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More than fifty c-type lectin receptors (CLR) are known and have been identified so far.
Moreover, we know the group of galectins and sialic acid-binding immunoglobulin-type
lectins that also belong to the carbohydrate-binding receptors of the immune system.
Thus, the lectin receptors form the largest receptor family among the pathogen
recognition receptors. Similar to the toll-like receptors (TLRs), the CLR do not only
recognize foreign but also endogenous molecules. In contrast to TLRs, which have a
predominantly activating effect on the immune system, lectin receptors also mediate
inhibitory signals. They play an important role in innate and adaptive immunity for the
induction, regulation and shaping of the immune response. The hygiene hypothesis links
enhanced infection to protection from allergic disease. Yet, the microbial substances that
are responsible for mediating this allergy-protective activity still have to be identified.
Microbes contain both ligands binding to TLRs and carbohydrates that are recognized by
CLR and other lectin receptors. In the current literature, the CLR are often recognized as
the ‘bad guys’ in allergic inflammation, because some glycoepitopes of allergens have
been shown to bind to CLR, facilitating their uptake and presentation. On the other hand,
there are many reports revealing that sugar moieties are involved in immune regulation. In
this review, we will summarize what is known about the role of carbohydrate interaction
with c-type lectins and other sugar-recognizing receptors in anti-inflammation, with a
special focus on the regulation of the allergic immune response.
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INTRODUCTION

There are more than 180,000 entries in Pubmed containing the search terms carbohydrate and
immunomodulation. Moreover, there are many patents proposing carbohydrates as
immunomodulatory substances. However, some polysaccharides known to bind to CLR, such as
b-glucans and arabinogalactans, are already on the market as consumer healthcare products.
However, the mode of action of these carbohydrates is predominantly unclear. It is likely that many
of these effects can be explained by the interaction of sugar motifs with lectin receptors of the
immune system. One function of lectins is to facilitate the uptake of antigens, even though these
org April 2021 | Volume 12 | Article 6354111
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molecules are more than simple uptake receptors. Several of
these lectin receptors mediate signals since they possess distinct
signaling motifs. In particular, CLR expressed on myeloid cells
play a central role in innate immunity. The CLR are distinguished
between those that have an ‘immunoreceptor tyrosine-based
activation motif’ (ITAM) and those with an ‘immunoreceptor
tyrosine-based inhibition motif’ (ITIM). Thus, they can mediate
activating or inhibiting signals to the immune system depending
on the ligand. In addition to CLR, we also know the group of
galectins and the group of Siglecs (sialic acid-binding
immunoglobulin-type lectins). Most receptors of the Siglec
family also transduce signals via ITAM/ITIM domains, whereas
galectins are somewhat different in that they are secreted proteins
which bind to carbohydrates on the surface of other cells.

In this review, we will focus on the modulation of the allergic
immune response of the airways by carbohydrate/lectin receptor
interaction. There are several studies that focused on the role of
lectin receptors and discussed carbohydrate structures on
allergens as crucial factors in allergic sensitization (1, 2). On
the other hand, there are known cases where signaling via c-type
lectins is exploited by pathogens to suppress the immune
response (3). Thus, knowing these interactions could pave the
way for therapeutics that could be used for the suppression of
allergic inflammation.

One initial event during allergic sensitization via the airways
is that epithelial cells become activated and start to release
cytokines, which attract and activate dendritic cells (4). After
taking up and processing allergens, they migrate to the draining
lymph nodes to activate T lymphocytes. Moreover, B cells
produce allergen-specific immunoglobulin E (IgE), which binds
to the surface of mast cells. During the effector phase, mast cells
become activated to release histamine and pro-inflammatory
mediators, eosinophilic granulocytes degranulate their toxic
content and other innate immune cells contribute to
inflammation. This type of allergic airway inflammation is the
most common one that depends on the activity of T helper cells
from the Th2 type (5). However, other endotypes have been
described in the last few years that depend on Th17 cells, which
attract neutrophils and promote severe disease courses (6). Many
steps of this process could be modulated by carbohydrate/lectin
interaction. Dendritic cells (DCs), mast cells, granulocytes and
epithelial cells, for example, are known to express several
different lectin receptors and could, therefore, be modulated by
the appropriate ligands (Table 1). Thus, several of the important
players of the allergic immune response could be modified by
carbohydrates. There are many papers describing a potential
benefit of treatment with different types of carbohydrates for
protection against allergic sensitization and inflammation. The
carbohydrates described range from synthetic oligosaccharides
to support the growth of intestinal microflora (27) to
polysaccharides isolated from plants (28), bacteria (29) or
fungal (30) sources. However, the mode of action is clear only
in a minority of examples. In this review, we will focus on these
examples. We will discuss how stimulation of these receptors can
modulate allergic inflammation and could hopefully be exploited
in the future for allergy prevention.
Frontiers in Immunology | www.frontiersin.org 2
DECTIN 1 – A PATTERN RECOGNITION
RECEPTOR BINDING TO Β-GLUCANS

The CRD of Dectin-1 recognizes 1,3-b-glucans, which are
frequently found in the cell walls of fungi, bacteria and some
plants. Dectin-1 is expressed in both human and mice on DCs,
monocytes, macrophages and neutrophil granulocytes, and
exclusively in human also on B cells, mast cells and
eosinophilic granulocytes (7, 31). In addition to its endocytotic
activity, Dectin-1 has its own signaling cascade. It does not have a
complete ITAM, which would contain two tyrosines.
Nevertheless, after ligand-binding and phosphorylation of the
tyrosine, the ‘spleen tyrosine kinase’ (SYK) is activated.
Subsequently, the formation of the CARD9/Bcl10/Malt-1
complex leads to the activation of NF-kB and, thus, to the
production of pro-inflammatory cytokines (32, 33). In the case
of DCs, the activation of Dectin-1 leads to their maturation and,
thus, to a strong T-cell stimulatory capacity. Dectin-1 activated-
DCs initiate mainly a Th1 and Th17 immune response (34).

Despite this immunostimulatory role of Dectin-1, there are
some reports revealing a beneficial role of Dectin-1 stimulation
in the prevention or control of allergic asthma. Invertebrate
tropomyosin, for example, a ubiquitous arthropod-derived
molecule, was shown to be a dectin-1 ligand that serves to
restrain IL-33 release, thus, dampening type 2 immunity in
healthy individuals (35). In this context, the immune modulation
is likely to be mediated via an influence on the airway epithelium
and not by a direct effect on DCs (Figure 1A). However,
stimulation with a well-known Dectin ligand, namely Curdlan,
also led to reduced allergy (36). In this paper, the authors showed
that the activation of antigen-presenting cells is involved, which
lead to the generation of the interleukin (IL)-10-producing T-
helper via ICOS interaction.

By contrast, other reports showed that b-glucans may worsen
allergic asthma by acting through Dectin-1 (37). In line with
what is known about the polarizing activity of b-glucan-
stimulated DCs, the authors observed that Curdlan induced a
Th17 response with increased neutrophilic inflammation and
exacerbation of the disease.
DECTIN 2 – A PATTERN RECOGNITION
RECEPTOR BINDING TO HIGH
MANNOSE STRUCTURES

Dectin-2 is described as representative for CLR, whose signaling
pathway runs via a coupled ITAM that belongs to a neighbored
Fc-receptor gamma chain (9). Dectin-2 is present on
macrophages, monocytes and DCs (10). Its ligands are
structures with a high mannose content and a-mannans,
which are found in fungi (11). The activation of Dectin-2 leads
to the recruitment and activation of SYK, which follows a similar
signaling pathway as Dectin-1.

Dectin-2 is associated with allergic diseases mainly because
house dust mite extracts are able to activate SYK via Dectin-2
April 2021 | Volume 12 | Article 635411
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TABLE 1 | Carbohydrate recognition receptors (CRR).

General functions Impact on allergic immune response Ref.

Recognition of fungal and
mycobacterial infections, pro-
inflammation

The ligand curdlan lowers TH2 allergic immune
response

(7, 8)

Recognition of fungal and
mycobacterial infections, pro-
inflammation

Induces cysteinyl leukotriene secretion, which
attracts eosinophils and neutrophils, increases TH2
response

(9–11)
(8)

of
ies

Virus capture and transmission IVIgs can reduce allergic airway disease via
interaction of their carbohydrates with DCIR

(8, 12)

an of
Endocytotic activity,
immunomodulatory role

Induces IL-10 producing dendritic cells, the ligand
arabinogalactan reduces the activation of NFkb and
T-cell stimulatory capacity

(8, 13)

Endocytotic receptor, recognition of
microorganism, cross presentation
on MHCI

unknown (8)

Endocytosis and antigen
presentation on MHCII

Endocytotic receptor, when OVA is fused to the
receptor by an antibody, the allergic response is
supressed

(8, 14)

and
hate being
y

Mediate cell-cell interactions and
signaling functions in the immune
system

Suppresses eosinophilic inflammation and mast cell
activation

(15–17)

Suppresses neutrophilic inflammation (18, 19)
Play a role in inflammation, adaptive
immune response, cell migration,
autophagy and signaling

Protects from allergic asthma, limits eosinophil
recruitment and promotes apoptosis of eosinophils

(20–22)

Induces Tregs, dampens mucus production and
subepithelial fibrosis in allergic asthma, lowers airway
hyperresponsiveness to metacholine

(23–25)

It can bind to glycoepitopes present on IgE,
inhibiting the activation of mast cells by specific
allergens

(26)

on other cell types, as listed in www.proteinatlas.org. The general functions of these receptors are described for immune cells,
le. h, human; m, mous; n.d., not determined.
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CRR Expression in immune cells Ligands

Dectin-1 Neutrophils, monocytes, myeloid
DCs, in humans also B cells and
mast cells and eosinophils

b1,3glucan

Dectin-2 Monocytes, dendritic cells,
macrophages

High mannose, alpha-mannans

DCIR Monocytes, DCs, granulocytes, B
cells, macrophages

Glycoepitopes on HIV, carbohydrates
endogenous proteins such as antibo

DC-SIGN Monocytes, myeloid DCs High mannose or fucose containing
carbohydrates, e. g. Lipoarabinoman
mycobacteria

Macrophage Mannose
receptor

Macrophages, myeloid DCs,
Langerhans cells

Mannose containing carbohydrates

DEC-205 Granulocytes, monocytes,T-cells,
B-cells, dendritic cells, NK cells

n.d.

Siglec F (m)/Siglec 8 (h) Eosinophils mast cells sialosides that contain both sialic acid
sulphate, with the position of the sulp
an important determinant of specificitSiglec E (m)/Siglec 9 (h) Myeloid cells

Galectin 1 (secreted) Mainly dendritic cells and
monocytes

Galactoside containing glycans

Galectin 3 (secreted) Mainly Monocytes, myeloid DCs

Galectin 9 (secreted) Monocytes, myeloid DCs,
granulocytes

The expression of CRR in this table is given for immune cells only. Many of these receptors are also expressed
moreover, examples for the modulation of the allergic immune response by these receptors is given in the tab
d

n
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and, thus, cause a rapid release of cysteinyl leukotrienes. This
leads to a recruitment of eosinophilic and neutrophilic
granulocytes and an amplification of the Th2-dependent
allergic immune response (38).

In fact, there are no reports in the literature arguing for an
anti-inflammatory role of Dectin-2 stimulation. Therefore it
seems as if Dectin-2 stimulation is predominantly acting in a
pro-inflammatory way and is, thus, triggering an allergic
immune response.
DCIR – IMMUNE INHIBITING RECEPTORS
BINDING TO ENDOGENOUS FUCOSE OR
MANNOSE CONTAINING LIGANDS

There is also a group of receptors which show inhibitory activity
in addition to activating CLR. Dendritic cell immunoreceptors
(DCIRs) have an ITIM instead of an ITAM domain. Two
paralogs of this receptor exist in mice. The ‘dendritic cell
immunoreceptor 1’ (DCIR1), which is expressed on monocytes,
granulocytes, macrophages, DCs and B cells, and DCIR2, that
Frontiers in Immunology | www.frontiersin.org 4
seems to be more restricted to expression in cDCs, are both
representative of this group. Fucose and mannose-containing
glycans are ligands for DCIR (12).

Only one DCIR is described in human. No exogenous ligands
other than HIV-1 have been described for human DCIR so far
(39). The intracellular domain of DCIR is associated with the
non-receptor tyrosine kinases SHP-1 and SHP-2 via ITIM (40).

DCIR2-deficient mice were shown to be more prone to
autoimmunity and have a higher number of DCs underlining
the immunoregulatory role of the receptor (41). It is known that
intravenous injections of immunoglobulin (IVIg) of healthy
donors leads to an alleviation of the disease in different
inflammatory conditions in human (42). It was thought earlier
that IVIg would act in the sense of passive immunization. However,
it became increasingly clear that the glycosylation pattern of the Fc
part of the antibodies injected plays an important role in
immunomodulation (43). Interestingly, IVIg alleviates allergic
airway disease through the interaction of its carbohydrates with
DCIR in a mouse model (Figure 1B). The authors concluded from
their study that IVIg interaction with DCIR induces a tolerogenic
response (44). Thus, DCIR seems to be a valuable target for
modulation of the allergic immune response.
A D

E

B

C

FIGURE 1 | Impact of carbohydrate recognition receptors and their ligands on the modulation of allergic inflammation. (A) Binding of arthropod tropomyosin to
Dectin-1 on airway epithelial cells inhibits IL-33 release. (B) DCIR is known for its inhibiting signaling properties. If sialic acid-rich antibodies are bound by DCIR on
DCs they are able to induce regulatory T cells. (C) Ligation of DC-SIGN can induce prolonged IL-10 production. The ligand arabinogalactan reduces the activation of
NFkb and T-cell stimulatory capacity of human DCs. (D) Siglecs are membrane spanning receptors with signaling properties. Siglec F signaling induces apoptosis of
eosinophils, Siglec E inhibits neutrophils. (E) Galectins are secreted proteins which bind to the glycocalyx of cells. In the group of galectins, three members are
known to lower the allergic response by different mechanisms. BAL, broncho alveolar lavage; Gal, Galectin; ManLAM, mannosylated Lipoarabinomannan; IVIg,
intravenous Immunoglobulins; HMW-HA, high molecular weight hyaluronan; Neu5GC, N-Glycolylneuraminic acid.
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DC-SIGN – PATTERN RECOGNITION
RECEPTOR BINDING TO FUCOSE OR
MANNOSE CONTAINING ANTIGENS

Another well-known representative of the ITAM/ITIM
independent CLR is DC-SIGN. This receptor has a CRD that
recognizes mannose- and fucose-containing motifs. Accordingly,
ligands for DC-SIGN are found in a variety of pathogens, such as
Mycobacterium tuberculosis, HIV, measles virus, Helicobacter
pylori, Candida albicans and Salp15 from tick saliva (45). In
addition to its endocytotic activity, DC-SIGN has a distinct
signaling cascade. After the binding of mannosylated
lipoarabinomannan to DC-SIGN, Raf-1 becomes activated,
which, in turn, initiates the phosphorylation and acetylation of
NF-kB leading to a prolonged production of IL-10 (46). The IL-
10-producing DCs are known for their tolerogenic phenotype, in
accordance, it was shown that mannosylated lipoarabinomannan-
stimulated DCs led to the generation of regulatory T-lymphocytes
(47). However, different ligands for DC-SIGN seem to have
different effects on DCs. Salp15, for instance, was shown to
activate the ‘dual specificity mitogen-activated protein kinase,’
which, in turn, leads to the degradation of IL-6 and TNF-a
mRNA (48). Different paralogs of the receptor exist in mice.

Although DC-SIGN seems to play an immunoregulatory role,
there are only a few reports that studied the ability of DC-SIGN
ligands to suppress unwanted immune reactions.

There are many reports from mouse models on the protective
activity of Mycobacteria and their extracts on allergy protection.
However, it is not clear whether murine homologues of DC-
SIGN are involved in this protection. One homologue of human
DC-SIGN in mice is SIGNR1. This receptor was shown to be
involved in the induction of oral tolerance to mannosylated
antigens in mice (49). Furthermore, it was shown that extracts of
H. pylori protect against allergic asthma in a mouse model by the
induction of IL-10-producing DCs (50). Therefore, it is
interesting to speculate that the protective effect is mediated
via a murine DC-SIGN homologue, but, to date, there is no
supporting data to prove this hypothesis.

In addition to the ligands discussed above, it was shown that
plant arabinogalactan binds to DC-SIGN on the surface of
human DCs. The binding resulted in a reduced activation of
the transcription factor NFkB after TLR-stimulation (Figure
1C). This led to DCs with a reduced T-cell stimulatory
capacity (13). Interestingly, arabinogalactan is a molecule that
is found abundantly in extracts of cowshed dust and can inhibit
allergic sensitization in a mouse model of asthma, suggesting that
it might be also involved in the “farming effect” (51).
MACROPHAGE MANNOSE RECEPTOR
(MR) AND DEC205 – PATTERN
RECOGNITION RECEPTORS FOR
ENDOCYTOSIS

Both receptors are involved in endocytosis, however, they do not
contain an intracellular signaling motif. In addition to
Frontiers in Immunology | www.frontiersin.org 5
macrophages, MR is also found on some DC subpopulations.
DEC205 has a broad expression pattern and it expressed on
immature DCs, but it is now known to be expressed on
endothelium and selected macrophage subpopulations (52).
Endocytosis via MR leads to the cross-presentation of antigens
via the ‘major histocompatibility complex’ I (53), whereas
endocytosis via DEC205 leads to an enhanced presentation of
the ingested antigen via major histocompatibility complex II
(54). Regarding MR, it is not clear whether it is able to trigger an
intracellular signaling cascade itself or this happens in
cooperation with another CLR. However, it could be shown
that the crosslinking of MR via antibodies (AK) led to cytokine
production in DCs involving the anti-inflammatory cytokine
IL-10 (55). No signaling pathways have been described for
DEC205 so far.

After the discovery of DEC205 as an antigen delivery
receptor, it was attempted to exploit DEC205 as a potential
target to be used in vaccination approaches. Surprisingly, it was
observed that antigens targeted into the endocytotic pathway via
DEC205 induced a regulatory immune response that might
inhibit the induction of immunity (56). Subsequently, this
finding was exploited for the delivery of allergens by gene-
based immunization using an adenoviral delivery of single
chain antibodies directed against DEC205 fused to OVA to
target the allergen towards DCs. This treatment resulted in the
efficient suppression of an allergic immune response (14).
SIGLEC – GLYCORECEPTORS BINDING
TO SIALYLATED ANTIGENS

The Siglecs are transmembrane receptors that bind structures
containing sialic acid. They are mainly expressed on immune
cells and can be divided into three functional groups. The first
group contains Siglec 1 and 4, without any known intracellular
signal motifs. The second and largest group includes Siglec 2, 3 and
5 – 12 that contain an ITIM or ITIM-like motif intracellularly.
Similar to CLR that contain an ITIM, the signaling cascade involves
the recruitment of SHP-1 and SHP-2 and leads to an inhibition of
other immunomodulatory signals, which are, for example, induced
by the activation of TLRs (57). The third group of Siglecs consists of
Siglec 14, 15 and 16 and is characterized by a positively charged
residue in their transmembrane domain, through which they can
associate with the negatively charged transmembrane domain of
the DNAX-associated protein of 12 kDa (DAP12). The DAP12
carries an intracellular ITAM and can trigger a signaling cascade
via SYK, similar to the CLR Dectin-1 or Dectin-2. Siglec H is
transducing its signal in rodents via DAP12 (58).

Siglecs recognize both exo- and endogenous ligands. Their
primary function is probably the regulation of immune
responses. However, unlike CLR, this is not done via pathogen
recognition since most pathogens are not sialinized.

The function of Siglec F (human functional paralog Siglec 8)
has been explored in vivo using antibodies, knockout mice and
models where the expression of specific ligands has been altered.
Administration of agonistic anti Siglec-F antibodies, for example,
April 2021 | Volume 12 | Article 635411
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reduced the number of eosinophilic granulocytes in blood by
reducing the viability of the cells (15). Moreover, antibodies
binding to Siglec F abrogate eosinophilic pulmonary
inflammation and virtually eliminates lung remodeling in
mouse models of chronic allergic asthma (16). Muc5b and
Muc4 were identified as endogenous ligands for Siglec F
because they carry sialylated glycan ligands (59). Purified
mucin preparations carried sialylated and sulfated glycans that
were able to induce apoptosis in mouse eosinophils. Muc5b-
deficient mice displayed exaggerated eosinophilic inflammation
in response to the intratracheal installation of IL-13.

Regarding Siglec E (human ortholog = Siglec 9), it was shown
that Siglec E-deficient mice in an LPS-induced lung
inflammation model exhibited exaggerated neutrophil
recruitment (18). The authors concluded that signaling via
Siglec E may control neutrophilic inflammation. Since severe
neutrophilic asthma is an endotype that is difficult to treat, using
agonistic antibodies or glycan ligands as new treatment options
was discussed (19). One natural ligand that was identified is high
molecular weight hyaluronan from the capsule polysaccharides
of the pathogen group A of Streptococcus. Their binding to Siglec
9 suppresses the activation of neutrophilic granulocytes (60).

N-glycolylneuraminic acid (Neu5Gc) is a sialic acid that is
expressed on nonhuman mammalian cells and glycoproteins and
is not present in bacteria. It was proposed to be partially responsible
for the “farming effect” because there is a relationship between the
exposure toward Neu5Gc in a rural environment and protection
against allergy. The immunomodulatory activity of Neu5Gc was
confirmed by suppression of allergic airway inflammation in a
murine model (61). An involvement of Siglec 8 as the binding
receptor was discussed by the authors (Figure 1D) (62).
GALECTINS – SOLUBLE
GLYCORECEPTORS RECOGNIZING
GALACTOSE-CONTAINING MOLECULES

In addition to the group of CLR, there is a large number of other
glycoreceptors that play a role in the immune response but are
not considered PRRs. Galectins are small, soluble proteins that
are expressed and secreted by different cells. Fifteen members of
this protein family have been discovered so far (20).
Functionally, they are able to influence the differentiation and
survival of T cells and their interaction with DCs (63).

Gal-1-deficient mice exhibit an increased recruitment of
eosinophils and T lymphocytes in the airways as well as elevated
peripheral blood and bone marrow eosinophils relative to
corresponding WT mice (21). Moreover, mice had an increased
airway hyperresponsiveness and displayed significantly elevated
levels of TNF-a in the lung tissue. The authors suggested from
their results that Gal-1 can limit eosinophilic airway inflammation
by inhibiting the migration and promoting apoptosis of
eosinophilic granulocytes.

In order to evaluate Gal 1 as a potential therapeutic protein,
Ly et al. have shown that the recombinant Gal 1 protects from
allergic asthma in a mouse model (22). The immunomodulatory
Frontiers in Immunology | www.frontiersin.org 6
effects in the allergic lung were correlated with the activation of
the extracellular signal-regulated kinase signaling pathway and
downregulation of endogenous Gal-1. rGal-1 reduced the plasma
concentrations of anti-OVA IgE and IL-17, therefore, it can be
hypothesized that it may also act on the Th17 response involved
in severe asthma.

Gal-3 gene-deficient mice also showed enhanced disease
activity in a mouse model of asthma by Zuberi et al., arguing
for a regulatory role in asthma (23). Intratracheal instillation of
plasmid DNA encoding Gal-3 led to the normalization of the
eosinophil and T-cell count in BALF and a strong inhibition of
IL-5 mRNA in the lungs in a rat asthma model (24). It was
shown in a chronic asthma model in mice that twelve weeks after
the first intranasal allergen instillation, treatment with the Gal-3
gene led to an improvement in the eosinophil count and the
normalization of hyperresponsiveness to methacholine. In
addition, this treatment resulted in a reduced mucus secretion
and subepithelial fibrosis (25), showing that Gal-3 also seems to
have some therapeutic merit, although the mode of action in the
asthma model was unclear. Regarding the mechanism, Tsai et al.
showed that Gal-3 gene-deficient mice have more severe disease
activity in a colitis model, indicating that Gal-3 may protect from
inflammation (64). Moreover, the authors showed that mucosal
inflammation was reduced in the colitis model by treating with
Gal-3. There was strong evidence that regulatory T cells were
induced by Gal-3.

Regarding Gal-9, it was shown that it can bind to
glycoepitopes present on IgE, therefore, inhibiting the
activation of mast cells by specific allergens (26). Moreover, the
authors showed that Gal-9 attenuated asthmatic reaction in
guinea pigs and suppressed passive-cutaneous anaphylaxis in
mice, showing that Gal-9 may also be a potent modulator useful
for the treatment of allergy (Figure 1E).
CONCLUSION

We know several different lectin receptors playing a role in not
only innate but also adaptive immunity. Some of them serve
predominantly as PRR, others rather recognize the glycosylation
pattern of self-molecules. Knowing these interactions may open
the way to new therapeutics for immunostimulation in, for
example, vaccination and for the regulation of exaggerated
immune responses, such as allergic inflammation. The focus of
this review was to sum up what is known about the
carbohydrate/lectin interaction that could be exploited for
immunomodulation to prevent or treat respiratory allergies.

We are still at the beginning of this exciting field of research that
may contribute to the development of new allergy preventive drugs.
However, there are many issues still to be addressed. Although we
focused in this review on literature which showed allergy protection
by carbohydrates, it cannot be generalized that treatment with
carbohydrates always acts in a preventive manner. Many examples
are known where carbohydrate/lectin receptor interaction was
linked to allergic sensitization. Similar observations were
described for experiments with TLR receptor ligands where
contradictory results were also obtained, depending on the dose
April 2021 | Volume 12 | Article 635411
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of ligand used and how the experiment was conducted. Therefore,
it is very important to consider the quality of the carbohydrate
ligand used, the experimental design and the ligand receptor
interaction that is involved in all experiments performed.

Furthermore, the majority of the results summarized in this
review come from experiments with mice. However, it is important
to bear in mind that there are several differences between lectin
receptors found inmice and their human homologues. The binding
behavior and the signal transduction often differs between the
receptors of the two species. Furthermore, several paralogous exist
in mice which do not have comparable receptors in human. Thus,
when immunomodulatory carbohydrates were identified in murine
model systems, it is of particular importance to know the binding
receptor to get an idea whether the substance would also act in
human in a similar manner.

Due to the increased hygienic measures accompanying the
recent virus pandemic, it can be expected that allergic diseases
will continue to rise. Effective treatments to prevent allergic
disease are urgently needed. There is still a long way until the
Frontiers in Immunology | www.frontiersin.org 7
first carbohydrates will enter into clinical trials, however, it is
worth it. There are many examples of how the allergic immune
response is modified by carbohydrates and many of them seem
to have no pro-inflammatory properties. Therefore, this
substance class would be ideally suited for prophylaxis.
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