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CD8 positive, tissue resident memory T cells (TRM) are a specialized subset of CD8
memory T cells that surveil tissues and provide critical first-line protection against tumors
and pathogen re-infection. Recently, much effort has been dedicated to understanding
the function, phenotype and development of TRM. A myriad of signals is involved in the
development and maintenance of resident memory T cells in tissue. Much of the initial
research focused on the roles tissue-derived signals play in the development of TRM,
including TGFß and IL-33 which are critical for the upregulation of CD69 and CD103.
However, more recent data suggest further roles for antigenic and pro-inflammatory
cytokines. This review will focus on the interplay of pro-inflammatory, tissue and antigenic
signals in the establishment of resident memory T cells.
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INTRODUCTION

Over the course of an infection, naïve CD8 T cells become activated in the lymphoid tissues and
differentiate into CD8 effector T cells. As effector T cells abandon the secondary lymphoid organs
and migrate to tissue, they need to integrate a multitude of signals coming from cytokines,
chemokines and antigen in order to gain access to infected cells, clear the pathogen and differentiate
into memory T cells. Among the T cell responders with effector function, the vast majority die and
only a few persist as memory T cells. We do not yet fully understand what endows T cells with the
potential to become memory T cells, although we do know that the level of exposure to antigenic
and pro-inflammatory signals play an important role (1–6). We also know that a balance in the level
of a set of transcription factors is crucial (i.e. Eomes/T-bet, Bcl-6/Blimp-1, Id-2/Id-3, ZEB1/ZEB2,
BACH/AP-1, NR4A1/IRF4) (7, 8); that specific costimulatory and homeostatic cytokines signals
impart maturing memory cells with longevity properties (9, 10); and that dramatic metabolic and
epigenetic changes are essential (11, 12). Precursors of memory T cells (or MPECs) have been well
defined as KLRG1lo and IL-7Rhi (2) and are readily present early in the immune response albeit at
small frequencies. Yet, as most of antigen specific-T cell responders progress through the immune
response and die off (Short lived effectors/SLECS KLRG1hi IL-7Rlo expressors), MPECs continue
their process of maturation towards memory. Consequently, T cell memory is the result of a
combination of early signals which configure the transcriptional/epigenetic memory program, and
late signals that during the same immune response help to fully execute this program (13, 14). T cell
org June 2021 | Volume 12 | Article 6362401
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memory differentiation becomes even more complex when
considering that memory T cells come in different “flavors” (T
cell memory subsets) and with different benefits (T cell memory
functions and locations). Thus, a T cell transitioning to memory,
may become a central memory (TCM), an effector memory, (TEM), a
stem-cell memory (TSCM), or a resident memory (TRM). Each
population has evolved to fill a specific niche required to protect
the host. TCM (CCR7+ CD62L+ expressors) circulate between the
blood and secondary lymphoid tissues and retain an extraordinary
proliferative potential. TEM (CCR7-CD62L-), in turn, circulate
between the blood and peripheral tissues and are very efficient at
exerting immediate effector functions upon antigen restimulation
[reviewed recently in (15)]. TSCM have been described in humans
(CD122+, CD95+, CCR7+, CD62L+, CD45RA+, CXCR3+) and share
the proliferative, self-renewal and pluripotency potential of TCM

cells (16).
Tissue resident memory T cells persist in the peripheral

tissues following infection and act as front-line sentries against
pathogen re-infection. The response of CD8 TRM triggers fast
innate (17–19) and adaptive immune responses in the site of
re-infection (20). Furthermore, CD8 TRM have also been linked
to defense against tumors, with its presence correlating with
good prognosis (19, 21, 22). CD8 TRM are present in almost every
tissue, including secondary lymphoid organs (23). However,
there is also phenotypic diversity of the TRM subset depending
on the tissue. This suggests that local tissue signals may play a
critical role in positioning TRM in specific locations to perform
specialized functions (24). In spite of how much we have learned
in recent years about TRM, there is still little known about how
cytokines, antigens and other tissue signals “crosstalk”
intracellularly to program the generation and maintenance of
CD8 TRM (Figure 1). In this review article we will discuss how
much the field has advanced in this aspect and point out to the
gaps that still remain uncovered.
TISSUE RESIDENT MEMORY
CD8 T CELLS

Asmentioned before, tissue resident memory CD8 T cells have been
found in peripheral healthy tissues such as lung, brain, gut, liver,
skin, oral, nasal and female reproductive tract mucosal tissue, and
also in tumors, transplants and organs subjected to autoimmune
reactions (23). Most interestingly, tissue resident memory T cells
also re-populate tissue draining lymph nodes upon antigen recall.
Even at the memory stage, tissue TRM can occupy local draining
lymph nodes, most likely, to warrant extended protection (25, 26).
All together this puts TRM as the most abundant memory T cell in
our bodies and especially so as we age. In mice, it is difficult to
evaluate the lifespan of TRM beyond one year. However, in humans,
it has been shown that TRM are stably maintained from childhood
well into old age, at levels that are tissue specific (27, 28).
Surprisingly and in contrast to mice (where naïve T cells largely
reside in lymphoid organs), in humans naïve T cells are also long-
term resident of tissues, although they are quickly outnumbered by
memory T cells in mucosal sites (29). Resident memory T cells are
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extremely efficient at mounting protective innate and adaptive
secondary responses upon re-infection (17, 30) and can control
pathogen spread without the need of other T cell memory subsets
(31). Yet whether this helps to spare the naïve and central memory
population in lymph nodes from activation, and further maintain
diversity in the T cell repertoire remains to be shown.

TRM ontogeny is also still poorly understood as well as the
relationship of the TRM subset with the other T memory subsets.
Initially MacKay, Carbone and Gebhardt described KLRG1lo

epithelium expressors that encounter IL-15 and TGFb signals as
precursors of skin TRM. This led to the idea that TRM cells deviate
from the T effector differentiation path once in tissue (32, 33).
More recently, other studies have confirmed that even before
tissue entrance circulating T cells can commit to the TRM fate. This
is readily concluded when considered that: (1) TCM and TRM share
a common clonal origin (34); (2) even at the naïve stage, T cells
can be pre-condition to “walk” the TRM differentiation journey
(35) and (3) that circulating effectors with a skewed TRM

transcriptional profile that preferably become TRM exist (36).
Whether this also applies to the ontogeny of TRM in other
tissues is still uncertain. Indeed, in contrast to the skin TRM

studies, scRNA sequencing studies in the gut have identified
TRM precursors in tissue very early upon infection (37). From all
these data, one thing is still clear, regardless of the potential for
becoming TRM, circulating effectors will not be able to fulfill this
potential unless exposed to tissue signals.

At the point T cells commit to the TRM fate, are they deadlock
in this identity? or on the contrary, do they retain pluripotency to
generate other T cell memory subsets upon recall? Fonseca et al.
answered this question recently and provided evidence
supporting the idea that TRM cells are not completely locked
into the resident lineage. Upon rechallenge, ex-TRM cells
epigenetically retained the potential to become TCM and TEM

(38), however, they preferentially re-differentiate into TEM and
TRM that homed back to their original tissue (38, 39).

Another important issue in the field is TRM diversity of
heterogeneity. TRM diversity is defined by changes in transcription
profile, phenotype, location and function (37). However, despite the
heterogeneity within the TRM compartment, all TRM share a
specific transcriptional profile characterized by expression of
Runx3, Blimp-1, and Hobit and reduction of Eomes, T-bet,
and KLF-2 levels (40–43) (Figure 1). This transcriptional
profile enables the expression of molecules that permit
recruitment and lodging to tissue in addition to special
adaptation to unique tissue signals for TRM survival. What is
less known is how the different signals a T cell encounters in its
journey to TRM regulate this transcriptional program.

A more precise view of TRM development is arising.
Cumulative evidence supports a multistep differentiation
process where T cells have the potential to enter in the TRM

path at different stages (naïve, in circulation, in tissue). Yet how
much the quality or amount of signals a TRM precursor receives
conditions its resident potential is unclear. Additionally, it is still
ill-defined whether the same signals regulate TRM development,
maintenance, function, retrograde migration to draining lymph
nodes and/or pluripotency upon recall. Initial findings pointed to
June 2021 | Volume 12 | Article 636240
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various cytokine signals and antigen within local tissues as main
triggers to support CD8 effectors to CD8 TRM differentiation.
TGFb has been shown to be a major contributor to this pathway
along with IL-33 and IL-15. Roles for both antigenic stimulations
along with inflammatory signals such as IL-12, IL-21, and TNF
have been linked to the regulation of CD8 TRM development as
well (Figure 1).
TISSUE SIGNALS INVOLVED IN CD8
TRM DEVELOPMENT

Tissue cytokines have been shown to act synergistically in
establishing the resident memory phenotype in tissues such as
the gut, skin, brain, and the lungs (40, 44–49). Hereafter, we will
discuss what it is known of how each one of these signals
contribute to TRM development and maintenance and discuss
the synergism of the signaling pathways they trigger.

TGFb Signaling
TGFb is a crucial cytokine for T cell development and
differentiation. TGFb is involved in thymic development, in
Frontiers in Immunology | www.frontiersin.org 3
the maintenance of naïve T cells, and also in CD8 T cell
effector activation (50, 51). Seemingly, TGFb has also been
linked to the formation of CD8 TRM in different organs such
as skin, the gut and lung (32, 44, 45, 52, 53).

Although TGFb and its receptor are ubiquitous in many cells,
TGFb activity is tightly controlled at multiple levels. At the
extracellular level, TGFb activity depends on induced cleavage of
latent TGFb that is associated to the extracellular matrix or
presentation by cells (such as T regs, epithelial cells, fibroblasts,
keratinocytes or DCs). Large latent TGFb can be cleaved by ECM
proteases. Alternatively, it can bind to integrin receptors in the
membrane of cells, which via the actin cytoskeleton promote a
conformational change in TGFb that enables the mature TGFb
release process (54). TGFb modulates TRM in a manner that is
contingent on the presence of immune cells expressing a specific
set of integrin receptors. Thus, in the draining lymph nodes of
the skin, specialized migratory DCs that express av integrins
present active TGFb to naïve T cells and pre-condition them to
become epithelial CD8 TRM (35). More recently, Hirai et al.
provided data showing that keratinocytes activation and
presentation of TGFb to fully matured skin CD8 TRM is crucial
for their maintenance. Especially, if these TRM had been
generated in a bystander manner. Even more striking is that
A C

B

FIGURE 1 | Extracellular factors regulate multiple signals in CD8 T cells to drive or repress TRM development. (A) Schematic of signals including IL-33, TGFb, and
IL-15 which promote the development of tissue resident T cell memory through the increase of transcription factors Runx3, Hobit, Blimp1, and the tuning of T-bet
expression. (B) Tissue cytokines such as IL-33 and TGFb also inhibit transcription factors (KLF2, TCF1, and Eomes) that can restrict the development of CD8 TRM. In
contrast, pro-inflammatory cytokine and antigenic/T cell receptor signals can modulate the expression of Eomes which can, then, interfere with CD8
TRM development. (C) Signaling crosstalk between pro-inflammatory, tissue and antigenic signals. PI3K, MAPKs (ERK, JNK and p38 MAPK) and NFkB are potential
nodes where extracellular cues converge to tune CD8 TRM programming, differentiation and maintenance.
June 2021 | Volume 12 | Article 636240
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skin CD8 TRM produce their own TGFb, thereby, contributing to
their own maintenance (55). These new compelling roles of
TGFb in skin CD8 TRM add to the already known role of TGFb
in CD8 TRM differentiation (32, 40). However, they also open up
new exciting questions. For instance, do these new roles of TGFb
apply to TRM in other tissues? Or what is the relative contribution
of autocrine CD8 TRM TGFb to TRM lineage identity versus
TRM survival?

CD103 is one of the most thoroughly described targets of
TGFb in TRM cells (32, 44, 45, 52, 56, 57). CD103 is an integrin
(alpha E) that associates with integrin beta 7. The aEb7 integrin
complex binds to E cadherin and facilitates migration and
retention of CD8 T cells (32, 58, 59). While not exclusively
required for development of all TRM cells, CD103 has an
important role in the establishment of tissue residency within
certain tissues, such as gut and skin. Sheridan et al., showed that
upon oral Listeria monocytogenes infection, the majority of the
intestinal effector cells rapidly upregulated CD103, but this
population was lost when TGFb signals were blocked (52). In
the lung, it has been reported that CD1c+DCs control CD103
expression on CD8 T cells, enabling their accumulation in lung
epithelia through a membrane-bound TGFb dependent process
(60). Lack of access to active TGFb from fully matured skin CD8
TRM also lead to a loss of CD103 expression, although this loss
appears to correlate better with the amount of active TGFb than
with a defect in CD8 TRM differentiation (55). This raises the
question as to whether CD103 only provides signals for
localization or whether it also activates signal transduction
pathways that promote TRM lineage stability. The former is
supported by the fact that in several tissues (female
reproductive tract, liver, lung, and lamina propria) CD103 is
not expressed by all resident memory cells (23, 61). It is also
important to mention that CD103 is an integrin able to trigger
bidirectional signaling and that it can cooperate with TCR signals
to enable T cell migration and effector function (62). This
suggests that synergism between antigenic and integrin
signaling at the epithelium may be relevant for TRM maturation.

Despite the important role of CD103 in CD8 TRM adhesion,
migration and retention in TGFb rich environments, TGFb
receptor deficient cells are more compromised than CD103
deficient T cells for tissue long-term retention (44). Thus, the
TGFb role in CD8 TRM development must be broader than
CD103 regulation. Indeed, several studies have pointed to other
roles. TGFb has been found to induce apoptosis of short-lived
effector cells (SLECs) by antagonizing the survival effects of IL-15
(63). Since CD8 TRM maintenance in some tissues depends on
both cytokines, it is possible that TGFb contributes to the
removal of SLECS, thereby favoring MPEC survival and
retention in tissue (Figure 1). Comparative in vitro analysis
also demonstrates a great overlapping between TRM and TGFb
transcriptional signatures (64). More precisely, TGFb signaling
regulates the expression of transcription factors involved in TRM

development, such as Runx3 (65) and Blimp1 (66) and repress
transcription factors (Eomes, TCF1, and T-bet) (40, 46), which
are classically associated with CD8 terminal effector and central
memory differentiation (5, 67–70). Achieving the right balance in
Frontiers in Immunology | www.frontiersin.org 4
the levels of all of these transcription factors appears to be crucial
for the development of CD8 TRM. Thus, while some T-bet
expression is necessary for the expression of IL-15Rb to receive
sufficient IL-15 signals to lodge and survive in tissue (40, 47),
over activation of T-bet can also result in the loss of CD103
expression (40, 71). Similarly, high levels of Eomes have been
shown to repress TRM development (40). It is still unclear how
these transcriptions factors cooperate to establish the TRM

program. Yet, they seem to operate under different
transcriptional rules than those regulating effector CTL
differentiation (where all transcription factors work together in
a synergistic way) (68).

Another role of TGFb is to control tissue lodging by
suppressing the expression of Krupple-Like Factor 2 (KLF2),
which in turn regulates the expression of S1PR1 (42). Skon et al.
reported that TGFb can control the lodging of CD8 TRM by
downregulating KLF2 in a PI3K/Akt dependent manner (42).
Curiously, canonical TGFb signaling classically occurs through the
induction of the SMAD pathway and involves formation of
activated Smad2/3/4 complexes (54). However, Smad4 appears
to be dispensable for CD8 TRM development (72, 73). This implies
that non canonical TGFb signaling may be more important than
anticipated for CD8 TRM. TGFbR engagement can activate
MAPKs p38, JNK, and ERK, NFkB, PI3K, and mTOR signaling
pathways independently of Smad proteins (72–74), although the
role of these pathways in CD8 TRM remains elusive. MAPKs
(Figure 1), in particular, might be especially relevant as recent
transcriptional studies have found an association between JunB
and FosL and TRM differentiation (37).

Lastly, it is important not to underestimate the crosstalk of
TGFb with other tissue signals which may further tune TGFb
signaling and pay attention of how these signals interaction may
account for further diversity or differences in CD8 TRM longevity
and/or function (54, 74).

IL-33 Signaling
Along with TGFb, IL-33 has also been involved in the
establishment of CD8 resident memory. IL-33 is a part of the
IL-1 family of cytokines. It is expressed by non-hematopoietic
cells, constitutively in epithelial cells and inducible in activated
DCs, necrotic cells, and tumor cells. It works as an alarmin in
response to infection or injury [reviewed in (75, 76)]. CD8 T cells
express low levels of the IL-13R or ST2 but IL-33 signaling is still
important for effector function (77) and antiviral protective
responses (78). Following the initial characterization of CD8
TRM, Casey et al. showed in in vitro experiments, that IL-33 could
act synergistically with TGFb to induce CD69 among CD8 T
cells in the gut (45). The role of IL-33 was further defined to
include the down regulation of KLF2, again in synergism with
TGFb (42). More recently, Harty’s group explored the role of IL-
33 in the formation and maintenance of lung CD8 TRM in vivo.
They found that when ST2 was blocked with a neutralizing
antibody, the accumulation of influenza specific CD8 TRM was
significantly reduced. Yet no effect on conversion to a TRM

phenotype was observed (79). In another study, McLaren et al.
also showed a loss of CD8 and CD4 TRM (CD69+CD103- or
June 2021 | Volume 12 | Article 636240
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CD69+CD103+) in the lungs and salivary glands of IL-33-
deficient mice upon MCMV infection (49). Collectively, these
data strongly support a critical role of IL-33 in the establishment
of the TRM pool in the lung, although whether this role impinges
on CD8 TRM differentiation, maintenance and/or recruitment is
unclear. Similarly, it is still unknown whether IL-33 impacts CD8
TRM in a CD8 T cell intrinsic manner or through an indirect
mechanism. The in vitro experiments mentioned above (45),
however, point out to a direct role in synergism with TGFb.

IL-33 signals through MyD88/NFkB can inhibit TGFb signals
through Smad6/7 (74). Furthermore, IL-33 can synergize with
IL-12 to promote the expression of T-bet and Blimp-1 while
repressing Eomes and TCF-1 (77) (all transcription factors
linked to CD8 TRM differentiation) (Figure 1). Taking all
together (Figure 1), it is tempting to speculate that CD8 TRM

differentiation and maintenance will be likely dependent on the
relative levels of these cytokines in tissue and how their signaling
networks crosstalk.
INFLAMMATORY SIGNALS AND
RESIDENT MEMORY

Tumor Necrosis Factor
TNF is a cytokine that has pro- and anti- inflammatory
functions. TNF is first expressed as a biological active
transmembrane homotrimer, which can either be released after
cleavage and bind to TNFR1 or TNFR2 or remain bound to the
membrane and signal upon binding to TNFR2. TNFR1 is
expressed universally on almost all cell types, whereas TNFR2
is mainly restricted to immune cells and some tumor cells. TNF,
by contrast, can be produced by T and B cells and innate immune
cells (dendritic cells, monocytes, neutrophils, mast cells). TNF is
an inflammatory mediator that is heavily induced upon
infections such as influenza or tuberculosis but their long
-term effects are frequently associated with pulmonary diseases
such as asthma, COP, ALI, and ARDS (80). In T cells, TNF can
promote the activation and proliferation of naïve and effector
T cells, but it also promotes cell death of highly activated effector
T cells, further determining the size of the memory T cell pool
(81). In vitro studies have shown that TNF can synergize with
TGFb and IL-33 to regulate the expression of molecules
associated with a TRM signature (CD103, CD69 and Ly6C) in
the gut, as well as regulate the expression of the transcription
factor KLF-2 (facilitating the retention of TRM in tissue) (42, 45,
82). Additionally, in experiments aiming to test the role for
cytokines in the conversion of circulating memory T cells to lung
TRM, the authors found that neutralizing TNF levels resulted in a
significant reduction in the frequency of CD8 TRM in the
parenchyma (79). Altogether, these studies strongly support a
role for TNFa in the establishment of TRM, however, whether
TNF effects act directly on CD8 TRM precursors via their TNFR1
or TNFR2 or indirectly via other cells it is still unclear. A study
showed that mice lacking TNFR1 expression were inefficient at
controlling vaccinia virus in the skin, rather due to defects in
Frontiers in Immunology | www.frontiersin.org 5
resident innate cells and not to the generation of skin memory T
cells (82). On the other side, other studies have implicated both
TNFR1 and TNFR2 in survival of airway CD8 effectors during
influenza infection (83) and also in the generation of memory T
cells (81, 84). Thus, when considering the multifaceted roles of
TNF signals in the progressive differentiation of CD8 T cells,
more studies are needed to assess when and how TNF impacts
CD8 TRM and if this happens for all tissues.

Members of the TNF superfamily OX-40 (85), 4-1BB (86, 87)
and LIGHT (88) have also been linked to the establishment of
CD8 TRM. 4-1BB and LIGHT appear to be crucial for the survival
of effector CD8 T cells as they differentiate to TRM (86–88),
whereas OX40 signals rather seem to impact the generation of
effector and, therefore, accumulation of memory T cells in tissue.
One feature in common among all members of the TNF
superfamily (TNF included) is the activation of NFkB PI3K,
Akt, MAPK and JNK pathways (89), which most likely allow for
enhanced survival. However, all TNF superfamily members are
also notorious for their dependence on TCR (for costimulatory
functions or expression) or cytokine signals (i.e. TNF synergism
with TGFb signals). This points to a more complex picture
regarding how all these factors play together in tissue as T cells
differentiate and are maintained as CD8 TRM (Figure 1). Given
the therapeutic value of neutralizing antibodies and fusion
proteins targeting TNF family members to decrease
inflammation, addressing these gaps of knowledge will aid to
improve current strategies directed to boost CD8 T cell
immunity in organs or tumors. Similarly, and because anti-
TNF treatments are often administered to diminish
inflammation in diseases such as Crohn’s and rheumatoid
arthritis (90–92), knowing the impact of these treatments in
the generation and maintenance of the TRM pool in patients is
also important.

Interleukin 12, Type I IFN, IL-18, IL-21,
and IL-6
Both IL-12 and Type I IFN are the prototypic pro-inflammatory
cytokines that provide signal 3, which with signal 2
(costimulation) and signal 1 (antigen/TCR) enable full effector
and memory differentiation (93–96). It has also been shown that
high levels of these pro-inflammatory cytokines skew effector T
cells away from memory (2, 97, 98). Intestinal proinflammatory
microenvironments have elevated IFN-b and IL-12 and several
studies have shown that both cytokines are critical drivers of
CD8 TRM in the gut. Bergsbaken et al. identified intestinal CCR2+

macrophages as the main source of both pro-inflammatory
cytokines in the gut and showed that either deletion of these
innate population or deletion of the receptors for IL-12 or Type I
IFN on CD8 T cells could severely reduce the differentiation and
persistence of gut CD103-CD69+ CD8 TRM cells. Importantly,
this was not a consequence of defects in expansion or survival of
effector CD8 T cells early in the infection, but rather it was
connected to the integration of pro-inflammatory cytokine
signals (IL-12, IFNb, or IL-18) and TGFb signals in tissue (99).
Another report has also shown that IL-12 acting together with
IL-15 and CD24 signals is essential for the development of potent
June 2021 | Volume 12 | Article 636240
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CD8 resident memory responses in the skin. In this case, a
migratory BATF3+ dendritic cell population was the main source
of IL-12. When tissue IL-12 signaling was inhibited using
antibody blockade, sub-optimal CD8 TRM generation was
observed in the skin of vaccinia virus-infected mice (100).

IL-12 can also contribute to the establishment of skin CD8
TRM through the expression of the adhesion receptor CD49a,
which is specifically critical for CD8 TRM persistence and IFNg
production upon recall (101). At the transcriptional level, IL-12
is a known regulator of master regulators of CD8 TRM Eomes, T-
bet and Blimp-1 (102, 103). T-bet is required for the expression
of CD122 and input of IL-15 signals necessary for CD8 TRM

survival (40, 47), suggesting that IL-12 indirectly facilitates CD8
TRM survival. At the same time, high levels of T-bet may be
detrimental for CD8 TRM (40). Since all the studies so far have
evaluated the blockade of IL-12 signals to test the role of this
cytokine in CD8 TRM, it would be interesting to test whether high
levels of IL-12 (which can naturally occur in cytokine storms)
could be detrimental, perhaps by exceeding the T-bet threshold
that transcriptionally supports TRM (40, 104).

IL-21 is another pro-inflammatory cytokine that is primarily
expressed by CD4 T cells, although macrophages, NKT, B, DC,
and CD8 T cells can express it at low levels (105). Recently, it has
been shown that IL-21R CD8 T cell intrinsic signaling is
important for the development of lung and brain CD8 TRM via
oxidative metabolism (106, 107). IL-21 has been shown to
synergize with other cytokines (IL-2, IL-15, IL-10) and TCR
signals for regulating CD8 T cell differentiation (108). IL-21R, in
turn, transduces signals via STAT-1/3/5, but it also shares the
activation of PI3K and MAPK with other tissue signals (antigen,
TGFb, TNF), establishing in this way a potential system of check
and balances that warranties CD8 TRM [reviewed in (105)]
(Figure 1).

IL-6 shares functional features with IL-21, and it is produced
in certain tissues (bone, lung, liver, adipose tissue, muscle) to
fulfill homeostatic functions as well as in response to infection,
cancer and tissue injury (109–111). IL-6 signals through STAT3
and together with TGFb is primordial for Th17 differentiation
(112). Furthermore, IL-6 stimulates the production of IL-21 by
CD4 T cells (113) and exerts a pro-survival role that can impact
the effector/memory population in the context of infection
(114, 115). In CD8 T cells, IL-6, together with IL-15 and IL-7,
contributes to CD8 T cell proliferation and effector function
(116) and to the generation of super IL-21 producer CD8 T cells
that can then, help B cells in the lung (117). The connection
between IL-6 and tissue resident T cell memory is still poorly
understood, although a recent report has identified a distinct
population of memory helper CD8 T cells in humans that
singularly express IL-6R and exhibit a skin TRM transcriptional
signature (118). Interestingly, these IL-6R CD8 memory T cell
population is altered in psoriasis (118) and asthma (119),
although a role for these type of T cells during infection is
still lacking.

Experimental evidence supports that an interaction between
local tissue signals and pro-inflammatory cytokines is essential
for the establishment of CD8 TRM during infection. Yet, often in
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systemic infections, cancer therapies (CART) and autoimmunity
(rheumatoid arthritis, psoriasis), levels of these pro-
inflammatory cytokines or signaling can become dysregulated
and cause disease. IL-6 is, indeed, together with TNF, IL-1, IL-18,
IL-33, IFNg a soluble mediator of cytokine storms (120) in
mucosal tissues, although whether high levels of inflammatory
cytokines are beneficial for CD8 TRM establishment or
maintenance still remains to be investigated.
HOMEOSTATIC SIGNALS IL-7, IL-15
AND IL-10

Dendritic cells are key to initiating immune responses and often
for directing those responses to the appropriate tissues via
delivery of antigen, co-stimulation and pro-inflammatory
cytokines. What is less studied is how their contribution to
homeostatic signals shape the immune response. Iborra et al.
recently showed that DNGR-1+ dendritic cells cross present
antigen and produce IL-12, IL-15 and CD24 signals which were
required for CD8 TRM formation in the skin and lungs (100). IL-
15, together with IL-7, is a homeostatic cytokine whose role in
TCM and TEM cell memory maintenance is well established
(121–123).

In the context of resident memory, IL-7 is almost dispensable
while IL-15 has been shown fundamental for survival of CD8
TRM in some tissues (such as skin, kidney, lung and salivary
glands but not in FRT, gut, pancreas) (32, 47, 124). In the skin,
IL-15 contributes to lodging and maintenance of CD8 TRM by
keeping balanced levels of T-bet and the transcription factor
Hobit (40, 43). Hobit, in turn, is expressed exclusively in the
resident memory population and has the potential to bind to
regulatory regions of TCF1, KLF2 and S1PR1, all crucial for CD8
T cell tissue migration (43). In the liver, skin, and small intestine,
Hobit has been shown to act in conjunction with Blimp-1 to
drive TRM development as well (43). However, in the lung,
Blimp-1, rather than Hobit drives TRM formation (125). This is
despite the fact that persistence of a subset of lung CD8 TRM

(CD103+CD69+) is completely dependent on IL-15 (40).
Interestingly, the patterns of Hobit expression and function in
mice and humans are different (126), but whether the results in
the mouse models remain true in humans will require further
investigation. Contrary to Hobit, Blimp-1 promotes CD8 TRM

development in the lung while reducing the generation of CD8
TCM. This is particularly critical for CD103+ CD25+, but not
CD103– CD25- lung TRM (125). While this points out to a
potential role of IL-2 and IL-15 in regulating the levels of
Blimp-1 the evidence remains controversial. In vitro studies
have attributed a role for IL-2, but not IL-15, in the induction
of Blimp-1 (127). By contrast, in vivo studies delivering IL-15
complexes have clearly shown that acute exposure (but not
prolonged) to IL-15 signals can promote Blimp-1 expression
(128). As IL-12 is also an inducer of Blimp-1 (103), it is possible
that specialized DCs able to produce IL-15 and IL-12 (100),
together with IL-2, contribute to the induction of Blimp-1 and
generation of lung CD8 TRM in sites with residual inflammation.
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Another cytokine that is often induced in response to
infection is IL-10. CD4 regulatory T cells (Tregs) are producers
of IL-10 (129). Both, Tregs and IL-10, play a critical role late in
the immune response in the generation of memory CD8 T cells
(130). Similarly, Type 1 Tregs (T-bet-) also promote the
generation of CD8 TRM. In this case a distinct role for IL-10
was not clearly identified. Instead, the authors found that CD4
Tregs express CXCR3 and by positioning themselves close to
CD8 T cells make functional TGFb available to promote their
TRM differentiation (131).These findings were consistent with
previous studies indicating that TGFb-dependent production of
TGFb resulted in increased expression of CD103 on brain CD8 T
cells upon CNS infection (132).
T CELL RECEPTOR SIGNALS AND
RESIDENT MEMORY CD8 T CELLS

T cells recognize pathogenic or self-antigens via their T Cell
Receptors (TCRs). TCR signaling is critical for memory T cells
(5). Strikingly though, while T cell proliferation and some
effector functions are supported by strong antigenic signals, T
cell memory ensues regardless, in response to both strong and
weak antigens (1, 6). These studies mainly looked at central and
effector memory differentiation and found that weak TCR signals
specifically favor central memory development via expression of
high levels of Eomes. Moreover, TCR signal strength inversely
regulated the input of inflammation by controlling the
expression of inflammatory cytokine receptors and enabling a
higher frequency of CD8 T cells that have been stimulated by
weak antigens to become central memory T cells (1, 133). In the
case of resident memory differentiation, the role of TCR
signaling has been largely overlooked until recently. Fiege et al.
have shown that while both high and low affinity TCR
stimulation support the formation of CD8 TRM, low affinity
TCR signals favored the resident memory population (134)
mirroring what happens for central memory (1).

Among the signaling cascades the engaged TCR can trigger,
the ones able to provide a digital type of signaling, such as Itk/
Calcium and ERK (which regulate transcription factors, IRF4
and AP-1 family members) seem to be preferentially involved in
promoting terminal effector differentiation (133, 135, 136). Their
role in CD8 TRM remains unknown. By contrast, signaling
pathways/networks leading to transcription factors that do not
strictly fit the rules of TCR signal strength, appear to favor T cell
memory fate (BACH2, TCF-1, Eomes) by repressing
transcription factors that favor terminal effector differentiation
(BACH2 represses AP-1 binding while NR4A1 represses IRF4)
(1, 137–146). One of these signals is the NFkB pathway, which
appears to be especially critical to the regulation of T cell
memory (5, 67, 147). Both, strong and weak TCR signals use
this pathway, at least to regulate central memory differentiation
(147). NFkB, however, does not seem to regulate the T cell
effector versus central memory decision but rather, it controls the
survival of CD8 T cells during the transition to memory via
maintenance of high levels of Eomes and Bcl2, which are crucial
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for central memory (67, 69, 70). This is possible thanks to a
feedback loop where NFkB-Pim1K- Eomes drive a continuum of
NFkB signals that extend beyond the peak of the immune
response. These proteins also ensure memory maintenance, as
memory T cells devoid of either of these failed to survive and
respond (67). Whether NFkB signaling has a distinct way to
regulate resident memory is unknown. NFkB signaling is also an
important driver of inflammation with broad effects. From the
induction of pro-inflammatory cytokines (IL-6, etc) to the
signaling by inflammatory cytokines (i.e. TNF etc), NFkB
holds the potential to inhibit [TGFb (74)] or potentiate [IL-33
(148)] tissue signals that are essential for CD8 TRM [reviewed in
(149)]. Although still unexplored, our previous findings and the
fact that Eomes negatively modulates CD8 resident memory
development (40), strongly suggest that NFkB may be an
important regulator of CD8 TRM.

It is also important tomention that TCR signals are not sufficient
for CD8 T cell memory and are often tuned by other environmental
signals (Figure 1). This is the case of inflammatory cytokines IL-12
(102), IL-10 (150) or IL-21 (108) and metabolic signals (151). The
metabolic signaling pathway, mTOR, which can also be activated by
TCR and IL-12 (152), has been linked to CD8 TRM (153). Although,
whether mTOR impacts on migration to tissue and/or TRM survival
is still unclear.

Another important question to answer is when antigenic
signals are required for establishing resident T memory.
Besides the obvious need for antigenic signals to activate naïve
T cells, it is widely accepted now that effector T cells that migrate
from the draining lymph node to the tissue need to receive a
second antigenic hit in the tissue and then, further differentiate
into TRM (33, 154). Yet, depending on the tissue the continuous
need to maintain antigenic signals to avoid the erosion of TRM

remains contentious. Thus, several studies support that antigenic
signals are required in brain, lung, female reproductive tract and
skin (155–159) to accumulate TRM while in other tissues, re-
exposure to antigen may be dispensable (42, 45, 157, 160). These
studies only referred to cognate pathogenic antigen and did not
address whether local antigenic signals were required once TRM

had already been established. Moreover, while it has been shown
that CD8 T cell memory does not require self-peptide-MHC
signals for its maintenance or establishment (9, 161, 162), the
role of self-peptide-MHC in the context of resident memory has
not been sufficiently explored yet.
CONCLUSION

CD8 TRM are a critical first line of defense against pathogen
infections and a promising tool in the fight against tumors.
However, the development of CD8 resident memory requires a
complex milieu of signals both from the tissues such as TGFb, IL-
33, and IL-15 and from inflammatory cytokines including IL-12 and
TNF. Not only aremultiple signals required, as this review discusses,
specific quantities and timing of the signals are likely to be
necessary. While these signals contribute to the development of
CD8 resident memory, excessive amounts of some inflammatory
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cytokines may also limit the differentiation of CD8 TRM. Moreover,
pharmaceutical treatments such as TNF blockade or other anti-
inflammatory regimes may interfere with the development of the
regulation of these signals and could possibly alter the development
of CD8 TRM. As the transcriptional and epigenetic mechanisms that
regulate CD8 TRM are becoming clearer, it is also critical that the
field puts the effort to fully understand biochemically how tuning
antigen, inflammatory and local tissue signals in time affect TRM.
This information can be extremely valuable to the treatment of
diseases where TRM are involved (infection, cancer, autoimmunity,
allergies and transplantation).
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