repertoire was not
affected in N-HTZ mice. Moreover, the representation of the
FoxP3+CD25+CD4+ Treg cell subset in either the regional lymph
nodes or the islet infiltrate in not altered in CDK11 hemideficient
mice. Therefore, the protection observed against T1D in N-HTZ
cannot be explained by an altered diabetogenic repertoire in
this genotype.
CONCLUSION

CDK11 downregulation prior to T1D onset has a protective
effect on beta cell survival in an inflammatory context. This
protective effect depends on Cyclin D3 availability. Further work
needs to be performed to identify the relationship between
CDK11-mediated proapoptotic signaling and Cyclin D3 in beta
cells, to design better therapeutic approaches targeting T1D.
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