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Although widely prevalent, Lyme disease is still under-diagnosed and misunderstood.

Here we followed 73 acute Lyme disease patients and uninfected controls over a period

of a year. At each visit, RNA-sequencing was applied to profile patients’ peripheral

blood mononuclear cells in addition to extensive clinical phenotyping. Based on the

projection of the RNA-seq data into lower dimensions, we observe that the cases are

separated from controls, and almost all cases never return to cluster with the controls

over time. Enrichment analysis of the differentially expressed genes between clusters

identifies up-regulation of immune response genes. This observation is also supported

by deconvolution analysis to identify the changes in cell type composition due to Lyme

disease infection. Importantly, we developed several machine learning classifiers that

attempt to perform various Lyme disease classifications. We show that Lyme patients can

be distinguished from the controls as well as from COVID-19 patients, but classification

was not successful in distinguishing those patients with early Lyme disease cases that

would advance to develop post-treatment persistent symptoms.

Keywords: Lyme disease, PTLDS, PBMCs, machine learning, data mining, RNA-seq

INTRODUCTION

Lyme disease (LD) is a tick-borne illness that has become a growing concern in the United States
(US) and Canada. LD spreads exclusively by two tick species in the Northern hemisphere, Ixodes
scapularis and Ixodes pacificus. The disease is caused by the spirochete bacteria Borrelia burgdorferi
sensu stricto and is transmitted to humans through one of the vector’s blood meals (1). Comprising
62.6% of all vector-borne diseases, and 81.19% of all tick-borne disease, Borrelia burgdorferi sensu
stricto was the most common vector-borne pathogen in the United States from 2004 to 2016 (2).
Approximately 30,000 diagnosed cases of LD are reported to the CDC each year, with an estimated
true burden of∼300,000 cases (3, 4) and yearly healthcare cost of∼$1 billion in the US (5). Cases in
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the US are concentrated within the Northeast, Mid-Atlantic,
Midwest, and coastal West regions (1). Due to the tick’s seasonal
lifecycle, transmission of the pathogen and subsequent human
infection occurs at higher rates in spring, summer, and the early
part of autumnwhen the various life-stages of the vector quest for
a meal (6). Once infected, initial onset of symptoms can manifest
∼7–14 days after transmission, although both earlier and later
initial onset has been documented (6).

Clinical demonstration of untreated Lyme disease is divided
into three stages: the early localized stage, early disseminated
stage, and late disseminated stage (6, 7). The early localized stage
is characterized by the erythema migrans (EM), a skin lesion
that is often red and round or oval shaped that manifests at
the site of the bite, and which can be accompanied by mild
flu-like symptoms of fever and fatigue. However, the rash is
absent or undetected in ∼5–30% of cases (7). Symptoms can
progress into the early disseminated stage when the patient
lacks initial treatment during the early localized stage and the
bacteria disseminate hematogenously to other areas of the skin
or other organ systems. Multiple EMs may be present around
the body, although they are typically less inflamed than the
primary EM at the site of the initial tick bite. In addition, the
patientmay exhibit Lyme carditis or Lyme neuroborreliosis (1, 7).
Approximately 6 months after initial disease onset and when
left without treatment, the patient may experience signs of the
late disseminated stage, specifically late Lyme arthritis (which
may occur in up to 60% of patients with a history of primary
EM) or neurologic disease (7). Following appropriate antibiotic
treatment, a subset of patients experience a range of persistent,
significant, but often non-specific symptoms which frequently
include fatigue, widespread musculoskeletal pain, and cognitive
difficulties, among others (8). Approximately 10–20% of patients
will meet criteria for post-treatment Lyme disease (PTLD), which
includes the presence of specific symptoms as well as significant
impact of these symptoms on life functioning (9). Testing and
diagnosis of LD has proven to be difficult or unreliable. Bacteria
cultivation requires specialized medium and frequently results
in low-yield cultivation (1). The universally-accepted diagnostic
test for LD is a two-tier serological test: a positive enzyme-
linked immunosorbent assay (ELISA) test followed by a positive
Western blot test for IgM and IgG B. burgdorferi antigens (10).
Unfortunately, sensitivity is low at 29% during the early localized
stage, and the two-tiered serological test is not recommended
for early diagnosis in the first few weeks of infection (11). In
the absence of a laboratory diagnostic tool, the diagnosis of
early LD is reliant on a demonstrated EM that occasionally does
not present or is not observed, which can lead many patients
to progress to the early disseminated stage and its debilitating
symptoms before the disease is diagnosed and treated.

To further our understanding of the molecular mechanisms
that lead to LD symptoms, we examined the longitudinal changes
in gene expression as a tool for deep phenotyping of diagnosed
LD patients and healthy controls. RNA-sequencing profiling was
administered from peripheral blood mononuclear cells (PBMCs)
collected during multiple patient visits over a 1-year timespan.
Deep phenotyping was performed by examining the projection
of RNA-seq data into lower dimensions for unsupervised

clustering of the patients based on their gene expression vectors.
In addition, differential gene expression analysis followed
by enrichment analysis was employed to identify upstream
regulatory mechanisms and disease phenotypes associated with
LD. This analysis was augmented with single cell deconvolution
analysis. Since we observed clear separation between controls
and cases, we developed several classifiers as potential diagnostic
tools and for the further identification of molecular mechanisms
underlying LD phenotypes. These include predictors that
distinguish healthy controls from Lyme patients, Lyme patients
from COVID-19 patients, and whether Lyme patients will
advance to develop persistent symptoms.

MATERIALS AND METHODS

Patient Recruitment
The current study is part of a larger, ongoing prospective
cohort study of patients with LD and non-LD controls. Adult
patients with early LD were predominantly recruited from
primary or urgent care settings in the Mid-Atlantic area of
the United States. All participants were required to have a
physician-documented EM of >5 cm present at the time of
enrollment, thereby meeting CDC criteria for “confirmed”
LD (12). Although early LD patients were eligible with up
to 72 h of appropriate antibiotic exposure at the time of
enrollment, the majority (63.0%) were antibiotic-naive at their
first visit. Patients with a prior history of LD or those who
had received the LD vaccine were excluded from the study.
Patients were also excluded for a range of self-reported prior
medical conditions associated with significant immunologic
impact and/or subjective symptoms which may overlap with
PTLD: chronic fatigue syndrome, fibromyalgia, unexplained
chronic pain, sleep apnea or narcolepsy, autoimmune disease,
chronic neurologic disease, liver disease, hepatitis, HIV, cancer
or malignancy, major psychiatric illness, or drug or alcohol
abuse. Non-Lyme infected controls were recruited from similar
care settings as LD cases, as well as via community recruitment
using flyers and online advertising. Controls underwent an
initial screening two-tier antibody test and were required to test
negative prior to enrollment. Follow-up tests were conducted
at each subsequent time point, with all controls testing two-
tier negative for the duration of the study. Controls were also
screened for the same prior medical history conditions as cases
and were also required to be free of any history of prior clinical
LD. Participants with LD and non-LD controls were followed
over multiple visits up to 1 year after study entry (Table 1).
The Institutional Review Board of the Johns Hopkins University
School of Medicine approved this study, and all participants
signed written consent prior to initiation of any study activities.

Clinical Data Collection
A trained interviewer administered a series of detailed
questionnaires regarding demographics and general medical,
medication, and symptom histories to both patients with early
LD and controls at each study time point. In addition, specific
data were gathered from patients with early LD regarding
their acute illness. At the follow-up study visits, participants
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TABLE 1 | Breakdown of patient counts by visit.

Visit Cases Controls

Visit 1 Baseline (diagnosis) n = 72 Baseline n = 44

Visit 2 3 weeks (end of treatment) n = 73 N/A

Visit 3 6 months n = 62 6 months n = 39

Visit 4 1 year n = 61 1 year n = 25

Visit 5 N/A 2 years n = 24

self-administered a 36-item symptom list developed based on
prior clinical and research experience among patients with
Lyme disease. The presence or absence of self-reported fatigue,
musculoskeletal pain, and/or cognitive difficulty at V3 and V4
were used to classify participants into those with persistent
symptoms and those without. Given the relatively small number
of participants in this analysis, we did not require participants
to also meet criteria for functional impact and therefore those
with persistent symptoms did not meet the full PTLD case
definition. During the first study visit, a sensitive, PCR-based
approach (PCR/ESI-MS), as previously described in a subset of
these participants (13), was used to detect the presence of B.
burgdorferi in the skin (Supplementary Figure 1A) and blood
(Supplementary Figure 1B).

PBMC Isolation and Library Generation
PBMCs were isolated from fresh whole blood using Ficoll
(Ficoll-Paque Plus, GE Healthcare) and total RNA was extracted
from 107 PBMCs using RLT Lysis Buffer (Qiagen) by following
manufacturer’s instructions. The NEBNext Ultra II Directional
RNA Library Prep Kit for Illumina (Cat# E7765) was used to
generate RNA-seq libraries. Briefly, Poly A RNAs were isolated
from total RNAs using NEBNext Poly(A) Magnetic Isolation
Module (NEB #E7490) and then fragmented for cDNA synthesis.
End repair is performed where 3’ to 5’ exonuclease activity of
enzymes removes 3’ overhangs and the polymerase activity fills
in the 5’ overhangs. An “A” base is then added to the 3’ end
of the blunt phosphorylated DNA fragments which prepares the
DNA fragments for ligation to the sequencing adapters, which
have a single “T” base overhang at their 3’ end. Ligated fragments
are subsequently size-selected through purification using the
Sample Purification Beads included in the kit and undergo
PCR amplification to prepare the “libraries.” The BioAnalyzer
is used for quality control of the libraries to ensure adequate
concentration and appropriate fragment size free of adapter
dimers. The resulting library insert size is 200–500 bp with a
median size around 300 bp. Libraries were uniquely barcoded and
pooled for HiSeq2500 sequencing.

RNA-Seq Data Processing
Raw RNA-seq FASTQ files were processed by FastQC, a quality
control tool for high throughput sequencing data (14). The
samples were aligned to the human genome (hg38) with the
STAR RNA-seq aligner (15). Picard tools were then used for
manipulating the output from STAR so it can be piped into
featureCounts (16) for gene, exon, and transcript quantification.

This pipeline was encoded in python and it is made available on
GitHub at https://github.com/lymeMIND.

Cytokine/Chemokine Assays
The levels of 38 cytokines and other immune mediators were
measured using Bio-Plex cytokine arrays and the Bio-Plex 200
System (Bio-Rad Laboratories). All tests at the participant level
for each specific immune mediator were run by the same
system. All tests were run as recommended by the manufacturer
using previously described optimized assay protocols (17). The
cytokines, chemokines, and acute phase markers measured were:
Eotaxin, FGF basic, G-CSF, GM-CSF, HTARC, IFN-γ, IL-1β, IL-
1rα, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13,
IL-15, IL-17, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31,
IL-33, IP-10, MCP-1(MCAF), MIP-1α, MIP-1β, MIP-3β, PDGF-
ββ, RANTES, sCD40L, TNF-α, and VEGF. Data processing was
performed using Bio-Plex manager software version 4.4.1, and
serum concentrations were interpolated from standard curves for
each respective cytokine. These data were transformed using the
log of the “ratio to average” for ease of interpretation. This was
calculated by setting all values< 1–1 pg/mL, and then calculating
the log base 2 of [(value)/(average value in the cohort)]. As a
result, 0 represents an average value, 1 represents a value which
is 2 times the average, and 2 represents a value which is 4 times
the average.

Data Analysis and Visualization
The RNA-seq gene counts were log2 transformed, z-scored,
and quantile normalized (18) across all patients irrespective
of time-point. These features were used for the subsequent
data visualizations and classifiers. For the differential expression
analyses, RNA-seq gene counts were quantile normalized across
all patients. Uniform Manifold Approximation and Projection
(UMAP) (19) was used to perform non-linear manifold aware
dimensionality reduction and is used for visualizing the features
for all samples in two dimensions. Samples were clustered
using the k-means clustering algorithm on the UMAP manifold.
Silhouette clustering analysis (20) was applied to identify the
optimal number of clusters. Comparisons by cluster were
performed using Kruskall-Wallis tests for overall p-value, and
Wilcoxon rank sum test for individual pairwise comparisons for
continuous variables, and chi-square test for categorical variables.

The log2 transformed RNA-seq gene count features were
selected in several ways and used to train and test a series
of Random Forest (21) and Logistic Regression classifiers. We
employed the same approach to distinguish cases from controls,
as well as Lyme patients with persistent symptoms from those
without at later time points Samples were randomly grouped into
a stratified training and test set using 75 and 25% of the samples,
respectively, while preserving the ratios of positive and negative
labels in each group. The Random Forest classifier was trained
using all features to distinguish patients. First, the training was
done in such a way that would lead to a fully grown and unpruned
set of decision trees, and then in a way that constrains the tree to
utilize the most informative top 50 features across all trees. The
Logistic Regression classifier was trained using all the features to
distinguish patients. The top 50 features with the highest absolute
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slopes after training were then used to train another Logistic
Regression classifier with access to only those features. Another
Logistic Regression classifier was trained using the top 50 features
with the highest ANOVA F-test.We computed the unit mean and
standard deviations from the log2 normalized training data and
applied z-score normalization to the log2 normalized training
and test data. Performance of each of the models on the test sets
were collected and visualized using AUROC and PR curves.

CIBERSORT was used along with the benchmarked LM22
signature file, which contains signatures for 22 immune cell
types to derive cell type ratios from our patient’s RNA-seq gene
counts (22). The resulting cell type ratios were investigated
for statistically significant feature correlations and the features
themselves were used with the Random Forest classifiers and the
Logistic Regression classifiers to distinguish Lyme patients from
healthy controls, and Lyme patients with persistent symptoms
from those without. Our RNA-seq counts were further contrasted
with the RNA-seq counts from a study of the immune responses
in several RNA-seq analyzed PBMCs of patients with COVID-
19 (GSE152418). The data were merged by independently log2-
transformed, z-score normalized, and quantile normalized before
being combined into a unified set of gene expression and
corrected for batch effects which distinguished the datasets using
ComBat (23).

Analyses and figures were produced using python scikit-
learn and the scipy ecosystem, SAS Software (version 9.4; SAS
Institute Inc., Cary, NC, USA), and GraphPad Prism (version
8.1.0; GraphPad Software, San Diego, CA, USA).

RESULTS

RNA-Seq Processing, Clustering, and
Visualization
Seventy-two cases (41 males and 31 females) diagnosed with
early localized and early disseminated LD along with 44 controls
(19 males and 25 females) were enrolled in the longitudinal
study. After aligning the RNA-seq data, transcript counts
were converted to the gene level and then counts were log
transformed and normalized (see methods). We then applied
Uniform Manifold Approximation and Projection (UMAP) (19)
to estimate similarities and differences between the samples,
each representing a patient at a specific visit. Interestingly,
cases were mostly separated from the controls, even after 6
months and 1 year follow up visits (Figure 1A). Such separation
cannot be attributed to batch, gender, or seasonal effects
(Supplementary Figure 2). Next, we aimed to automatically
identify clusters based on the samples’ RNA-seq data to see if the
cases and controls further cluster into subtypes. The Silhouette
score identified an optimal number of 3 clusters (Figure 1B).
The automatic clustering placed the controls in cluster 2. LD
cases are divided into two distinct clusters, clusters 0 and 1, with
a smaller group of cases clustering with the controls in cluster
2 (Figure 1C). There are two notable observations. First, most
cases and controls remain in one cluster over the course of study
(Figures 1D–G). Secondly, some cases that aremainly in cluster 0
move around to cluster 2 (mostly controls) (Figure 1F), but there

are no patients from cluster 1 that return to the control cluster 2
even after 1 year (Figures 1G–H). This is surprising becausemost
LD patients that receive timely treatment are expected to return
to a normal state after several weeks. We observe that none of the
clinical measured variables can clearly explain the overall long-
lasting immune activation in the LD cases. However, it should
be noted that the data collected for this study was processed in
batches over several years (Figures 1I–J). If we plot the data by
batch or by year, we see clear patterns that separate the controls
from most of the cases (Supplementary Figure 2). While it is
possible that there are some batch effects within the data, such
separation cannot explain the clear long-term immune activation
observed for the cases. We also attempted to remove these batch
effects with the ComBat method (23) and the results regarding
long-term immune activation remain.

Lyme Serology Projection and Cytokine
Profiling
Control participants generally remained in cluster 2 over time,
with only 9 of the 132 (6.8%) total control visits found in clusters
0 or 1. We compared those control study visits in cluster 2 with
those in clusters 0 or 1 and did not find statistically significant
differences in Lyme serology (ELISA values, or the number of
reactive IgM or IgG bands), or the percent reporting a recent viral
infection such as a cold or flu in the past 10 days (p > 0.12 for
each comparison). In addition, there were no new diagnoses or
tick bites in the preceding interval reported by controls at any
of the non-cluster 2 study visits. Direct evidence of infection was
obtained using a sensitive PCR/ESI-MS approach that detected
Borrelia burgdorferi in the skin or blood of most of our patients.
Interestingly, there was a subgroup of cases that were PCR/ESI-
MS negative and who failed to seroconvert on standard two-
tier antibody tests [Figure 2, as previously identified in (13)].
Remarkably, these patients generally cluster within the other
cases, suggesting that these patients may have LD, but current
assays are not capable of detecting the presence of Borrelia in
their skin or blood. It should be noted that two patients were
clinically diagnosed with LD and considered cases but have
negative detection of Borrelia antigens and clustered with the
controls. These patients may represent a Lyme look-alike group.
Thirty-eight cytokines and chemokines were measured in the
sera of cases and controls and 5 were statistically significant by
cluster group (p < 0.05, see Figure 3), while 7 were borderline
statistically significant (0.10 < p < 0.05: IL-23, IL-7, IL-13, IL-
15, PDGF-ββ, IL-21, and IL-17F). The remaining n = 26 was
not statistically significant by cluster group. Individual pairwise
comparisons were also conducted between clusters.

Differential Gene Expression Analysis
Differential expression analysis was performed using the
Characteristic Direction (CD) method (24) on all quantile
normalized case and control samples. Interestingly, three
of the top-ranked up-regulated genes in LD cases are the
human leukocyte antigens HLA-A and HLA-B, which suggest
inflammation via adaptive immune activation (Figure 4). The
top 200 up-regulated and down-regulated genes were subjected
to enrichment analysis with Enrichr (25) to identify biological
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FIGURE 1 | (A) UMAP projections of all samples collected for the study based on RNA-seq expression where each sample, representing a patient at a specific visit, is

colored by cases (blue) vs. controls (red). (B) K-means is fit to the quantile normalized gene counts matrix and silhouette analysis is performed to identify an optimal

number of clusters. (C) UMAP projections of all samples collected for the study based on RNA-seq expression where each sample, representing a patient at a specific

visit, is colored by automatic cluster assignment. (D) UMAP projections of all samples collected for the study based on RNA-seq expression where each sample,

representing a patient at a specific visit, is colored by cases (blue) vs. controls (red) and line trace the trajectory of patients over time. (E) UMAP projections of controls

that change clusters (in color), cluster membership (color) and line trace of patients over time. (F) UMAP projections of cases that change clusters from cluster 0 (in

color), cluster membership (color) and line trace of patients over time. (G) UMAP projections of cases that change clusters from cluster 1 (in color), cluster

membership (color) and line trace of patients over time. (H) Membership of cases (left) and controls (right) for each visit in each automatically detected cluster. (I)

UMAP projections of all samples colored by the season/year when the data was collected. (J) UMAP projections of all samples colored by one of six batches.

processes and pathways that are altered in the LD cases.
As expected, enrichment terms associated with the immune
response are associated with the top 200 up-regulated genes
in LD cases (Supplementary Figure 3). Specifically, NFkB/RelA
is consistently detected as the most enriched transcription
factor based on ENCODE (26), TRRUST (27), TRANSFAC
(28) and JASPAR (29), and Transcription Factor protein-protein
interactions (PPIs). The most enriched pathways are those
associated with Influenza, Salmonella, and Ebola infections.
Interestingly, arthritis is the top enriched term using the Jensen
DISEASES (30) library. Arthritis is a known symptom for LD
patients (31). LINCS (32) L1000 (33) ligand perturbations up-
regulated genes are enriched for signatures for IL-1 and TNF
alpha, supporting immune system activation; and dbGAP (34)
enrichment analysis points to leprosy and gout as the top terms.
The mycobacterium tuberculosis is the most enriched term for
Microbe Perturbations from GEO up library, suggesting that
Borrelia effects on gene expression might be most like the effects
of this pathogen.

The most striking enrichment result is the top enriched term
returned from the “Rare Diseases AutoRIF ARCHS4 Prediction”
gene set library which is Erythema elevatum diutinum. This
library contains 3,725 gene sets created using the Geneshot (35)
tool to search the names of various rare diseases on PubMed.
Geneshot uses AutoRIF, which is a resource containing PubMed
IDs and the genes mentioned in the title and abstract of these
publications. For each rare disease term, the associated PubMed
IDs are cross referenced to the AutoRIF resource and ranked by
publication frequency. Geneshot then converts these generated
gene lists into predicted gene lists using co-expression data from
ARCHS4 (36) to identify genes that may be associated with
disease terms but not yet studied or published in the literature.
All 44 genes associated with Erythema elevatum diutinum
were contained within the top 200 positive top ranked genes
from the differential expression analysis. These results suggest
that erythema disease genes are associated with an immune
module that is highly relevant to the molecular mechanisms
of LD.
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We also examined the differentially expressed genes (DEGs)
that were driving the separation of the LD cases into two clusters.
Not surprisingly, each of these two clusters of cases displayed
unique and defining sets of DEGs (Supplementary Figure 4).
The top 200 up-regulated and down-regulated genes in each
cluster was subjected to enrichment analysis to identify biological
processes and pathways that are unique to each cluster.
Surprisingly, HLA-E, a class Ib molecule that can serve as
regulatory ligand for NK cells was prominently down-regulated
in cluster 0 when compared to cluster 1. These and other enriched
terms, derived from the up-regulated genes in clusters 0 vs. 1,
and account for the majority of Lyme cases, are visualized as
bar charts (Supplementary Figure 5). These two clusters share

FIGURE 2 | UMAP projection of all samples collected for the study based on

RNA-seq expression where each sample, representing a patient at a specific

visit, is colored by detection status of Borrelia antigens in their blood or skin.

Samples colored in gray did not have data on PCR/ESI-MS status either

because they represent control samples, or because they represent case

follow-up time points where these data were not obtained.

features that include T cell receptor signaling, the involvement
of monocytes and CD4+ T cells, enrichment of Rel and NFKB
transcription factors and association with arthritis and leprosy.
Cluster 0 is distinct in that monocytes, dendritic cells, and
CD8+ T cell involvement are implied. Distinct features of cluster
1 include neutrophils, IL-4 signaling and IgE/IgA synthesis.
As above, the most remarkable enrichment came with results
from the “Rare Diseases AutoRIF ARCHS4 Prediction” gene
set library with each cluster associated with distinct diseases.
The rare diseases associated with cluster 0 include those with
autoimmune or inflammatory features while cluster 1 rare
diseases are largely driven by non-immune mechanisms. This
highlights the differences between patients within these two
clusters. Such differences can potentially be explained by different
types of cytokine CD4+ helper T cells (Th) response.

Cell Type Deconvolution With CIBERSORT
To further explore and extract information from the RNA-
seq data, we next applied deconvolution algorithms to identify
potential changes in cell type composition between the controls
and cases. Specifically, we applied the CIBERSORT algorithm
with the LM22 reference signatures (22) which identifies the
proportion of 22 immune cell types in a sample (Figure 5A).
We observe that the Lyme disease cases have significantly
more Tregs (Figure 5B), more monocytes (Figure 5C), and less
resting T memory cells (Figure 5D). These observations suggest
a general activation of an immune response consistent with
the conclusion made via the differential expression analysis.
Interestingly, the increase in Tregs compared with the controls
is more pronounced in cluster 1 compared with cluster 0 across
all visits (Figure 5E). This further supports the overall potentially
more robust immune response for the patients within cluster 1.
Tregs are known to increase with infection and inflammation.

FIGURE 3 | Statistically significant immune mediator differences among transcriptome-defined clusters. Levels of the 5 immune mediators found to be statistically

significant by cluster are shown.
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FIGURE 4 | Top ranked up-regulated and down-regulated differentially expressed genes in LD cases based on the characteristic direction method.

They suppress auto-immune host tissue damage and assist
establishing tolerance when the inflammation resolves. Next, we
asked whether there are gene modules that return to normal
level over time and approach the control subjects, and conversely
others that do not. For this, we created two Venn diagrams
that highlight the unique genes that are up/down early and
those that are up/down late when comparing the cases to the
controls. We observe that many cell cycle genes are uniquely
up regulated at early visits and down regulated at late visits
(Figure 5F). This is consistent with the known rapid proliferation
of T cells that occurs at the initiation of innate immune response,
and apoptosis and other regulatory mechanisms during adaptive
immunity stages.

Machine Learning Applications to Classify
Patients
Finally, we applied machine learning methods to attempt to
diagnose patients based on their RNA-seq gene expression
profiles. Random Forest and Logistic Regression classifiers were
trained using stratified training and testing data accounting for 75
and 25% of the RNA-seq from Lyme disease and control samples,

respectively. These features are RNA-seq gene expression counts
that were log2-normalized, variance-filtered, z-score and quantile
normalized. Overall, five different classifiers were constructed:
(1) a classifier for predicting whether a patient has Lyme
disease, or is an healthy control (Figure 6A), (2) a classifier
for predicting whether a patient that has Lyme disease will
progress to having persistent symptoms (Figure 6B), (3) and
(4) classifiers that attempt to perform the same classifications
as 1 and 2, but with CIBERSORT transformed features instead
of using the gene expression features directly (Figures 6C,D);
and finally, (5) a classifier for predicting whether a patient has
Lyme disease or COVID-19 (Figure 6E). The 17 COVID-19
RNA-seq samples were taken from a recent study that profiled
patients’ PBMCs (GSE152418). We evaluate the performance of
each of the trained classifiers instance by computing AUROC
and Precision-Recall curves (Figure 6). After five passes of this
procedure, we aggregate these metrics to provide a sense of
performance and generalizability of the classifiers tested. Overall,
we observe that the Logistic Regression classifiers outperform
the Random Forest classifiers when using all genes or when
restricting the classifiers to use the top 50 most informative
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FIGURE 5 | (A) Cell-type ratios were derived from gene expression with CIBERSORT. Green bar denotes Lyme disease patients. (B–D) Cell-types ratios with

significant differences across all visits in healthy patients (type_subject = 0) vs. those with Lyme disease (type_subject = 1) Significance computed with Welch’s

unequal variance t-test for independence. (E) Predicted levels of Tregs at each visit for each cluster based on CIBERSORT LM22. (F) Comparing the identified DEGs

between cases and control and early and late time-points. Enrichment analysis with Enrichr was applied to the unique genes that are only up early (left), or only down

(dn) late (right) with the gene ontology biological processes gene set library.

genes. The performance of these classifiers suggests that they
could potentially aid in diagnosis but may not be good enough
to replace existing methods. Additional information about the
population of Lyme disease patients would be necessary to
adequately assess the performance of this approach in a clinical
setting. In addition, more samples and uniform processing of the
data will be required. We should also note that the comparison
to the COVID-19 patients has several caveats. For one, we are
comparing acute viral infection to persistent bacterial infection.
The data from the COVID-19 study and our LD study were
applied to different populations. These studies were conducted
by different groups that employed different protocols to collect
and process the data.

Web supplement
To make the data, analysis, and results from this study
accessible and reusable, we developed two web supplement
components, one is a Jupyter Notebook with the code,
markdown text, and figures generated for this study. The other
is an interactive plot that provides enrichment analysis for
the different clusters. These two web-based components can

be accessed from: https://commons.lymemind.org/#/Notebook
and https://commons.lymemind.org/#/Viewer.

DISCUSSION

The molecular mechanisms underlying the disease course and
outcomes of LD are still poorly understood. In this study, we
applied in-depth examination of RNA-seq profiling of 73 LD
patients over a period of 1 year and compared these to 44 non-LD
infected controls over a period of 2 years. The gene expression
analysis clustered controls and LD cases into three distinct
clusters, each with distinct clinical and immunological features.
The majority of cases remained within a single cluster even up to
1 year after diagnosis. Enrichment analysis of the differentially
expressed genes between the cases and controls identified up-
regulation of immune response genes as well as genes specific
for diseases displaying erythema. The clear separation between
controls and cases enabled us to develop expression-based
machine learning classifiers that may inform improved diagnosis.
In fact, we developed three different types of classifiers. One
to discriminate between LD cases and healthy controls, one to
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FIGURE 6 | (A) AUROC and PR curves for classifiers predicting whether a gene expression sample is from a Lyme disease diagnosed patient or a healthy control

across all visits. (B) AUROC And PR curves for classifiers predicting whether a gene expression sample is from a Lyme disease diagnosed patient with persistent

symptoms. (C) AUROC and PR curves for classifiers predicting whether a gene expression sample is from a Lyme disease diagnosed patient or a healthy control

across all visits using CIBERSORT features instead of RNA-seq gene expression. (D) AUROC and PR curves for classifiers predicting whether a gene expression

sample is from a Lyme disease diagnosed patient with persistent symptoms using CIBERSORT features instead of RNA-seq gene expression. (E) AUROC and PR

curves for classifiers predicting whether a patient’s observed gene expression, normalized and batch effect corrected across experiments, suggests they have Lyme

disease or COVID-19.

distinguish between LD cases and those cases that will progress
to having persistent symptoms, and one that to classify LD from
COVID-19 patients. Overall, the results from these classifiers are
encouraging. The cost of RNA-seq is continually dropping so
it could be used as a practical approach. While it is difficult to
tell whether such a classifier will be able to discriminate from
other similar bacterial infections, the up-regulation of immune
response genes observed in the cases can be readily detected via
expression profiling of their PBMCs.

Two other prior studies attempted to use genome-wide gene
expression data to profile LD patients (37, 38). Both studies
profiled gene expression from PBMCs extracted from LD patients
and controls. Both studies had less patients compared with the
number of patients profiled in our study. The size of the cohorts

is critical to gain statistical insights and identify patterns in the
data collected from these patients. The first study (37), analyzed
acute LD patients using RNA-seq profiling and the conclusions
of this study are similar to what we observed, which is an
increase in immune response genes in the cases and continued
dysregulation of gene expression months post infection and
treatment. However, it was unknown whether patients return to
normal after several months from their initial diagnosis.

The second more recent study (38), was a longitudinal study
using cDNA microarrays to profile gene expression and, unlike
ours and other findings (37), found that the DRGs identified
during the acute phase returned to normal levels at 6 months.
There are several potential reasons for this difference. First, this
study was conducted using a smaller number of LD cases, with 10
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TABLE 2 | Baseline demographic and clinical characteristics of 72 participants with early Lyme disease by v1 cluster groupa.

Whole Sample Cluster 0 Cluster 1 Cluster 2 Overall

p-value

0 vs. 1

p-value

0 vs. 2

p-value

1 vs. 2

p-value

n = 72b n = 40 n = 19 n = 13

Age (years) 49.5

[33.0–60.0]

(20.0–77.0)

49.0

[31.5–57.5]

(21.0–73.0)

53.0

[31.0–64.0]

(20.0–71.1)

50.0

[42.0–61.0]

(23.0–77.0)

0.649 0.434 0.504 0.939

Female gender 31 (43.1%) 16 (40.0%) 8 (42.1%) 7 (53.9%) 0.678 0.878 0.382 0.513

Erythema migrans size (cm2) 82.0

[50.0–157.0]

(16.0–900.0)

99.5

[52.0–169.0]

(16.0–375.0)

84.0

[48.0–144.0]

(32.0–900.0)

60.0

[50.0–126.0]

(24.0–182.0)

0.505 0.646 0.248 0.569

Disseminated erythema

migrans

22 (30.6%) 12 (30.0%) 5 (26.3%) 5 (38.5%) 0.760 0.770 0.734 0.699

Duration of illness (days) 6.0 [4.0–10.0]

(1.0–60.0)

6.0 [4.0–9.5]

(1.0–60.0)

5.0 [4.0–16.0]

(3.0–42.0)

6.0 [3.0–6.0]

(3.0–13.0)

0.535 0.727 0.322 0.359

Antibiotic treatment initiated

at V1c
27 (37.5%) 21 (52.5%) 4 (21.1%) 2 (15.4%) 0.013 0.022 0.019 1.000

Number of new onset,

Lyme-related symptoms

6.0 [3.0–10.0]

(0.0–26.0)

8.5 [4.0–14.0]

(0.0–26.0)

6.0 [1.0–8.0]

0.0–13.0)

5.0 [3.0–6.0]

(1.0–10.0)

0.025 0.025 0.052 0.924

Absolute lymphocytes < 1.1

× 103/µL

14 (19.4%) 8 (20.0%) 2 (10.5%) 4 (30.8%) 0.331 0.476 0.459 0.194

Liver function abnormalityd 22 (30.6%) 15 (37.5%) 6 (31.6%) 1 (7.7%) 0.127 0.657 0.079 0.195

Two-tier antibody positive

(acute)

18 (25.0%) 13 (32.5%) 3 (15.8%) 2 (15.4%) 0.322 0.177 0.305 1.000

Two-tier antibody positive 31 (43.1%) 22 (55.0%) 5 (26.3%) 4 (30.8%) 0.071 0.039 0.129 1.000

PCR/ESI-MSe results:

Skin (+)/blood (+) 19/69 (27.5%) 12/39 (30.8%) 5 (26.3%) 2 (18.2%) 0.925 0.936 0.690 0.892

Skin (+)/blood (–) 29/69 (42.0%) 15/39 (38.5%) 8 (42.1%) 6 (54.6%)

Skin (–)/blood (–) 21/69 (30.4%) 12/39 (30.8%) 6 (31.6%) 3 (27.3%)

aData from categorical variables are presented as count (%). Data from normally distributed variables are presented as mean ± standard deviation (range) and from continuous variables

without normal distribution as median (25th percentile, 75th percentile) (range). Comparisons by cluster group were performed using Kruskall-Wallis tests for overall p-value and Wilcoxon

rank sum test for individual pairwise comparisons for continuous variables, and chi-square test for categorical variables.
bN = 73 participants were included in this study. However, one did not have a V1 blood draw and therefore V1 cluster status could not be determined and they were dropped from

this analysis.
cParticipants were eligible if they had initiated appropriate antibiotic treatment for Lyme disease <72 h from their baseline study visit.
dElevated liver function test defined as any one of the following: aspartate aminotransferase above 35 U/L, alanine transaminase above 40 U/L, or alkaline phosphatase above 130 U/L

for males and above 115 U/L for females.
ePCR and electrospray ionization mass spectrometry (39). Three participants were missing PCR/ESI-MS results.

analyzed at the 6-month time point. Second, the study exclusively
used cases that displayed disseminated lesions, while our study
included all LD patients that presented with a 5 cm or larger
EM rash. Interestingly, our study includes 24 cases displaying
disseminated lesions and we did not observe a relationship
between lesion features and transcriptional clustering (Table 2).
We suggest that the differences in outcomes between studies may
be due to variation in clinical case definition, sample size and
potentially differences in Borrelia burgdorferi sensu stricto strains
that initiate disease in differing geographic regions.

In our study, dimensionality reduction followed by clustering
analysis of the longitudinal RNA-seq data identified three distinct
clusters. In one cluster, containing mostly cases, the patients
can be observed mixing with another cluster, containing mostly
controls, over multiple visits. However, patients within another
cluster containing mostly cases, stay in the same region of
expression space even at later visits after treatment. This pattern
of remaining within a cluster over time suggests that there is a

long-term alteration of genes targeted for transcription in PBMCs
following acute LD diagnosis. However, it is still unclear what
is driving this persistent transcriptional activity. Possibilities
include the continued presence of spirochetes or foreign bacterial
antigen as well as epigenetic changes, all of which could drive long
term transcriptional alterations. It is interesting to point out that
for a subset of 21 cases, Borrelia DNAwas not detected in the skin
or blood using extremely sensitive PCE/ESI-MS based approach.
Initially, we categorized these cases as potential cases of STARI,
or sampling or diagnostic errors. However, in this current study,
most of these patients have transcriptional profiles that cluster
them with other cases, suggesting that these may represent true
LD cases for which the applied detection methodologies failed.
This may also suggest that profiling host gene expression may be
a useful and potentially a sensitive approach for the diagnosis of
acute LD.

The three clusters defined by the DEGs also have distinct
clinical and immunological features. Cluster 0, the largest cluster,
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was found to have a higher number of symptoms of acute
disease, higher rates of two-tier antibody positivity, as well
as a non-statistically significant trend toward higher rates of
abnormal liver function tests. All together, these imply that this
cluster has more severe acute disease and a robust immune
response. This is consistent with the enrichment analysis, which
associates cluster 0 with immune mediated common and rare
diseases. Also revealed by the enrichment analysis, was an
association with CD8+ T cells, a subset usually linked to the
control of intracellular pathogens via cytotoxic effector function.
Interestingly, CD8+ T cells have been implicated in LD (40,
41). Cluster 0 also uniquely displays elevated levels of IL-31,
member of the gp130/IL-6 family of cytokines (42). This cytokine
is thought to be produced by CD4+ Th2 cells but Th1 cells
can be induced to express IL-31 (43). IL-31 is also known to
promote skin inflammatory disorders inmousemodels and in the
human setting (42, 44). Interestingly, in a retrospective study, the
development of systemic autoimmune joint diseases, including
psoriatic arthritis was associated with prior LD (45). Also, in
our study, differential gene expression analysis comparing the
controls to the cases identify immune response genes that may be
specific for LD. Enriched terms include LD common symptoms
such as erythema and arthritis. The overlapping genes that lead
to the significant overlap between the differentially expressed
genes and these terms may directly suggest novel molecular
mechanisms of disease. Cluster 1 is likewise distinct as these
cases have milder disease. In addition, enrichment analysis
associates this cluster with distinct cells, pathway and processes
including neutrophils, IL-4 signaling, IgA/IgE production as well
a novel and rare diseases which are thought not to involve
immune mediated processes. Neutrophils are thought not to be
a major effector cell in LD, although Osp A can activate human
neutrophils (46). The notion that infection with B. burgdorferi
may trigger such non-immune pathways is an intriguing idea that
may help explain the range of disease outcomes linked to LD.
Previous work found that the human immune response in LD
is largely driven by monocytes and Th1 driven mechanisms (47,
48). However, these studies largely focused on T cells recovered
from inflamed joints in Lyme arthritis, a late feature of untreated
LD. Our studies indicate that a wide range of immune effector
cells may be engaged in LD including NK cells, CD8+ T cells and
neutrophils, whichmay help define disease subgroups and inform
treatment strategies. Clearly, future studies involving detailed
immune profiling of multiple LD cohorts are required.

Analysis of our gene expression data by CIBERSORT revealed
an enriched signal for Treg cells in Lyme cases. T regulatory
cells have well established roles in the regulation of self-
immunity as well as influencing the outcomes of infection (49).
In human Lyme disease, low levels of Tregs in the synovial fluid
were associated with a longer duration of illness in antibiotic-
refractory Lyme arthritis, a late manifestation of human
borrelliosis (50, 51). This is also consistent with the finding
that in vivo depletion of Tregs accelerated inflammatory arthritis
in a mouse model (52), suggesting that Tregs in the context

of Lyme arthritis exhibit anti-inflammatory properties. The
significance of the elevated Treg signal in our study of acute Lyme
disease is not clear. Several studies have shown that in human
tuberculosis increased Tregs levels are associated with active
disease, suggesting that in some cases Treg responses may impair
pathogen clearance and disease resolution (53, 54). Whether this
is the case in some stages of human Lyme disease, or if these cells
contribute to the observed dysregulated or maladaptive immune
response in Lyme disease (55, 56), will require additional studies
on the identification and characterization of T regs in various
stages and outcomes of Lyme disease. This can be potentially
achieved via single cell RNA-sequencing.
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