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Schistosomiasis is the second most important human parasitic disease in terms of
socioeconomic impact, causing great morbidity and mortality, predominantly across the
African continent. For intestinal schistosomiasis, severe morbidity manifests as periportal
fibrosis (PPF) in which large tracts of macro-fibrosis of the liver, visible by ultrasound, can
occlude the main portal vein leading to portal hypertension (PHT), sequelae such as
ascites and collateral vasculature, and ultimately fatalities. For urogenital schistosomiasis,
severe morbidity manifests as pathology throughout the urinary system and genitals, and
is a definitive cause of squamous cell bladder carcinoma. Preventative chemotherapy
(PC) programmes, delivered through mass drug administration (MDA) of praziquantel
(PZQ), have been at the forefront of schistosomiasis control programmes in sub-
Saharan Africa since their commencement in Uganda in 2003. However, despite many
successes, ‘biological hotspots’ (as distinct from ‘operational hotspots’) of both persistent
high transmission and morbidity remain. In some areas, this failure to gain control of
schistosomiasis has devastating consequences, with not only persistently high infection
intensities, but both “subtle” and severe morbidity remaining prevalent. These hotspots
highlight the requirement to revisit research into severe morbidity and its mechanisms, a
topic that has been out of favor during times of PC implementation. Indeed, the focality
and spatially-structured epidemiology of schistosomiasis, its transmission persistence
and the morbidity induced, has long suggested that gene-environmental-interactions
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playing out at the host-parasite interface are crucial. Here we review evidence of
potential unique parasite factors, host factors, and their gene-environmental
interactions in terms of explaining differential morbidity profiles in the human host. We
then take the situation of schistosomiasis mansoni within the Albertine region of Uganda
as a case study in terms of elucidating the factors behind the severe morbidity observed
and the avenues and directions for future research currently underway within a new
research and clinical trial programme (FibroScHot).
Keywords: schistosomiasis, biological hotspot, morbidity, host-parasite-environmental-factors, FibroScHot
INTRODUCTION

Species of the genus Schistosoma are digenetic trematodes and the
causative agents of the Neglected Tropical Disease (NTD)
schistosomiasis; a parasitic disease that ranks second only to
malaria in terms of socioeconomic impacts. Over 220 million
people worldwide are currently infected, 90% of whom live in
sub-Saharan Africa (SSA) (1, 2), with an estimated annual mortality
of at least 200,000 (3). Infection in humans, as well as alternative
mammalian definitive hosts, occurs in contaminated freshwater
environments via cercariae shed from specific snail intermediate
hosts. Early acute morbidity can occur following cutaneous
penetration, sometimes leading to an urticarial rash known as
swimmers itch or cercarial dermatitis (4, 5). After entering the
host, schistosomes migrate through the body to mature to
adulthood in the liver. This phase can also involve a second
major acute stage around four weeks post exposure, known as
Katayama fever, typically characterized by fever, urticarial rash,
enlarged liver and spleen and bronchospasm (6). The precise
pathogenesis of Katayama fever is unknown, and is also
frequently missed from diagnosis, hence little is known about
potential differential morbidity profiles by parasite species, host or
habitat - although it is suspected to involve an immune complex
phenomenon initiated by the maturing schistosomes and
potentially their eggs. The major chronic clinical manifestations of
human schistosomiasis are, however, primarily associated with the
species-specific oviposition site of the adult schistosomes. With the
female residing, and maturing, within the gynecophoral canal of
the larger male, schistosome males carry the pair to the mesenteric
plexus (for the intestinal schistosome species – predominantly S.
mansoniwithin SSA, South America, the Caribbean and the Yemen,
with S. intercalatum and S. guineensis as minor species within
Africa, and S. japonicum or S. mekongi across parts of Asia) or to the
veins of the pelvis (for the urogenital species S. haematobium).
Sexual reproduction [and in certain cases parthenogenesis (7)]
between the gonochoric adults results in the production of up to
hundreds or thousands of eggs per day per female worm, depending
on the species (on average, 20-200 for S. haematobium (and
potentially hybrids therein), 100-300 for S. mansoni, but 500-3000
for S. japonicum). Only a proportion of these spined eggs are
excreted via the host’s feces in the case of intestinal schistosomiasis
or urine in urogenital schistosomiasis to pursue the parasite’s life
cycle. The remainder of the eggs remain trapped in the host tissues
inducing granulomatous and fibrotic responses via the host’s
org 2
immune system (8). In children, continued inflammation has
been reported to impede, amongst other pathologies, iron
metabolism, with consequent disabling systemic morbidities
including anemia, malnutrition, physical fitness and impaired
physical and cognitive development (9, 10).

For urogenital schistosomiasis, long-term chronic infection may
lead to lesions in the vesical and ureteral walls, resulting in fibrosis of
the bladder and lower ureters, calcification of the urinary tract, and
kidney dysfunctions. This chronic inflammation of the bladder can
ultimately cause squamous cell bladder cancer (11). Lesions of both
the male and female genital tracts, known as genital schistosomiasis,
are understood to be potential causes of sterility and maternal fatal
hemorrhaging during child birth, as well as risk co-factors for
sexually-transmitted diseases such as HIV (11–13). Chronic
intestinal schistosomiasis, in its severest form, can cause the
development of periportal fibrosis (PPF), characterized by large
tracts offibrotic material laid down along the liver vasculature. With
PPF, blood flow through the liver can become restricted leading to
the development of portal hypertension, associated collateral
vasculature and esophageal varices, and often accompanying
ascites. Death can occur through hematemesis caused by the
rupturing of esophageal varices (14, 15).

Sub-Saharan Africa currently carries the major global burden of
schistosomiasis, and hence, since 2003, large-scale mass drug
administration (MDA) programmes of praziquantel (PZQ), as
preventative chemotherapy (PC), has been implemented across
much of SSA (16). Morbidity control has been, in many countries,
generally successful (17) and this helped lead to a revision of the
World Health Organization (WHO) strategic plan for a vision of “a
world free of schistosomiasis”, which included controlling morbidity
of schistosomiasis by 2020 (defined as prevalence of heavy-intensity
infection <5% aggregated across sentinel sites) (17, 18). Likewise,
the newly-launched revised WHO 2021-2030 NTD Roadmap, aims
to eliminate schistosomiasis as a public health problem (EPHP,
defined as elimination of morbidity where prevalence of heavy
infection intensity is less than 1% in all sentinel sites) in all
endemic countries by 2030 (19). Complete interruption of
transmission (reduction of incidence of infection to zero) is also a
target in selected African regions by 2030 (19). Likewise, China has set
the target of reaching complete interruption of transmission at the
country level by 2030 (20). However, recent reports of schistosomiasis
being more prevalent than previously thought (21), indications of
potentially reduced drug efficacy among populations under high
MDA pressure (22, 23), continued persistent and/or re-emerging
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‘hotspots’ of infection (encompassing both operational and biological
hotspots), in terms of infection prevalence (17, 24), intensities (25–32)
and/or severe host morbidity (33–37) all serve to highlight that
schistosomes are highly complex multi-host parasitic organisms for
which many essential characteristics of their biology and
epidemiology, and the human host response to exposure and
infection, remain largely unknown.

One long-standing unanswered question in disease
epidemiology in general is why pathogen/parasite prevalence,
intensity and associated morbidity are heterogonous across space
and time and what factors may be underlying these differences.
Host-parasite interactions involve a complex co-evolutionary
interplay, where antagonist factors from the host (i.e., defense
mechanisms) and the parasite (i.e., infective and/or virulence
strategies) play a significant role in determining the outcome in
terms of both transmission potential and pathology induced.While
host factors and environmental differences have been at the center
of most studies trying to understand these disparities, parasite
factors, in comparison, have been overlooked. This scenario is
certainly true for schistosomiasis for which a key epidemiological
feature is that parasite factors are not uniform across space and
time. There is substantial heterogeneity in terms of infection
prevalence and/or intensity among different geographic areas and
individual hosts, even within relatively close locations of the same
region (38–41). Likewise, studies have revealed that the disease
severity can vary considerably at both the geographical and
individual level for both S. mansoni (42–45) and S. haematobium
(46–48), associated in part, but not always, in focality to
accompanying high transmission and infection intensities (39,
45, 49–52). Epidemiological evidence suggests such variation in
morbidity could also be partially explained by, among other factors,
the immunological and genetic background of the endemic
communities, their nutritional status and/or the length of time
individuals have been exposed (45, 53–57). However, only a few
studies have aimed to assess if potential parasites factors may
contribute to this dichotomy in morbidity and particularly in PPF
and its complications. In line with the objectives of schistosomiasis
control, and the EPHP targets in particular, elucidating the relative
etiologies behind such geographical and individual variations in
morbidity are of profound importance. Here we review the
potential unique parasite factors, human host response factors,
and their gene-environment interactions in terms of explaining
persisting morbidity hotspots. We then take the situation of
schistosomiasis mansoni within the Albertine region of Uganda
as a case study in terms of elucidating the potential factors behind
the severe morbidity observed to date and the avenues and
direction for research currently underway within a new clinical
trial programme (FibroScHot).
THE ROLE OF THE PARASITE IN
MORBIDITY HOTSPOTS

By definition parasites are harmful to their hosts, and at its
simplest, schistosomiasis-associated morbidity levels have been
associated with infection intensity. The recent expansion of
Frontiers in Immunology | www.frontiersin.org 3
MDA programmes with PZQ has led, in general, to significant
reductions in schistosomiasis prevalence, intensity and
subsequent human host morbidity (17, 37, 58). However, it
remains to be ascertained how such MDA, together with other
anthropogenic selection pressures imposed by our changing
world, may impact upon parasite fitness and strategies, nor
how this in turn may affect their genetic diversity, transmission
dynamics, virulence, clinical outcome and drug resistance
development across Africa (59). Early studies in the laboratory
have clearly shown that schistosomes with reduced susceptibility
to PZQ can be selected for (60, 61), but that this resistance comes
with a cost in terms of reduced schistosomes reproductive fitness
(62) as well as genetic diversity (63–65). Furthermore, within
only a few generations, selective pressures imposed on
laboratory-bred schistosomes can produce rapid changes in life
history traits including parasites infectivity, fecundity,
transmission and virulence (66–74). Likewise, field-based
studies in which implementation of large-scale intervention
trials on optimal treatment in various zones of Africa, have
shown a strong variability of response to annual MDA (30). For
example, certain villages in the Nile Delta remain highly
prevalent to S. mansoni despite over two decades of MDA
(75). Other locations such as in Côte d’Ivoire have shown an
initial decrease in S. mansoni infections after MDA sometimes
followed by an increase in prevalence the following years (76).
Moreover, after multiple rounds of MDA in the transmission
hotspots of Mayuge District, Uganda, egg reduction rates (ERR)
were found to be reduced to below theWHO recommendation of
90% in contrast to that observed amongst school-children in
similar regions but with a lower past MDA pressure history (22).
Assessing therapeutic efficacy of PZQ against schistosomes and
the changes in parasites’ susceptibility is thus particularly
important (22, 23). Also in Uganda, the communities on the
shores of Lake Albert are a typical example of how despite strong
efforts to lower the burden of high infection intensities PPF can
remain common (33, 35, 77–79). Such locations where
Schistosoma spp. infection fails to decline in prevalence and/or
intensity to expected levels despite multiple years of annual
MDA, in comparison to locations that simply have high
prevalence before intervention, can be considered as persistent
“hotspots” (25–27, 80). As drug resistance is commonly
associated with life-history costs (81–84), the potential for drug
resistance and associated trade-offs may be important factors in
the maintenance of high infection intensities and morbidity
levels across Africa. The success, or not, of control strategies in
several endemic areas is thus likely to be affected by host-
parasite-drug interactions and these associated trade-offs have
raised concerns there may be reduced drug efficacy, especially in
communities with a more intensive history of PZQ treatment
(22, 85, 86). However, while some degree of reduced drug
susceptibility has been suggested (22, 86–90), more data are
warranted to clarify the evolution of such responses under field
conditions and dissect potential resistance from, for example,
differential host clearance responses and/or rapid reinfection that
seems to best explain apparent low cure rates in most
situations (88).
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Additional to potential PZQ resistance, other notable parasite
factors may contribute in maintaining high egg outputs and
hence potential high host morbidity, despite efficient MDA
coverage. Among these factors, density-dependent fecundity
compensation, which is a common feature of several
microparasite and macroparasite (notably helminths) life cycles
may regulate the parasite reproduction and transmission
dynamics in a way that make the worm-egg relationship non-
linear (19) and in some cases geographically variable (91).
Density-dependent fecundity can either be positive at low
levels of infection (e.g. density-dependent facilitation) or
negative at high parasite densities (e.g. density-dependent
inhibition) because of intra-host competition for resources
and/or immunological host responses (92, 93). Although still
controversial, studies on Schistosoma worm burdens and
associated egg counts have shown potential evidence for
density-dependent fecundity inhibition in the two major
human infecting species, S. mansoni and S. haematobium. The
precise nature of the phenomenon is not well understood, since
the only direct data that exists is from a limited number autopsy
studies (94) and with subsequent biostatistical debate over their
original conclusions (94–96). Empirically, population genetic
analyses including parentage analysis to estimate the adult
worm burden performed on data from Mali (15, 97) and
Tanzania (98–102) have shown that despite no evidence of a
reduction in mean infection intensity (e.g. egg counts) by the
standard parasitological techniques (e.g., Kato-Katz), the worm
burdens were declining within individual hosts after PZQ
administration, thus underlying a relaxation of the density-
dependent fecundity inhibition among S. mansoni populations
(103). However, comparison of cross-sectional levels of the adult
worm derived cationic anodic antigen (an indirect measure of
worm burden), against egg counts have shown a diversion from
the linear between the measurement, particularly in older
individuals, for S. haematobium (104, 105) but not S. mansoni
for which a linear relationship has been reported (104). These
observations raise fundamental questions on schistosome
population biology and strongly suggests that, despite a
reduction in the adult worm population after treatment, such
parasites factors may contribute to population persistence and
resilience by producing characteristic epidemiological patterns
maintaining the global infection intensities and morbidity to
unexpectedly high levels (106, 107). Importantly, increasing the
reproduction rates of parasites that survive treatment and
potentially harbor drug-resistant or virulence related alleles
may be expected to increase the spread of such traits in the
populations (106, 107). Finally, by shaping the transmission
dynamics of the parasite and its potential response or
resilience to control measures, such processes may complicate
both the monitoring and implementation of chemotherapy (103,
107, 108).

Another critical biological parasite factor for consideration is
that, whilst disease control programmes, at least in terms of their
monitoring and evaluation, tend to consider schistosome-
specific morbidity in isolation, parasites under natural
situations do not exist in isolation. Inter-genera, inter-specific
Frontiers in Immunology | www.frontiersin.org 4
and even intra-specific interactions are likely and, in many cases,
may be predicted to differentially impact the morbidity inflicted
upon their hosts via antagonistic or synergistic effects (109, 110).
For example, across much of SSA, mixed species infections of
both S. mansoni and S. haematobium are common (111–115).
Such co-infections may lead to co-morbidities with pathological
symptoms being a combination between those of the parasite
species. A series of studies across Cameroon, Niger, Kenya and
Senegal have found that mixed S. mansoni and S. haematobium
infections decrease hepato-splenic morbidity compared to single
S. mansoni infections and increase urogenital morbidity
compared to single S. haematobium infections (111, 116, 117).
The lowering effect observed on liver morbidity is believed to be
because dominant S. haematobium males divert S. mansoni
females from the portal vein to the vesical plexus, resulting in
more eggs being passed through the urogenital tract and less eggs
being delivered to the liver tissues. Similarly, in their recent study
Huyse and colleagues showed an intriguing association between
S. mansoni genetic variation and bladder morbidity (118), again
potentially explicable through S. mansoni females being paired
with S. haematobium males that guide females towards the
urogenital system (118). In Senegal, ectopic elimination of eggs
is also common (39, 89, 119–121). Distinct studies undertaken
there showed that urine samples from people with mixed
infections of S. mansoni and S. haematobium contained 31%
(119) and 13% (121) of S. mansoni eggs. In the latter study people
infected with both species and eliminating S. mansoni eggs both
via urine and via stool had the highest risk of bladder morbidity
(121). Likewise, on a same note, Ernould and Sellin found cure
rates to be much lower in the Senegalese village with mixed
infection compared to villages with single infections (119). The
authors found that after treatment S. haematobium infection
remained low, whereas egg excretion by S. mansoni was seven
times higher than at the start of the study. The authors argued
that in addition to the possibility of PZQ resistance, or as more
likely, potentially higher force of infection/rapid re-infection of S.
mansoni from the environment at this point, relative to S.
haematobium, the elimination of S. haematobium after
treatment and heterologous pairings allowed remaining S.
mansoni females to pair with S. mansoni males that
survived treatment.

Furthermore, with gathering development in molecular typing,
and potentially in line with ongoing major anthropogenic changes
in the environment, people across large expanses of, particularly
Western, Eastern and Southern SSA, have been found to be
infected with viable hybridized schistosomes involving the
human urogenital S. haematobium with the intestinal
schistosome species of livestock S. bovis, S. curassoni, S. mattehii
and beyond (21, 122–127). Given the pairings of urogenital with
intestinal schistosome species here, we may well predict similarly
differential morbidity profiles as that observed for the
aforementioned S. mansoni with S. haematobium (114, 128).
Indeed, given that these Haematobium group hybrids produce
viable eggs, in contrast to the more phylogenetically distant S.
mansoni with S. haematobium pairings, one may predict
exacerbated differentiating morbidity profiles in relation to
March 2021 | Volume 12 | Article 635869
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infection status (129). Hybridization between genetically distinct
species raises the possibility of promoting genetic admixture and
diversity, introducing novel genes across species boundaries, but
also lead to the emergence of novel hybrid zoonotic strains with an
increased transmission potential that could have serious
implications for the control of the disease (124, 129–131). The
differential impact of such inter-specific interactions on the host
morbidity profiles observed are pertinent in terms of highlighting
the need to, wherever possible, measure both hepatic and
urogenital morbidity indicators during MDA monitoring and
evaluation where co-infections and zoonotic species are known
or suspected to exist.

The role of intra-specific differences and interactions on the
host morbidity profile must also be considered (132, 133).
Although the role of the parasite genetic diversity in differential
host response is well known for microparasites (134, 135), there is
comparably less known regarding the potential importance of
macroparasite genetic heterogeneities in general, and schistosomes
in particular, on disease epidemiology (136). Laboratory studies,
however, have shown that schistosomes strains or populations
from the same or different geographical locations can show a
number of differences in biological traits related to transmission
and virulence such as infectivity, egg production, pathogenicity
and response to chemotherapy (11, 137–146). For example, some
S. haematobium strains studied in the laboratory show different
levels of mortality and worm recovery in hamsters as well as
differences in snail infectivity (147), while different S. mansoni
strains have been shown to induce disparate rates of hepatomegaly
and splenomegaly despite comparable fecal egg counts (137).
Moreover, alternative transmission strategies with the
occurrence of trade-offs between parasite transmission and host
survival have been observed in genetically different schistosome
populations (148). Hence, this shows that schistosomes’ virulence
occurs with significant variation for both intermediate and
definitive hosts on a genotype-dependent basis, demonstrating
that virulence and transmission may vary across individuals of a
population and/or between populations (66, 140, 148).

Species–specific microsatellite markers developed for S.
mansoni (149–152) and S. haematobium (103, 153) have also
provided a better understanding of schistosomes epidemiology
and transmission patterns through investigation of genotypic
associations at the population level in the field (154). Such
studies have revealed considerable variation in schistosome
populations with high levels of genetic diversity mainly finding
its origin at the infrapopulation level (41, 152, 155–163).
Schistosomes are mostly structured according to distance
between transmission sites with limited gene flow at both a
regional and continental scale (65, 157, 164). However, patterns
of population structure vary between different regions and
epidemiological settings (165) and while some studies show
that the parasite’s genetic variation is usually randomly
distributed at relatively small scales with high levels of gene
flow within and between hosts and sites (89, 154, 156, 163, 166,
167), others show that some populations may be significantly
differentiated even among relatively close geographic locations
(41, 160, 168, 169). In Uganda, for example, evidence suggests
Frontiers in Immunology | www.frontiersin.org 5
that parasite population genetics are potentially playing a role in
the variations in morbidity found between Lake Albert and Lake
Victoria. In addition to disparate levels of morbidity with higher
levels of PPF in Lake Albert communities, previous barcoding of
S. mansoni collected from both definitive human hosts and
intermediate snail hosts on the shores of Lake Albert in
Uganda and Lake Victoria in Kenya, Tanzania and Uganda
revealed that the population genetic structure of S. mansoni is
not uniform across the endemic area. Whilst both populations
are extensively diverse, studies showed that in Lake Victoria non-
synonymous mutations were more diverse than in Lake Albert
and that there was a strong genetic differentiation between the
two parasite populations (167, 169–173). Interestingly, other
studies have shown that parasites from Lake Victoria area
present different local strains (173), with the relatively highest
levels of genetic diversity across several markers (22, 155, 157,
174). The epidemiological heterogeneity of intestinal
schistosomiasis between these lake environments could thus be
due to parasite diversity itself (117, 172) and the lack of gene flow
strongly suggests that any locally evolved traits, such as virulence
or putative drug resistance would likely stay restricted to the
focal population, leading, at least in part, to differential host
morbidity. Previous studies conducted in Mali, Senegal and
Uganda have, however, found no associations between
infection intensity and parasites genetic diversity when
comparing allelic richness, heterozygosity, nor parental
genotypes to various levels of infection intensity (103, 156,
167). Nonetheless, the parasite’s virulence measured through
its fecundity could in part be linked to the parasite’s genetic
diversity or associated to a particular genotype. Although few
potential direct links between parasite genetics and host induced
pathology are to yet be made, various authors have suggested that
schistosomes infection intensity and the parasite populations’
genetics in different African countries may be responsible for
such discrepancies in clinical outcomes by acting on several
parasite features including their fecundity and immunogenicity
(53, 132, 166, 175, 176). Nevertheless, our knowledge on the role
of parasite genetic variation in host disease phenotype in human
schistosomiasis is currently limited and only few studies have
directly investigated the relationship between morbidity and the
genetic variation.

Brouwer and colleagues (133) gave the first insight in this
delicate host-morbidity/parasite-genetics association by focusing
on S. haematobium, the species responsible for urogenital
schistosomiasis. Using randomly amplified polymorphic DNA
(RAPD) between S. haematobium populations from children
with varying pathology of urinary tract in Zimbabwe the
authors compared the distribution of S. haematobium genotypes
in the definitive host in relation to that of the clinical outcome
(133). They showed that the allelic frequencies at eight loci differed
significantly between the mild and severe groups and that three
clusters were significantly over-represented in schoolchildren with
severe urogenital lesions. Inspection of allelic distributions for
clusters revealed that cluster 1 (severe) and cluster 7 (mild) had
inverse genotypes at loci that differed significantly between groups,
supporting the notion that particular parasite strains or genetic
March 2021 | Volume 12 | Article 635869
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factors may be associated with clinical outcome. However, they
could not robustly link pathology to parasite genotypes or genes
due to the limitations of the RAPD technique. Further studies were
therefore conducted on S. haematobium with the aim of
elucidating any potential relationship between host morbidity
and parasites genetic variation. In a second study, while the
authors found high levels of genetic diversity among the three
isolates studied (Egypt, Zimbabwe, and South Africa) they did not
identify a role of parasites genetic diversity in the difference in
morbidity observed (132). Finally, in a third study, the same
authors used the RAPD based-approach in Sudan, but found no
association between abnormal ultrasound urinary tract scans and
intensity of infection (177) nor could they identify any significant
difference when comparing the three different genotypes identified
with the severity of the disease (178). However, the authors
suggested that differences in parasite strains, such as infection
intensity, could partially explain why they failed to retrieve similar
results to those previously observed by Brouwer in Zimbabwe
(133), together with the small number of variable alleles recorded
in their study largely hampering their ability to detect associations
between diversity and host morbidity.

In S. mansoni, at least three studies have been conducted on
host characteristics and putative parasite genetic variation. In the
first one, Barbosa and colleagues (179) used 15 microsatellite
markers and found geographic clustering in S. mansoni over a
scale of 8 km. However, the authors could not link this with
demographic or epidemiological host characteristics (179). A
second study using 11 microsatellite markers (41), suggested the
existence of a link between parasite genetic diversity and
prevalence and intensity of infection between three settings.
The authors observed that the gradient they found in genetic
diversity was the same as the gradient they previously observed
when focusing on the parasite prevalence and intensities of
infection. However, because only three populations were
sampled, they could not statistically validate this link between
parasite genetic diversity and parasite virulence (41). Finally,
Huyse and colleagues are to date the only ones to have formally
demonstrated a potential link between the parasite genetic
variation and host disease phenotype in humans (118). Using
nine microsatellite markers on 1561 S. mansoni larvae collected
from 44 human hosts in Senegal they were able to link host
characteristics such as age, sex, infection intensity, liver and
bladder morbidity to the parasites genotypes. They showed a
significant association between allelic variation at the parasite
locus L46951 and host infection intensity and morbidity. This
locus is located near a gene (cGMP-dependent protein kinase)
linked to schistosomes egg production. Furthermore, by
reconstructing the parental genotypes the authors suggest that
adult parasite populations with the allele L46951 have a higher
fecundity and therefore produce more eggs and offspring than
those without this allele, thus potentially inducing higher levels
of morbidity (118).

Despite scarce studies and some contradictory results, or at
least issues in the methodology and detection power hampering
the authors’ ability to link parasites genotypes with host
characteristics, these studies clearly highlight the importance of
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genetic variation as an additional factor to schistosomiasis host
disease phenotypes, including a potential association with
persistent hotspots. It is necessary to take into consideration
parasite genetics and population diversity in future
epidemiological studies to make a clear relation between
transmission and morbidity in different geographical zones
where particular parasite genotypes may be predicted to
interact differentially with their host and lead to differences in
morbidity. One of our greatest limitations to date is the absence
of genetic markers sufficiently powerful to accurately allow us to
identify and link regions involved in the parasite’s virulence or
fecundity with host morbidity indicators. Such data may be
valuable in monitoring relationships between the parasite’s
transmission (prevalence and intensity) and virulence with
particular parasite genotypes or degrees of genetic diversity in
clinical phenotypes. Nevertheless, since microsatellites are
neutral markers, they are not expected to identify such
parasites traits unless they are physically close to such genes.
One potential first step would thus be to properly define and find
a consensus on what should be considered as parasite virulence
factors in schistosomes and other macroparasites of medical and/
or veterinary interest, while a second fundamental step would be
the development of specific virulence/fecundity markers or
whole genome Single Nucleotides Polymorphism (SNP)
markers allowing us to address the challenges at the interface
between parasite genetic factors and host induced morbidity.
THE ROLE OF THE HOST IN
MORBIDITY HOTSPOTS

As stated above, a key epidemiological feature of schistosome
infection is that the parasite prevalence, infection intensity and
associated morbidity are not uniform across space and time, with
substantial heterogeneity among different geographic areas and
individual hosts even within relatively close locations of the same
region (40, 41). In addition, familial aggregation suggests that
host-intrinsic and not just behavioral factors can be involved in
development of severe morbidity in humans (180, 181). There
have been a number of studies convincingly demonstrating that
genetic factors are important within intermediate snail hosts in
terms of their susceptibility and/or subsequent morbidity to
schistosomiasis and in promoting heterogeneity in patterns of
infection (see (71) and (182, 183) for review). In Uganda, for
example, a fundamental factor of differing snail host populations
could drive differing transmission dynamics of S. mansoni
between Lake Albert and Lake Victoria, with prevalence levels
and reinfection rates higher at Lake Albert (170, 184). Indeed
Biomphalaria stanleyi is found only in Lake Albert, and B.
choanomphala is present only in Lake Victoria, while B.
sudanica and B. pfeifferi are present in both lakes (185–189).
Such intermediate host–specific factors could have influenced
the evolutionary history of the parasites, playing an important
role shaping the genetic composition of schistosome populations
(156, 174, 190, 191) and selecting for particular parasite
genotypes of varying virulence.
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Direct evidence from the definitive hosts, and the human host
in particular, is in contrast less available due, in part, to an
inherent inability to perform controlled studies. Our knowledge
of the host intrinsic (rather than behavioral factors) underlying
disease dynamics and mechanism are therefore accumulated
from autopsy and observational epidemiological studies that
are clinical, genetic or immunological in design; combined
with animal experimental models for which the evidence is
heavily skewed towards S. mansoni due to the existence of a
well-established murine model for this infection. The mouse is
not permissive to S. haematobium, with hamsters being utilized
for lifecycle maintenance. This, coupled with a differing S.
haematobium predilection site within the hamster (the blood
supply of the intestine, rather than of the venus-plexus of the
pelvis as in humans) has resulted, until the introduction of a
murine egg micro-injection experimental model (192, 193), in a
relative scarcity of evidence for the immunopathological
mechanism in S. haematobium infection. Without knowledge
of the underlying mechanisms of severe morbidity, relating
variation in host factors across a geographical scale to indicate
the presence of morbidity hotspots is not possible.

Our early understanding of much of the clinical syndrome of
human intestinal schistosomiasis was gained through the ground
breaking autopsy work conducted by Alan Cheever and
colleagues in the 1960s in Brazil. Due to the host blood flow,
in S. mansoni infection a large proportion of the eggs laid by the
female worms get trapped in the distal site of the liver. In all cases
of liver PPF observed by Cheever (n=105), infection with S.
mansoni was present, and amongst the cases 85% had varices,
and hematemesis through rupturing of esophageal varices was
the main cause of death (14); thus establishing S. mansoni as the
causative agent of PPF and its consequences. In addition, after
perfusion of the cadavers he concluded that worm burden was
positively associated with presentation with PPF and its
complications (15). Cheever did, however, warn that any
observations made within his autopsy studies may not reflect
the epidemiological patterns observed within populations of
endemic areas as the demographic profile of autopsy cohorts
are by their inherent nature skewed towards the older sections of
the human population and/or those with severe disease who died
young. Repeat autopsy studies conducted in Egypt where S.
mansoni and S. haematobium are endemic confirmed the
linkage between PPF and intestinal schistosomiasis through
presence of S. mansoni eggs within macroscopic PPF lesions of
the liver, and discounted a link with S. haematobium (194).

At the time of the autopsy studies, clinical palpation of the
liver and spleen were the standard method of assessing whether
an individual had severe schistosomiasis. It was therefore not
until the 1980s and the introduction of portable ultrasound
machines that researchers were able to establish the true
relationship between presentation with PPF and demographic
and infection related parameters. A dissociation between peak
infection levels and peak prevalence of PPF was observed, with
fibrosis more apparent in adults than in adolescents, the age
group who carry the greatest infection burden (53, 195, 196).
Duration of ongoing infection, as well as high transmission
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levels, are now known to be important in the development of
PPF and its severity upon assessment (33). As adults, particularly
males, are more likely to have severe PPF (53), and this is linked
more to past exposure than current infection, treatment studies
with PZQ, which reduces infection burden but does not directly
treat the fibrosis, have shown that regression of PPF is less likely
to be observed amongst this demographic (197–199). In
children, on the other hand, PPF is often mild, but clearly
observable by ultrasound, and can respond well to treatment.
Amongst children regression of PPF can be observed through a
reduction in severity score at 7-months post-treatment (200),
with full resolution being observable by 2-years post-treatment
(201). However, the success of treatment of PPF is also
dependent on the force of transmission, with the rapid re-
infection that can occur in high transmission areas impeding
the success of treatment (199).

In contrast to S. mansoni where severe morbidity occurs in
tissues distal to the site of predilection, in S. haematobium the
immediate sites of egg deposition are those associated with severe
morbidity. S. haematobium worms pairs are believed to be
relatively sedentary, so the resulting tissue inflammation is very
focal, leading to bladder wall thickening in areas where eggs are
deposited regularly (97, 202). It has been proposed that there is
no pattern to where in the bladder the lesions occur (203).
Interaction between responding immune cells and the
neighboring urothelial cells causes urothelial hyperplasia (202),
which, with time, can result in the development of ultrasound
detectable masses (defined as >1cm thickening of the bladder
wall) and pseudopolyps (204). Younger children mostly have
what has been defined as milder bladder pathology, characterized
by wall thickening or irregularities (205). These irregularities are
likely to represent early polypoid lesions, which in autopsy
studies were observed around live eggs so indicative of active
infections prior to the death of the younger cadavers (202). In
epidemiological studies, a strong predictor (though not a
conclusive marker) of bladder morbidity, particularly in
children, is infection intensity (206–208). These bladder wall
irregularities therefore resolve in a manner similar to, but more
readily than the resolution of mild PPF after treatment with
PZQ, with full resolution observable within 6-months (205, 209,
210). However, again similar to S. mansoni associated morbidity,
in high transmission areas the success of a single round of
treatment is impeded by rapid re-infection and the associated
re-emergence of ultrasound detectable morbidity within a year
(205, 209, 210). In contrast, upper urinary tract morbidity
resolution post treatment is less successful (205).

The immuno-pathology secondary to schistosome infection
is thought to be as a result of host immune responses to egg
antigens rather than direct damage to the tissues by the eggs.
It is thought in S. mansoni infection that the arising tight
granuloma formation, characterized by concentric rings of
encapsulating immune cells around the eggs and subsequent
collagen deposition, may lead to advanced hepatosplenic
schistosomiasis (1, 11, 143, 211). Murine studies show that
granulomas formed during S. mansoni infection are as a result
of T helper (Th) 2 cytokines produced by CD4+ T cells (212).
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This results in the recruitment of immune cells including
eosinophils, monocytes, alternatively activated macrophages,
basophils, T and B cells to the site of inflammation (213), and
is aimed at containing the eggs and their hepatotoxic products
(214–216). How these early granuloma responses relate to the
long-term consequence of PPF observed within humans with
intestinal schistosomiasis remains largely unknown. In addition,
despite the egg micro-injection murine model of S. haematobium
morbidity indicating similar granuloma formation in response to
the eggs of this species, there are very significant biological
differences between S. haematobium and S. mansoni, including
the absence of a S. haematobium W-1 homologue (216), a major
immunogenic glycoprotein secreted by S. mansoni eggs that
drives Th2 polarization by dendritic cells (217, 218). The
experimental data from S. mansoni egg immuno-biology is
therefore not directly transferable to S. haematobium eggs.

At the human host genetic level, polymorphisms in the
interleukin (IL) -13 gene have been associated with
susceptibility to S. haematobium infection (219) and the loci of
the IL-13 gene, 5q31-q33, has been associated with susceptibility
to S. mansoni infection (220). However, care must be taken in
differentiating a type-2 response associated with protection from
infection per se, which is more significantly linked with immune
responses to adult worm derived antigens ( (221) for review),
from those responses that arise to egg antigens and cause
morbidity. That said, in line with the evidence from murine
studies that Th2 cytokines produced by CD4+ T cells induce
granuloma formation, human clinical-immunological studies
have found PPF to be associated with sustained Th2 responses
(222). One suggested mechanism for fibrosis from non-
schistosome human studies is the Th2 cytokine-induced
differentiation of CD14+ monocytes into fibrocytes (223).
Whether this is occurring in the context of schistosome
infection is not known. In humans, we have shown that Th2
responses to S. mansoni egg antigens in adults from a fishing
village in Uganda (224) and school-aged children in Kenya (225)
are generally suppressed during active S. mansoni infection. A
study by Colley et al. (226) suggests that dysregulation of T-cell
responses may be causative of PPF. However, this study was
based on T cell expansion assays and does not mention the type
of CD4+ T cells that is involved. In support of the “dysregulated
Th2” hypothesis, several human studies in Brazil where PPF was
defined using ultrasound have indicated an important role for
interleukin (IL)-13 in its development with elevated IL-13 levels
in response to S. mansoni soluble egg antigen (SEA) observed
amongst individuals with PPF (227–229). The association of Th2
cytokines with fibrosis and much of the pathology following S.
mansoni infection has also been shown in murine studies of
schistosomiasis (230–232). IL-13 is thought to induce its
fibrogenic effects through the activation and production of
transforming growth factor (TGF)-b (233), though TGF-b-
independent mechanisms have also been suggested by studies
using murine models (233). Experiments using the S. mansoni
murine model have also shown that these type-2 immune
responses are under epigenetic control with modulation of
dendritic cells towards those that polarize T cells to type 2 (234),
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polarization of the T cells themselves (235), and alternative
activation of macrophages (236) all being controlled by
epigenetic modification. For macrophages, prior exposure to S.
mansoni increased the expression of the demethylase that
promoted alternative activation of macrophages (236),
suggesting this response may be exacerbated when infection
is prolonged.

Information from an autopsy study conducted in Ibadan,
Nigeria also implicates a type-2 response in S. haematobium
morbidity, though histologically a stage progression in lesion is
found between children and adults (202). The early polypoid
lesions, representing active infections in younger cadavers (mean
age of 13-years), are characterized by loose granuloma formation
around clusters of eggs with mass eosinophil infiltration, a cell
type commonly associated with type 2 responses, particularly
IL-5. In older individuals, lesions have more distinct mature
granulomas, concentric circles of fibrosis and collagen
deposition, more in line with the histological appearance of
granulomas in the egg micro-injection model. When dissected
these lesions have a “gritty” sensation, leading to the term “sandy-
patch”. They appear to be a chronic manifestation often being
associated with calcified eggs. A similar progression from loose
eosinophilic lesions, in this case termed rubbery papules, to sandy-
patches is observed in female genital schistosomiasis (237).
Epidemiologically, leukocyturia, a symptom of S. haematobium
infection, is highly correlated with egg counts (238, 239) and
amongst a cross-sectional Sudanese cohort, 59% of individuals
had eosinophiluria (defined as >=5% of urinary leukocytes). A
disparity between urinary and circulating cell differential counts,
with a mean of 42% of urinary cells being eosinophils, indicates
that urinary eosinophils were tissue eosinophils shed into the
urine. Eosinophiluria, but not other leukocyte counts or micro-
hematuria prevalence, mirrored infection intensity (240), again
emphasizing the role of the eosinophil within active S.
haematobium bladder lesions. Eosinophil effector mechanisms
include release of the toxic substances eosinophil cationic protein
(ECP), eosinophil derived neurotoxin and major basic protein
from granules. Urinary ECP levels in schoolchildren can
differentiate between severity of bladder morbidity with a
greater sensitivity than egg counts and as ECP levels are higher
in infected schoolchildren without ultrasound detectable
morbidity, than non-infected school-aged children, ECP is also
a marker of early bladder wall inflammation (210). In
addition ECP levels reflect resolution and re-emergence of
bladder morbidity after treatment (210). Finally, ECP detection
in vaginal lavagefluid is indicative offemale genital schistosomiasis
(FGS), with levels being higher for individuals with rubbery
papules (241). The role of eosinophils in FGS is also
indicated through decreasing vaginal lavage levels of ECP after
treatment (242). In school-children low ECP levels prior to
cell lysis, in comparison with potential cellular release as
measured after lysis (243), suggest that eosinophils may not
solely play traditional effector roles in response to S.
haematobium eggs. Eosinophils are multi-functional immune
cells, capable of antigen presentation and immune skewing and
regulation by selective release of cytokines (244). Eosinophils are
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also a key component of the S. mansoni granuloma, and a
significant association between a polymorphism within the ECP
gene and presentation with PPF amongst the inhabitants of a
Lake Albert fishing village has been observed, but this
observation was dependent on the ethnic group of the human
host (245).

In competing theory to the type-2 responses discussed above,
a role for the pro-inflammatory cytokine tumor necrosis factor
(TNF) in hepatic fibrosis and severe schistosomiasis disease in
humans has been demonstrated by several studies. The first study
to show a link between TNF (early studies do not clarify the
member of the TNF family measured) and hepatic fibrosis was in
Brazil (246). This was a hospital-based study and adult patients
were categorized as hepatosplenic using clinical definition, rather
than ultrasound. Further studies of community research subjects
affirmed the association between elevated levels of TNF and
increased risk of hepatosplenic disease (247–249). However, how
the mechanisms behind PPF can differ between the sexes as
reported in the Booth et al. study (247), with high TNF levels
being associated with PPF in adult females but not males, is
currently not clear. While the study of Mwatha and colleagues
(248) was based on clinically rather than ultrasound classified
school-aged children in Kambu region of Kenya, where a later
study demonstrated hepatosplenomegaly in school-aged children
in the absence of PPF (250). When immune responses of the
children participating in the later study were examined, there was
also high measurable TNF in response to SEA stimulation. When
re-infection was abrogated through annual treatment and
mollusciding of the river where transmission occurred, the
TNF response to SEA diminished significantly (251). This
raises the question as to whether TNF is a response to
infection per se as opposed to part of the immuno-pathological
disease process that leads to the development of PPF. We cannot
know if the Kenyan children in the study of Mwatha and
colleagues or the later study would have gone onto develop
ultrasound detectable PPF. That said, studies in murine models
have shown TNF to be an important mediator of granuloma
formation and hepatic fibrosis (252), however, clear distinction
between granuloma formation and PPF has to be drawn as we do
not know how the two relate. Host genetic studies are
contradictory regarding SNPs within the TNF loci; with no
observable association between HLA-TNF polymorphisms and
presentation with PPF in two Sudanese populations (253), but an
association between a TNF gene SNP and PPF being reported for
a Brazilian population (254). High TNF-alpha levels in response
to SEA stimulation have also been shown to be associated with
ultrasound detectable bladder morbidity due to S. haematobium
infection in Kenyan case-control (255) and cross-sectional
studies (256).

In stark contrast to the role for type-2 cytokines and TNF in
fibrosis, community-based studies in Sudan (249) and Uganda
(57) have associated high levels of interferon (IFN)-g with
reduced risk for fibrosis. In addition linkage between
polymorphisms in loci closely linked to IFN-g receptor genes
(57) and in the IFN-g gene itself (249) with PPF have been
reported. Non-schistosome experimental murine studies support
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this anti-fibrotic activity of IFN-g (257) and have associated it
with modulatory effects of IFN-g on TGF-b-induced
immunopathology (258). Murine studies of schistosomiasis
have associated IFN-g with reduced infiltration of cells into the
granulomatous sites and thus modulating the size of the
granuloma (259). However, a further murine study of
schistosomiasis has associated high IFN-g levels with severe
liver pathology during S. mansoni infection (260). In this
study, mice that lacked IL-10 and IL-4 manifested mortality
within few weeks of infection with S. mansoni, demonstrating
that a balanced immune response, that is appropriately
regulated, is what is required to limit pathology. In humans,
Schistosoma haematobium infection has been shown to lead to
hypermethylation of immune system genes within CD4+ T cells,
with inhibition of genes in the Th1 and IFNg signaling pathways
being observed, indicating a role for epigenetic control of the
IFNg response. This inhibition was shown to persist 6-months
after treatment (261).

Granuloma size in schistosome-infected animal models has
been shown to peak between 6-9 weeks after infection, after
which time they spontaneously regress in size (262, 263). In
experiments where spleen, lymph node and T cells were
adoptively transferred from chronically infected mice,
granuloma size was shown to be reduced in the recipient
animals (264, 265). From these experiments, it is apparent that
the spleen and lymph node cells play an important role in the
immunoregulation of granuloma formation. A role for B cells
and their FcgR (IgG receptor) in the immunoregulation of the
granuloma has been previously reported (266–268). Chronic
schistosomiasis has also been associated with increased
frequencies of FOXP3+ T regulatory (Treg) cells, and a role for
Tregs in the control of morbidity during S. mansoni infection has
been reported in both human and murine studies. A study of
community members in Kisumu, Kenya reported increased
frequencies of Treg cells in adults infected with S. mansoni
(269) while treatment of S. haematobium infection amongst
Gabonese children resulted in a decrease in Treg cells
indicating that their numbers are supported during active
infection (270). In another Kenyan study, the removal of Tregs
from PBMCs donated by S. mansoni-infected individuals was
associated with reduced levels of the key regulatory cytokine IL-
10 (271), supporting the notion that Tregs are one of the sources
of IL-10 and their immunoregulatory function is partly mediated
by this cytokine. The removal of Tregs from SEA stimulated
PBMC cultures of S. haematobium infected children increased
the production of type-2 and pro-inflammatory cytokines (270).
In a further study of S. haematobium infected school-children, B
regulatory cells were shown to be important in inducing the
expansion of IL-10 producing T cells (272). Booth et al. reported
an association between low IL-10 scores following stimulation of
blood with schistosome antigens and PPF in children from a
community at Lake Albert in Uganda (247). While Kenyan study
participants with high levels of TNF-alpha associated with
bladder morbidity also had low levels of IL-10 (255, 256).
Studies in murine models of schistosomiasis have supported
these observations by demonstrating increased proportions of
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Tregs following infection of mice with S. mansoni or injection
with SEA (273–276). The importance of Tregs in the control of
immunopathology during S. mansoni infection has further been
demonstrated by adoptive transfer of purified CD25-depleted T
CD4+ T cells into mice without mature T and B cells. This
depletion of CD25 CD4+ T cell (including Treg cells which
express high levels of CD25) resulted in severe disease in these
animals (275). The Tregs perform their immunoregulatory
functions through IL-10-dependent and IL-10-independent
mechanisms. The suppression of CD4+ T cell expansion and
egg-induced Th1 responses by IL-10-producing Tregs has been
reported in murine models of schistosomiasis (276). However,
IL-10-independent mechanism of down-regulation of Th2
responses has also be reported (277).

Another aspect of the host that may be pertinent to the
persistence of disease despite multiple rounds of treatment are
variations in the pharmokinetics (PK) of PZQ; the subject of a
recent systematic review (278). The authors of the review note
that, whilst no pharmacogenetics studies have apparently yet
been carried out for PZQ, SNPs in cytochrome P540 enzymes
have been hypothesized to result in differing PK of PZQ. In the
context of morbidity hotspots, differences in PK will not directly
lead to development of morbidity, only indirectly acting through
persistent infection, so parasite and other host factors will still be
of the utmost importance. Regarding whether or not PK can
change with increasing number of treatment rounds of PC
impacting on its effectiveness, the authors of the systematic
review make no note of acquired changes to the PK of PZQ.
They do, however, raise the impact of liver morbidity on PZQ
metabolism. The source paper (279) showed decreased
metabolism of PZQ with increasing Child-Pugh scores of liver
function (based on laboratory and clinical criteria, rather than
ultrasound), though no difference in the cure rates between
individuals with varying liver pathology were found. As
ultrasound for PPF was not undertaken and a significant
number of the cohort had positive makers for co-infection
with viral hepatitis (85% for Hepatitis B and 99% for Hepatitis
C), the impact of schistosomiasis mansoni morbidity on PK of
PZQ remains largely unknown, but it certainly raises the
question of whether co-infection with active viral hepatitis
impacts on schistosomiasis treatment efficacy.

Overall, regarding host intrinsic factors, one may suspect that
for genetic predisposition to result in a morbidity hotspot would
require greater carriage of the predisposing profile within the
population not just at the individual level. To date, human
genetic studies have been conducted within populations, with
some repeat association studies conducted in other populations,
but to our knowledge no widescale genetics studies comparing
susceptibility across populations has been conducted. We do
know that within Lake Albert fishing communities that had high
prevalence of PPF prior to MDA, that the Bugungu (ethnic-
linguistically Bantu) and Alur (ethnic-linguistically Nilotic)
people, despite differing ECP polymorphism linkage with
morbidity (245), did not appear to have differing overall
susceptibility to morbidity (33). This suggests no population
level differences in susceptibility between these two ethnically
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diverse groups within this morbidity hotspot and perhaps
indicates that genetic predisposition of the host may be more
important in the manifest outcome of a morbidity hotspot i.e.
who within the hotspot develops morbidity rather than being the
underlying cause of the hotspot itself. The same would be true of
genetic influences on PK of PZQ, with an influence on who
within the population responds best to treatment, with greater
potential for resolution of morbidity, rather than on the
maintenance of the morbidity hotspot itself. Epigenetically,
perhaps there could be some argument that past exposure/
exposure of previous generations could predispose a
population to mounting responses that are associated with the
development of morbidity. However, contrary to supporting
long-term epigenetic modifications passing from mother to
child that result in increased morbidity within a population,
murine in utero exposure to S. mansoni leads to a significant
decrease in acetylation of the IL-4 promotor, reducing type-2
responsiveness of naive T cells of the offspring (280). There are
not, to our knowledge, any published studies examining the
potential relationship between epigenetics and schistosomiasis-
associated morbidity in the human host.
THE ROLE OF HOST-PARASITE-
ENVIRONMENTAL INTERACTIONS
IN MORBIDITY

From the combined knowledge derived from autopsy and
epidemiological studies it is clear, for both S. mansoni and S.
haematobium infections, that longevity of exposure to the egg
antigens results in progression of fibrotic morbidity and that
particularly amongst adults this can result in chronic, extensive
fibrosis that is hard to treat through PZQ alone. It is also clear that
key to the development of severe disease, particularly for PPF, is the
breakdown of the regulation of the immune responses elicited against
the egg antigens of the schistosomes. This regulation is imperative in
protecting host tissue but also allows the parasite to sustain chronic
infection by limiting damage to their host, and thus passage of its
geneticmaterial to future generations. It is therefore important to note
that besides direct damage induced by the worms and their eggs, an
aspect of helminths virulence is that they have evolved sophisticated
mechanisms allowing them to evade or manipulate their hosts’
immune response and thus sustain a chronic infection. Helminths’
masterful manipulation of the immune system has mostly been
characterized from murine experimental models of nematode
infections and is mainly attributed to their secretomes and the
variety of immunomodulatory products interacting with host
tissues at every phase of the host immune response (281). This
ability/inability to induce immunomodulation could thus be
assimilated to virulence factors as defined in microparasites. As
discussed, it is clear that regulatory immune cells and cytokines are
induced during schistosome infection. Although not necessarily as
well characterized as some of the immunomodulatory molecules
secreted by nematodes, it is known that schistosome egg derived
molecules, such as S. mansoni antigen IPSE/alpha-1, can induce
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expansion of regulatory B-cells, though this was concluded not to be
the sole molecule within SEA that has this capability (276, 282).
Although much work is needed to further characterize such
factors in macroparasites in general and in particular for
schistosomes, an interesting open question is to know whether such
immunomodulatory molecules may vary at the parasite population
level and across geographical zones, hence playing a role in persistent
hotspots of infection and morbidity.

The complexity and multifactorial dimension of schistosomes
transmission including host factors (behavior and water usage,
genetics, age, sex and susceptibility, compliance to taking the
drug); site-specific factors (sanitation, and type of water contact,
or locations) as well as intermediate host factors (abundance,
strain, species); but also differences in parasites factors (species
and strains, parasites genotype and diversity, parasites ecology)
and parasites interaction (co-infection, competition and
hybridization), are all fundamental to our comprehension of
schistosomiasis disparities in morbidity and persistent hotspots
identified across the African continent (Figure 1). In these times
of global changes and extensive human induced selective
pressure, it is worthwhile considering that the parasite’s
evolutionary history may be undergoing substantial
modifications affecting their genetic diversity, transmission
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dynamics, virulence, and drug resistance development across
Africa (59), with some potential implications for schistosomiasis
clinical outcome and control. In this context, persistent
biological hotspots and the failure of control strategies in
several endemic areas is likely to be affected by host-parasite-
environmental interactions and associated trade-offs such as
increased virulence in parasites. To date we cannot rule out
variable drug effectiveness, reduced efficacy and drug resistance,
nor an increase in any specific genotypes/genotype combinations
that are associated with increased virulence and persistent
morbidity. Although such modifications can be monitored
through the integration of clinical and parasitological measures
with population genetic analyses using microsatellite markers, it
is also important to point out that the small number of neutral
genetic markers used in most studies and the fact that they do not
span the entire genome may be poorly resolutive in comparison
to whole-genome sequencing approaches. Therefore, if only a
few alleles were to be involved in the parasite’s life history
changes, there is a strong possibility that changes in allele
frequency at the population level would not be detected by
such methods. Indeed, although some parasite individuals may
contain a few alleles responsible for resistance or other virulence
related traits they may not cluster together because the majority
FIGURE 1 | Potential drivers of persistent transmission and morbidity hotspots. Within the center of the transmission triangle are three elements known to be
directly linked (solid arrows): force of transmission from the snail to human host is directly related to accumulation of infections over time and thus an increase in
intensity of infection as measured by egg excretion; in turn high infection intensity is a known (but not sole) factor in the development of morbidity. Force of
transmission of Schistosoma species is influenced by interactions (dotted arrows) between environmental, parasite and host factors. Once within the human host
further interactions between parasite and host will determine the successful accumulative establishment of adult worm pairs and the fecundity of those worm pairs.
Further interactions between the parasite and host will influence whether the host will develop severe morbidity. While interactions between environmental, parasite
and host factors combine to drive up the force of transmission resulting in hotspots, these factors do not exist in isolation of each other, with direct influences from
one corner of the transmission triangle to another occurring.
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of other alleles may vary at the individual level in the
infrapopulation or component population. Furthermore,
because cure rates are not 100% effective (85), it is worth
considering that not only resistant parasite may be found after
treatment, bringing some additional background noise into the
genetic analyses. The continuous gene flow between human and
animal parasite populations that undergo different selective
pressures, in particular in relation to drug treatment, certainly
also has an important role to play here in the persistence of these
biological hotspots, together with intensive transmission and
rapid re-infection of the hosts. It is thus important to implement
a One-health framework in further control programs where
humans at the community level (e.g., both children and
adults), but also the parasites remaining in the (relatively)
“drug free” environment (e.g., in snails, and in animals), would
be targeted for reduction in schistosomiasis. The current lack of
specific genetic markers for PZQ resistance and virulence, but
also the fact that we mostly rely on neutral markers is a crux
limitation in our ability to understand the role of parasite genetic
variation in host disease phenotype in human schistosomiasis,
including the wide-scale effect of drug treatment on parasite
population genetic response. Thus, the development of more
powerful non-neutral molecular markers (i.e., SNPs) at a genome
wide level is warranted if we are willing to assess the strength of
the genetic bottleneck after treatment, dissect re-infection from
persistent infections, but also genetic changes that may be
associated with the parasite’s fecundity, virulence and
associated host induced morbidity.

Once SNPs are identified, elucidating their role thus
confirming them as markers of virulence within the parasite
population will only be possible if, at the same time, we obtain a
greater understanding of the dysregulated immune response that
leads to the development of liver PPF and severe bladder, upper
urinary tract and genital tract fibrosis in humans. This includes
the dissection of the similarities and differences observed in the
immuno-pathology seen in S. mansoni and S. haematobium
infections, as virulence factors may differ between the two
species and indeed within species across their geographical
range. Of note, the newly released WHO NTD Roadmap 2021
to 2030 (19), explicitly highlights the need for defined indicators
of host morbidity. Without this linkage between parasite factors
and host response, our certainty that we are monitoring for
parasite SNPs that are indicative of potential resurgent hotspots
of morbidity if the environmental factors are not controlled will
be impacted.
CASE STUDY: UGANDAN
ALBERTINE REGION AND THE
FIBROSCHOT PROJECT

Working with the Schistosomiasis Control Initiative, Uganda
was at the forefront of establishment of the MDA-based control
programmes within SSA with the first communities there being
treated in 2003. These communities were based upon the shores
Frontiers in Immunology | www.frontiersin.org 12
of Lake Albert, an area that had historically been shown to have
high infection intensities and a high prevalence of severe
schistosomiasis (78, 172, 283). Success of the annual PC
approach was established both empirically through
measurements (172) and via anthropological investigations
(284). However, in recent years reports of a high incidence of
individuals presenting with portal hypertension at health clinics
has indicated that severe schistosomiasis is currently prevalent
within these areas (285). Given the age-association and long-
term exposure that can lead to PPF, one explanation is that those
presenting at the clinics with PPF are individuals who were not
treated as children. However, high reported programme coverage
rates from the districts indicate that the situation on Lake Albert
is representative of a biological hotspot, where local factors in the
ecology and host behavior of transmission have resulted in poor
control of infection. Biological hotspots also occur in Ugandan
communities resident in the fishing villages of Lake Victoria,
with equally poor resolution of infection prevalence through the
control programme (17). However, while those living on the
shores of Lake Albert harbor high prevalence and strong
intensities of infection with high rates of PPF (33, 35, 77–79,
283), in Lake Victoria communities, even prior to the
implementation of the control programmes when infection
levels were very high, observation of PPF was rare despite the
infection levels of a comparable level to those in Lake Albert
communities (36). These findings are indicative that not only is
Lake Albert a biological hotspot of transmission, but that factors
at the parasite-host interface lead to this being a morbidity
hotspot. As PPF in children has been shown to generally be
mild (277) and the observed association with infection intensities
indicating that they are in an active phase of developing PPF
there is some hope that the PPF observed can be reversed with
PZQ treatment, but that the current annual administration is
insufficient. From this the FibroScHot trial, which aims to
determine whether treatment of schoolchildren twice or four
times per year provides morbidity control was devised.

The primary objective of the trial at the center of the
FibroScHot project is to compare the impact of twice and four
times treatments annually with PZQ, relative to the standard
once annual treatment, on the prevalence of S. mansoni-
associated PPF of the liver. A secondary objective is to
compare the effect of the same treatment strategies on the
mean infection intensity of S. mansoni. In addition to the
traditional statistical analysis of results, the consortium
includes mathematical modelling expertise to allow impact of
the strategies on a term longer than the 2-year duration of the
trial to be examined. Predictive mathematical models will
initially be built using historical data from the village of
Booma for which behavioral aspects of human host exposure
are well defined (286), though FibroScHot itself will be
conducted in the neighboring district of Hoima. Data from the
FibroScHot trial will be used to validate these models. Crucially,
exploratory studies will run alongside the main clinical trial to
determine any significant limitations to this solely PC approach
to disease control. Medical anthropological analyses will examine
the social and cultural influences on treatment uptake, while in
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context of this review both parasite and host factors will be
studied. While we are cognizant of the potential role of co-
infection, particularly viral hepatitis (B and C) and Plasmodium,
in exacerbating morbidity within these communities, as the
individual randomized trial design assumes co-infection will be
comparable across the study arms, the study design is not
optimal for research into this and it will not be explored
further within FibroScHot.

The fact that PPF is more prevalent in Lake Albert region
than the Lake Victoria region may be predicted to be due, at least
in part, to parasite factors that prevent the successful down-
regulation of immuno-pathological responses, which over time
could lead to expansive fibrosis. The FibroScHot study aims to
make some progress on the above by integrating examination of
the childhood responses to schistosome egg stimulation with
examination of parasite population genetics and genome
sequences. As discussed in the main article, due to the
epidemiological patterns of PPF, many human studies that
have investigated immuno-pathological mechanisms of PPF
report results biased towards the responses observed amongst
adults. Exploring the immune responses of children in the
active phase of developing PPF could give us insight into the
mechanisms that drive the development of severe schistosomiasis.
The childhood PPF observed in Lake Albert region of Uganda
gives us an opportunity to do this. While the project is not
powered to provide clear evidence of “pathogenicity” related
regions within the parasites, it will allow us to identify changes
in parasite populations through time. Examining gene flow within
the parasite population will identify specific isolates associated
with reduced egg reduction rates or persistent morbidity. This
population genetics approach will be combined with genome wide
sequencing of selected parasite isolates, allowing us to elucidate
both potential indicators of reduced PZQ efficacy and/or specific
novel genotypes relating to increased PPF within these
populations. This will constitute the initial steps required for
fully integrated research into the interactions between parasite
and host factors that may contribute to Lake Albert being a
morbidity hotspot.
CONCLUSIONS

Schistosomiasis is a multifactorial disease in which several host
and parasite factors including their interaction with the
environment may act at each step of the parasite’s life cycle
(287, 288). While the reasons behind discrepancies in clinical
outcome remain ambiguous and the relationship between
Frontiers in Immunology | www.frontiersin.org 13
infection intensity and organ-related morbidity is complex,
cumulative evidence is now showing that as well as host-
specific factors shaping the genetic composition of schistosome
populations (156, 190, 191), parasite genetic differences may
indeed be important in the development of human host
morbidity (53, 133, 175, 176, 289), and the characteristics of
morbidity responses to them (150). Regardless of whether or not
morbidity hotspots are driven by intrinsic host factors, parasite
factors, or a combination of both in complex interplay with the
environment, the fact that these hotspots exist does mean that
the use of infection parameters to define morbidity control, and
in the context of the new Roadmap, elimination of
schistosomiasis as a public health problem in all 78 endemic
countries by 2030, is likely insufficient. Given particularly that
severe morbidity in these hotspots may develop at lower
infection levels, or in a greater proportion of individuals, if the
host-parasite relationship allows, the current use of an infection
parameter alone to define success could well be misleading,
leaving a significant number of individuals in further need
without appropriate treatment. There are of course financial
and logistical problems to overcome if morbidity screenings, in
the absence of easily measurable markers of morbidity, were to
become routine in control programmes, not least the
requirement for the skilled personnel to conduct the
ultrasonographic investigations. One approach would be for
morbidity screens to be integrated into the verification of
elimination as a public health problem within countries.
Ultimately, understanding how the morbidity profiles of
schistosomiasis differ and change across different endemic
areas will prove to be of ever-increasing critical importance to
the monitoring and evaluation of control programs in reaching
the goal of elimination of schistosomiasis as a public health
problem in all endemic countries.
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