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Immune cell activation assays have been widely used for immune monitoring and

for understanding disease mechanisms. However, these assays are typically limited

in scope. A holistic study of circulating immune cell responses to different activators

is lacking. Here we developed a cost-effective high-throughput multiplexed single-cell

RNA-seq combined with epitope tagging (CITE-seq) to determine how classic

activators of T cells (anti-CD3 coupled with anti-CD28) or monocytes (LPS) alter

the cell composition and transcriptional profiles of peripheral blood mononuclear

cells (PBMCs) from healthy human donors. Anti-CD3/CD28 treatment activated all

classes of lymphocytes either directly (T cells) or indirectly (B and NK cells) but

reduced monocyte numbers. Activated T and NK cells expressed senescence and

effector molecules, whereas activated B cells transcriptionally resembled autoimmune

disease- or age-associated B cells (e.g., CD11c, T-bet). In contrast, LPS specifically

targeted monocytes and induced two main states: early activation characterized by

the expression of chemoattractants and a later pro-inflammatory state characterized by

expression of effector molecules. These data provide a foundation for future immune

activation studies with single cell technologies (https://czi-pbmc-cite-seq.jax.org/).

Keywords: immune responses, single cell profiling, immune cell activation, LPS, antiCD3/CD28, CITE-seq,

peripheral blood mononuclear cells

INTRODUCTION

The immune system plays a central role not only in fighting infections, but also in the pathogenesis
of many diseases. While access to disease-relevant tissues may be limited, blood profiling provides
a minimally invasive method to assess immune function and health (1, 2). Blood serves as
a conduit for transport of immune cells throughout the body and circulating immune cells
frequently display signatures of disease or immune dysfunction (i.e., immunosenescence) (3–5).
Transcriptional profiling of blood provides an unbiased method for immune monitoring and has
proved invaluable in uncovering novel disease mechanisms. In vitro activation of immune cells
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GRAPHICAL ABSTRACT | Overview of the study design and analysis methods.

is an effective way to assess their functional capacity. For
example, T cells can be activated with non-specific mitogens
such as PHA (phytohemagglutinin) and ConA (Concanavalin
A) (6), or more specifically through the T cell receptor and
co-stimulatory receptors, either by crosslinking with antibodies
against CD3 and CD28 (7), or with antigen-laden antigen
presenting cells (8). Similarly, innate cells, including monocytes,
can be activated through pattern recognition receptors (PRRs)
with pathogen-associated molecular patterns (PAMPs) such as
lipopolysaccharide (LPS) (9). Studying such cellular responses
is an effective strategy to uncover functional defects and/or
disease-associated phenotypes in human immune cells, and
has been widely applied to autoimmune diseases (10–12),
immunodeficiency, aging (13–16), and allergy (17).

Advances in single cell technologies can precisely uncover
donor-, cell type-, and cell state-specific variation in immune
cell functions from clinical samples containing mixed cell
populations (18, 19). Hence, these technologies are increasingly
used to study ex vivo and in vitro cellular responses of diverse
immune cell types [CD8+ T cells (20, 21), dendritic cells
(DCs) (22, 23), and B cells (24)] as well as activated cells
in immune diseases (25). However, single cell gene expression
profiling of activated cells has unique data generation and
analysis challenges including identifying and removing multiplet
cells that increase in number as cellular interactions increase
upon activation. Furthermore, avoiding batch effects is essential
to distinguish activation-specific gene expression patterns from
batch-induced changes. Another major limitation is the high
cost of the methodology which prevents large scale studies.
Recent advances can address some of these challenges. For
example, multiplexing via hashtag oligonucleotides (26) and
individuals’ genotypes (27) permits simultaneous sequencing of
libraries from multiple individuals and conditions to reduce
both the cost and technical batch effects. Finally, cellular
indexing of transcriptomes and epitopes by sequencing (CITE-
seq) technology (26) profiles epitopes (i.e., cell surface proteins)
and gene expression levels from the same single cells and is
particularly suitable for studying distinct immune cell types and
states (e.g., activated and resting) and for filtering out multiplets
among activated cells.

We combined cell hashing and genotype-based multiplexing
to generate CITE-seq data for the deep analysis of circulating
human immune cell responses to classic activators of adaptive
(anti-CD3/CD28) and innate (LPS) immune cells. Responses to

these activators have been studied over decades (6) via bulk
profiling of sorted cells in a reductionist manner, which missed
indirect effects of these activators on other cell types as well as
the heterogeneity in responses at the single cell level. PBMCs
from 10 healthy young donors were profiled at baseline and
following activation via (1) anti-CD3 + anti-CD28 for selective
T cell activation, or (2) LPS for monocyte activation using CITE-
seq to quantify changes in both transcript and protein levels
using 39 antibodies (e.g., CD3, CD4, CD14, CD56, CD69, CD25).
Data from this study uncovered cell-specific responses to each
condition at both the gene and protein level and uncovered
direct and indirect effects of these activators on immune cell
transcriptomes. This study will guide future single cell studies of
activated immune cells in health and disease (https://czi-pbmc-
cite-seq.jax.org/).

RESULTS

Simultaneous Protein and Gene Expression
Profiling of Resting and Activated PBMCs
PBMCs were isolated from the blood of 10 healthy young
individuals (5 men, 5 women; 21–32 years old; Caucasian),
and were cultured for 24 h with LPS (10 ng/ml), anti-
CD3/CD28 (2µg/ml each) (section Methods), or in medium
alone (referred to as “Baseline”). Flow cytometry analysis
confirmed that anti-CD3/CD28 treatment induced the
expression of activation markers (CD25, CD69) on T cells
(Figures 1A,B), whereas LPS activated monocytes as shown
by CD80 induction (Figures 1C,D). To study the effects
of these activation conditions at the single cell level, we
pooled baseline and activated cells from the 10 individuals
(30 samples in total) and used CITE-seq to simultaneously
profile changes in levels of transcripts and 39 cell surface
proteins (Supplementary Table 1). To reduce experimental
batch effects and costs, equal numbers of cells from all donors
and conditions were pooled and sequenced together. Cells from
different conditions were labeled with Cell Hashing Antibodies
(BioLegend) (Figure 1E), where three hashtag oligonucleotides
(HTOs) were used to demultiplex data from each experimental
condition (baseline, LPS, anti-CD3/CD28) using a Gaussian
mixture model on HTO counts (Supplementary Figure 1A).
Finally, donor genotypes were used to demultiplex data
from each individual with Demuxlet (27) (Figure 1F).
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Flow cytometry of CD25+/CD69+ T cells

FIGURE 1 | CITE-seq data before and after immune cell activation uncover distinct cell types and cell states. (A) Fluorescence-activated cell sorting (FACS) and

enrichment of activated T cells at baseline and anti-CD3/CD28 conditions. T cells were gated as CD3+ T cells. (B) Flow cytometry data quantifying the proportion of

(Continued)
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FIGURE 1 | activated cells (CD25+ CD69+ or CD25− CD69+) after anti-CD3/CD28 stimulation. All cells = number of activated T cells as a percentage of all PBMCs;

T cells = numbers of activated T cells as a percentage of all CD3+ T cells. (C) Distributions of CD80 expression in sorted monocytes and all PBMCs at baseline and

LPS conditions. (D) Flow cytometry proportions of activated monocytes (CD80+) before and after LPS stimulation. All cells = number of activated monocytes as a

percentage of all PBMCs; Monocytes = number of activated monocytes as a percentage of CD14+CD16+ monocytes. (E) Sample multiplexing was performed using

cell hashtag oligonucleotide (HTO) antibodies, where a different HTO barcode was used for a specific treatment condition (e.g., HTO A for cells under baseline

condition). (F) De-multiplexing of treatment information using HTOs (left), and donor of origin information using genetic variation across donors in the form of single

nucleotide variations (SNVs)(right). (G) Numbers and (H) proportions of singlet cells retained per donor per condition after removing multiplet cells.

Overall, 195,480 droplets were captured from all samples
(Supplementary Table 2).

Cell multiplets from different sources were detected
and eliminated with the help of multiplexing strategies
(HTOs and genotypes) and the levels of cell-specific marker
proteins (Supplementary Figure 1B, section Methods). HTOs
uncovered multiplets from different treatment conditions,
which constituted ∼13% (26,084/195,480) of total droplets
in addition to 18,871 (∼9%) empty droplets (i.e., no HTO
detected) (Supplementary Figure 1C). Using genotypes, we
identified and filtered out multiplets from different individuals
as well as cells that could not be assigned to an individual with
high confidence (i.e., ambiguous) (Supplementary Figure 1D),
resulting in 55,353 single cells with a mean of 1,932 unique
molecular identifiers (UMIs) per cell. Empty droplets from
cell hashing and ambiguous cells from Demuxlet overlapped
extensively (83%, Supplementary Figure 1E). Finally, expression
levels of cell type-specific proteins uncovered multiplets from
different cell types (section Methods). After multiplet removal
and demultiplexing, an average of 1,638 (range 914–2,034) cells
per donor were detected (16,382 total cells) (Figure 1G), with
855 genes detected per cell on average. Donors showed similar
cell frequency distributions across conditions (Figure 1H).
The proportions of CD25+/CD69+ T cells from CITE-seq
and flow cytometry data were highly correlated (Pearson’s R
= 0.96) (Supplementary Figure 1F) across individuals upon
anti-CD3/CD28 stimulation, indicating that CITE-seq is an
effective technology to capture and study immune cell activation.

Anti-CD3/CD28 Treatment Activates All
Classes of Lymphocytes
Baseline and anti-CD3/CD28-activated PBMCs were jointly
analyzed using the top 500 most variably expressed genes
and proteins (Figure 2A; section Methods). Cell clusters were
annotated using the expression of marker proteins: CD19 and
CD20 for B cells, CD16 and CD56 for NK cells, CD14 and
CD11c for CD14+ monocytes, CD3 and CD4 for CD4+ T
cells, CD3 and CD8a for CD8+ T cells, and CD45RA and
CD45RO for naïve and memory T cells, respectively (Figure 2B
and Supplementary Figure 2A). Accordingly, baseline PBMCs
from 10 individuals consisted of 60–82% T cells, 12–25% CD14+

monocytes, 4–15%NK cells, and 3–6% B cells (Figure 2C), which
was highly correlated with flow cytometry data from this cohort
(Supplementary Figure 2B; Pearson’s R= 0.97). CD8+ memory
T cells were the most variable cell type between individuals with
a coefficient of variation (CV) of 0.65, followed by NK cells (CV
= 0.51).

Anti-CD3/CD28 treatment activated all lymphocytes
(Figure 2A, left). PBMCs grouped primarily by cell type and
secondarily by cell state (i.e., resting vs. activated) based on
their annotations with cell surface markers (Figure 2B and
Supplementary Figure 2A). Labeled antibodies allowed the
detection of naive (CD45RAhigh) and memory (CD45ROhigh)
T cells. Activated T cells showed early (CD69) and late (CD25)
activation markers and reduced CD3 expression (Figure 2B).
Indirect activation of NK and B cells was revealed by the
induction of CD69 mRNA and protein (Figure 2B). Notably, this
treatment caused a significant decline in monocyte numbers and
their percentages in PBMCs (Figure 2C). This is likely due to the
induction of apoptosis in monocytes via activated T cells (28, 29)
as apoptosis-associated genes were upregulated (e.g., CTSL,
TRAF1, TNF, and GZMB) among T cell-monocyte multiplets
detected in the anti-CD3/CD28 condition.

Senescence and Cytotoxicity Molecules
Are Upregulated in Activated CD4+ T Cells
Unsupervised clustering of CD4+ T cells using both gene
and protein expression levels revealed 7 subgroups: 5 found
at baseline and 2 additional ones following activation with
anti-CD3/CD28 (Figure 2D). CD4+ cells did not respond to
LPS activation and clustered with baseline cells. At baseline,
we detected CD45RA+CD45RO− (cluster 7; naïve cells)
and CD45RA−CD45RO+ (cluster 2; memory cells) subsets
as well as less abundant CD45RO+CCR6+CD161+ (cluster
3; memory cells including Th17 cells), CD45RO+CXCR5+

(cluster 1; memory cells including Tfh cells), and
CD45RO+CD57+CCR5+CCR7 cells + (cluster 4; other
memory cells). CD45RO+CXCR5+ cells, which constituted
∼8% of baseline CD4+ T cells (3–14% between donors)
(Supplementary Figure 2C) were in an apparent resting state
as they lacked ICOS (CD278) and CD69, in alignment with
our previous observations (30). Cluster 3 cells (Figures 2D,E)
expressed chemokine receptor CCR6 (indicating tissue-specific
homing properties) and C-type lectin receptor CD161 (KLRB1)
and CD127 (IL7R) on their surface constituted∼9.9% of CD4+ T
cells (Supplementary Figure 2C). Finally, we identified a smaller
subset of memory cells that highly expressed CD57, CCR5, and
CCR7 on their surface in addition to moderately expressing
CXCR3 and CCR4 (Figure 2E) and include Th1 (CCR5 and
CXCR3) and Th2 (CCR3, CCR4) subsets (31). Activated CD4+

T cells clustered into two groups: cluster 5 (memory activated:
CD69+ CD45RO+) and cluster 6 (naïve activated: CD69+

CD45RA+). Cells in both clusters expressed co-stimulatory
proteins (most notably CD28, CD278) and activation marker
proteins (CD69, CD25) (Figure 2D). However, the expression
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FIGURE 2 | Anti-CD3/CD28 stimulation activates all classes of lymphocytes. (A) Clustering of PBMCs at baseline and anti-CD3/CD28 conditions separates

lymphocytes (NK, T, and B cells) primarily by cell type and secondarily by condition. Cells are color-coded based on activation condition (left) and cell types inferred via

CITE-seq antibodies (right). (B) Annotation of cells at baseline was performed using protein expression levels of CD3, CD4, CD8, CD45RA, CD45RO, and additional

annotation of activated T cells was done using expression of CD25 and CD69. (C) Cell type proportions across 10 donors at baseline (top) and anti CD3/CD28

condition (bottom). Note the decline in CD14+ monocytes (red bars) upon anti-CD3/CD28 condition. (D) Unsupervised clustering of all CD4+ T cells separates

anti-CD3/CD28-stimulated cells from those at baseline and LPS activation. Dimension reduction plot with CD4+ T cells colored by their resultant cell type identity. (E)

Average scaled expression of protein markers used to identify and annotate CD4+ T cell subsets. (F) Average scaled expression of marker genes associated with

naive, MAIT, NK, TEMRA, and senescence functions.

of certain markers decreased upon activation (e.g., CD161,
CCR6) limiting our ability to discriminate subsets among
activated CD4+ T cells. T cell senescence genes (e.g., SESN2,
PRKAA1, MAPK1, TAB1) were induced both in naive and
memory CD4+ T cells upon activation (Figure 2F). Moreover,
activated memory cells (CD45RO+CD45RA−CD69+) highly
expressed genes associated with terminally differentiated effector
cells [T cells re-expressing CD45RA (TEMRA)] (32), including
cytotoxic molecules (e.g., GZMA, GZMB, IFNG, GZMH, GNLY)
(Figure 2F and Supplementary Table 3).

Naive T Cell Responses to Anti-CD3/CD28
Stimulation Are Stronger Than Those of
Their Memory Counterparts
CD8+ T cells were composed of 6 distinct clusters: 4 found
at baseline and 2 additional ones upon anti-CD3/CD28

activation. LPS did not activate CD8+ T cells as cells treated
with LPS clustered together with baseline cells (Figure 3A).
Baseline clusters included: CD45RA+CD45RO− (cluster
4; naïve), CD45RO+CD45RA− (cluster 1; memory) cells,
CD57+CXCR5+CD45ROhigh cells (cluster 2; effector memory
cells, ∼8.6% of CD8+ T cells) and CD161+CCR6+ cells
(cluster 5; MAIT, mucosal-associated invariant T cells, ∼7.9%
of CD8+ T cells) (Figure 3B and Supplementary Figure 2C).
Anti-CD3/CD28 activation elicited a strong response in
CD8+ T cell subsets (Figure 3A), resulting in activated
memory cells (cluster 3; CD69+CD45RO+) and activated
naïve cells (cluster 6; CD69+CD45RA+). Both activated
clusters expressed high levels of activation proteins (CD25,
ICOS, CD69) (Figure 3B). When compared to activated
memory cells, activated naïve cells expressed higher levels
of the CD27 and CD28 proteins (Figure 3B). Cluster 5 cells
expressed marker genes of MAIT cells [RORC, KLRB1, and
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CCR6 (33)] (Figure 3C). Activated cells from clusters 3
and 6 expressed high levels of both cytotoxic (e.g., GZMA,
GZMK) and senescence genes (SESN2, CDKN1A, CDKN2A)
(Figure 3C).

Differential expression analyses between activated and resting
T cells revealed that 950 genes were upregulated in naïve and
memory CD4+ and CD8+ T cells (Supplementary Figure 2D),
including IFNG, Type I interferon-inducible genes (ISG15,
ISG20), and interferon regulatory factors (IRF1, IRF4)
(Supplementary Table 4). Stimulation induced more genes
in naïve (CD45RA+CD45RO−) T cells than memory
(CD45RO+CD45RA−) T cells; 824 transcripts were induced
specifically in naïve CD4+ and CD8+ T cells, while 494 were
induced in CD8+ naive T cells (Supplementary Figure 2D).
Naïve cell-specific response genes were enriched for KEGG
pathways associated with cell cycle (e.g.,MCM2/3/5/6, CDKN2D,
SMC1A, CHEK1), carbon metabolism (e.g., ESD, CS, SDHD,
GPI), and basal transcription factors (e.g., ETF1, EIF4E, EIF4H,
EIF4G1), emphasizing the proliferative and expansive capacity
of naive T cells upon activation (Supplementary Table 4).
Pseudo-temporal ordering of baseline and activated T cells
using the Slingshot algorithm (34) revealed mostly linear
trajectories for activation despite the existence of distinct
memory (CD45RO+CD45RA−) subsets at baseline, thereby
indicating that these different subsets respond similarly to anti-
CD3/CD28 activation. Distinct subsets (e.g., CD161+CCR6+)
were no longer detectable upon activation—potentially due
to internalization of cell surface proteins—preventing further
interrogation of their specific responses. Instead, our analyses
revealed that, for both CD4+ T and CD8+ T compartments,
activated naïve (CD45RA+CD45RO−CD69+) cells were ordered
toward the end of the activation pseudotime trajectories,
due to the greater transcriptomic changes in naive T cells
upon anti-CD3/CD28 stimulation compared to memory
cells (Figures 3D,E). Taken together these data show that
anti-CD3/CD28 activation has a significant effect on T cell
transcriptomes, where naïve T cells go through more significant
changes compared to their memory counterparts.

Anti-CD3/CD28 Activation of PBMCs
Result in Indirect Activation of NK Cells
Anti-CD3/CD28 treatment induced CD69 protein expression on
NK cells, and transcription of 74 genes (Supplementary Table 5),
60 of which were shared with T cells, including cytotoxic
molecules (e.g., GZMB) as well as interferon response
genes (Supplementary Figure 2D, Supplementary Table 4).
Clustering analyses of NK and T cells, at baseline and after anti-
CD3/CD28 activation, uncovered the transcriptional similarity
between NK and CD8+ T cells (Figure 4A). Interestingly,
activated CD8+ T cells clustered distinctly from NK cells
likely due to the upregulation of distinct molecules in T cells
(Supplementary Figure 2D). To further characterize these cells,
we derived MAIT, cytotoxicity, and senescence scores using
relevant gene sets (section Methods, Supplementary Table 3).
As expected, CD8+CD161+CCR6+ cells had the highest MAIT
score. Activated NK cells (CD56+CD69+) showed the highest

cytotoxicity score among all studied cell types, followed by
activated CD8+ memory cells (CD8+CD45RO+CD69+) T cells
(Figure 4B). In alignment with this, upon activation, important
cytotoxic molecules were up-regulated in NK cells, including
perforin (PRF1), granulysin (GNLY), and granzymes (GZMB)
(Supplementary Table 5). In contrast, activated T cells had high
senescence scores, particularly for activated naive CD8+ T cells
(CD45RA+CD69+), which was in alignment with the increased
expression of CDKN1A (encoding p21 protein) and CDKN2A
(encoding p16 protein) along with other senescence-associated
molecules (Figure 3C). In contrast, baseline and activated NK
cells displayed low senescence scores.

The significant effect of anti-CD3/CD28 treatment on the
NK cell transcriptome (Figure 4C; left) results from indirect
activation, since neither TCR nor CD28 are expressed by NK
cells. Unsupervised clustering of NK cells from baseline and
anti-CD3/CD28 stimulation identified seven groups (Figure 4C;
middle), four of which were enriched in activated cells (∼95%
activated, Clusters 0, 1, 4, and 5) (Figure 4C; right). Cells in
these four clusters of activated NK cells had higher expression
of interferon-stimulated genes (ISGs) including LY6E, IFI6, and
IFI27 (Figure 4D) than NK cells at baseline. One of these clusters
(cluster 4) highly expressed marker proteins for activation: CD69
and CD83 (35) (Figure 4D). NK cells in cluster 4 expressed XCL1
that facilitates their communication with DCs, as well as CCL3
and CCL4 (36) that enable them to recruit various immune cells
including naive CD8+ T cells. In contrast, clusters 2, 3, and 6
cells were mostly from the baseline condition and enriched for
KLF2, which encodes a transcription factor important for NK
cell survival (37). Trajectory analyses of NK cells (baseline and
activated) revealed that the cells at the end of the trajectory have
the highest expression of interferon-gamma (IFNG), granzyme
B (GZMB), CD69, and various chemokines (CCL3, CCL4, XCL1,
XCL2) (Figure 4E), resembling the profiles of cluster 4 cells.
Expression of other interferon-inducible genes (IFITM1, ISG15)
and granulysin (GNLY) peaked prior to the end of the trajectory,
highlighting differences in timing and degree of NK subtype
activation. Thus, scRNAseq of anti-CD3/CD28 activated PBMCs
revealed that NK cells are indirectly activated with this condition
that resulted in upregulation of cytotoxic molecules.

Anti-CD3/CD28 Activation of PBMCs
Results in B Cell Activation
Upon anti-CD3/CD28 treatment of PBMCs, B cells upregulated
383 genes and 4 cell surface proteins (CD69, CD25, ICOS,
CD38) (Figure 5A, Supplementary Table 5). Increased
transcription included ribosome and proteasome activity,
oxidative phosphorylation machinery, and mitochondrial
stress pathways. It also involved genes associated to humoral
immune responses and Type 2 interferon signaling, such as
CD40, CXCL9, CXCL10, and IRF1 (Supplementary Table 5).
Resting and activated B cells clustered into six distinct groups
(Figure 5B; middle), where clusters 0 (comprising 25% of
B cells) and 3 (comprising 15% of B cells) were specifically
enriched in activated B cells (>90%) (Figure 5B; right). Cells
from the activated B cell clusters highly expressed ISGs (IF44,
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FIGURE 3 | Annotation of CD8+T cell subsets and trajectory inference. (A) Unsupervised clustering of CD8+ T cells from all conditions reveals a separation of

anti-CD3/CD28-stimulated cells from all others. Dimension reduction plot with CD8+ T cells colored by their resultant cell-type identity. (B) Average scaled expression

of protein markers used to also identify CD8+ T cell subpopulations. (C) Average scaled expression of marker genes associated with naïve, MAIT, NK, TEMRA, and

senescence functions. Pseudo-temporal ordering of (D) CD4+ and (E) CD8+ T cells at baseline and anti-CD3/CD28 conditions. Boxplots show the distributions of

pseudotime states for each of the baseline/activated T cell subsets.

IF44L, STAT1, and MX1) and the activation marker CD69
(Figure 5C). Cluster 0 cells expressed genes associated with
age-associated B cells (ABC) (38–40) and DN2 cells (41) (e.g.,
TLR7, PRDM1, TGAX/CD11c and TBX21/T-bet). Distinct from
ABCs and DN2 cells, they retained follicular (CXCR5) and
conventional memory (CD27) markers. Cluster 3 cells expressed
additional markers associated with DN2 cells, such as FCRL5
and TRAF5, but lacked the expression of TLR7, ITGAX, and
TBX21. Differences detected between these activated B cells and
ABC/DN2 cells may reflect acute vs. chronic activation of B
cells as seen with aging and auto-immune diseases. Slingshot
analyses revealed mostly linear activation trajectories for B
cells, where the cells at the end of the trajectory had the highest
expression of activation markers (CD25, CD69, and CD278) as
well as genes encoding ribosomal proteins (Figure 5D). Thus,
scRNAseq of anti-CD3/CD28 activated PBMCs is providing new

clues to the generation of DN2 cells, that are expanded in SLE
(25, 41).

LPS Treatment of PBMCs Only Affects
CD14+ Monocytes and Induces
Inflammation-Associated Genes
Baseline and LPS-activated PBMCs were jointly analyzed
using the top 500 most variably expressed genes and proteins
(Figure 6A) and were annotated using the expression of marker
proteins (section Methods) (Supplementary Figure 3A). LPS
stimulation did not lead to significant changes in PBMC cell
compositions (Figure 6B). Among PBMCs, only monocytes
were activated by the LPS treatment (Figures 6A,C) and showed
upregulated expression of pro-inflammatory cytokine genes
(e.g., IL8, IL1B) (Supplementary Figure 3B). To globally assess
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FIGURE 4 | Indirect activation of NK cells. (A) Baseline and activated T cell and NK cell subsets were clustered together and the top 50 principal components were

extracted. Pearson correlation values were then computed for each baseline and activated cell type and summarized in the heatmap. (B) Scoring of all T and NK cells

was determined using transcripts associated with MAIT cell identity, cytotoxicity, and senescence (genes used are shown in Supplementary Table 3). (C) Clustering

of NK cells at baseline, and anti-CD3/CD28 conditions identifies 7 different subgroups (middle). In particular, anti-CD3/CD28-stimulated NK cells clustered distinctly

from those at baseline (left). Distribution of NK cells in each cluster across three conditions (left). Note the enrichment of activated NK cells in clusters 0, 1, 4, and 5.

(D) Heatmap of interferon stimulated genes (ISGs), activation-associated genes, and others used to annotate the NK sub-clusters. Heatmap values represent the

average scaled expression of each gene for cells in the corresponding cluster. (E) (left) Pseudotime trajectory inference of NK cells at baseline and anti-CD3/CD28

conditions. (right) Genes and proteins whose expression patterns change with pseudotime in NK cells.

the enrichment of inflammation-associated transcripts in
each cell type, we used a reference list of 249 inflammation-
related genes from NanoString Technologies Inc. (section
Methods). Activated monocytes had significantly higher
inflammation scores compared to baseline monocytes and
all other cell types (Figure 6D). Overall, 219 genes were
differentially expressed in monocytes (125 up- and 94 down-
regulated; FDR 5%) upon LPS treatment (Figure 6E and
Supplementary Table 5). Functional enrichment analyses
of these differentially expressed genes (DEGs) using gene
ontology (GO) terms and KEGG pathways (42) revealed
that LPS treatment activated pattern recognition receptor
signaling pathways (Toll-like and NOD-like) and the pro-
inflammatory NF-kappa B signaling pathway (FDR 5%;

Supplementary Table 6, Supplementary Figure 3C), including
the up-regulation of important chemokines (CCL3, CCL4) and
cytokines (IL1B, IL6) (Figure 6F). In contrast, LPS stimulation
decreased the expression of genes associated with antigen
processing and presentation via MHC class II and phagosome
activity (Figure 6F, Supplementary Table 6).

LPS-Activated Monocytes Exhibit Two
Distinct Transcriptional States
The Slingshot (34) algorithm revealed that the trajectory
of monocytes followed a linear transition from resting to
activated states (Figure 6G; top, Supplementary Figure 3D).
LPS-activated monocytes showed increased variation in their
transcriptional responses and were positioned at the end of
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FIGURE 5 | Indirect activation of B cells. (A) Volcano plot summarizing the genes induced in anti-CD3/CD28-activated B cells relative to those at baseline. (B)

Analysis of B cells at baseline and after anti-CD3/CD28 stimulation revealed six subgroups (middle). Primarily, anti-CD3/CD28-stimulated B cells clustered separately

from those at baseline (left). Distribution of B cells in each cluster across the two conditions (right). Activated B cells were mostly in clusters 0 and 3. (C) Heatmap of

age-associated B cell (ABC)/double negative 2 (DN2), interferon stimulated genes (ISGs), and other genes used to annotate the distinct B cell subpopulations. Values

in each heatmap represent average scaled gene expression of all cells in the corresponding cluster. (D) (left) Pseudotime trajectory inference of B cells at baseline and

anti-CD3/CD28 conditions. (right) Genes and proteins with temporal patterns of expression in pseudo-temporal ordered B cells.

the trajectory (Figure 6G; top). Genes that are important for
defining monocyte trajectories included inflammatory cytokines
(IL6, IL8, IL1B), metallothionein genes involved in zinc transport
[MT1F (43)] and oxidative stress [MT2A (44)], as well as
alarmins (S100A8/S100A9), which induce pro-inflammatory
cytokine production (45) (Supplementary Figure 3E). Alarmins
and metallothionein gene expression peaked in early stages
(pseudotime values 5 up to 15), whereas pro-inflammatory
cytokines (e.g., IL1B, IL6, IL8) peaked in late stages (pseudotime
≥ 15) (Figure 6G; bottom, Supplementary Figure 3E). These
LPS-induced cellular states and changes were observed
consistently across donors (Supplementary Figure 3F). To
further dissect this heterogeneity, we clustered baseline

and activated monocytes using k-means clustering (k = 4).
Baseline monocytes clustered separately from LPS-treated
ones (Figure 7A, Supplementary Figure 4A), which were
split into 3 clusters referred to as LPS1, LPS2, and LPS3
states. These clusters coincided with the pseudotime values
(Supplementary Figure 4B), where LPS1 and LPS2 states
mapped to the early activation state and LPS3 mapped to the
later inflammatory state (Supplementary Figure 4B). These four
monocyte clusters were detected in all individuals (Figure 7B);
inflammation scores of clusters (section Methods) increased in
agreement with their position in the trajectory, LPS3 having the
highest inflammation score (Figure 7C). LPS2 and LPS3 states
had the most distinct transcriptional response profiles, with 50
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FIGURE 6 | LPS stimulation specifically activates monocytes and induces pro-inflammatory responses. (A) Clustering of PBMCs under baseline and upon LPS

stimulation (left). Cell types were annotated using the expression of cell surface proteins (right). (B) Cell type compositions at baseline (top) and LPS condition (bottom)

(Continued)
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FIGURE 6 | across 10 donors. Refer to (A) for cell types’ color coding. (C) Clustering of CD14+ monocytes separates baseline and LPS-stimulated cells. (D)

Inflammation scores of all cells under two conditions. LPS-activated monocytes have the highest expression levels of inflammation-associated transcripts. (E)

Differential expression analysis of LPS-stimulated and baseline monocytes revealed 125 induced and 94 reduced genes, respectively (FDR 5%), as well as 3 induced

and 3 reduced proteins, respectively. (F) Enriched KEGG pathways (FDR 5%) for LPS response genes. Node size for each pathway represents the number of genes in

the pathway that were also induced in LPS-stimulated monocytes. Node color for genes indicate induction (red) or reduction (blue) upon LPS treatment.

LPS-activated monocytes upregulate genes associated with pattern recognition receptor signaling pathways (Toll-like receptor, NOD-like receptor) and inflammation

(NF-kB signaling), but also downregulate genes associated with antigen presentation and phagosome activity. (G) Trajectory (pseudotime) inference of monocytes

under baseline and LPS conditions identified genes with heterogeneous activity in stimulated monocytes. Cells are color-coded with respect to activation status (top

left) and inferred pseudotimes (top right). Expression levels of selected genes were overlaid on cells sorted in the activation trajectory (bottom).

and 47 genes uniquely induced in these states, respectively,
compared to baseline (Supplementary Figures 4C,D,
Supplementary Table 7).

Network analyses of genes induced in LPS2 and LPS3 states
using Ingenuity Pathway Analysis (IPA; section Methods)
revealed that LPS2 genes included alarmins (S100A8, S100A9)
and genes associated with cell movement and trafficking
(Figure 7D; genes in bold text, pink outline), such as various
chemoattractants CXCL7 (PPBP), CCL7, and CCL8. In contrast,
LPS3 genes included pro-inflammatory interleukins (e.g.,
IL1A, IL1B, IL6), macrophage inflammatory protein-1-alpha
(CCL3),−1-beta (CCL4), and−3 (CCL20), and tumor necrosis-
associated factors (TNFAIP6, TNIP1) (Figure 7E). Interestingly,
in LPS3, we also observed the induction of anti-inflammatory
genes including IL10, HLA-E—an MHC class I molecule
with inhibitory effects on cytokine production in monocytes
(46), IDO1—an immunosuppressive enzyme - and one of its
regulators PTGS2 (47), suggesting a feedback loop to control
increased inflammation. Pathway enrichment analysis using
IPA disease and function terms verified that pro-inflammatory
signals emerge at LPS2 state and peak at the later LPS3
state (Supplementary Figure 4E). At baseline, monocytes
showed higher relative expression of ribosomal protein genes
(Supplementary Figure 4F) and genes involved in mRNA
processing, translation, and protein synthesis. Thus, scRNAseq
analysis further delineates how LPS activates monocytes into
early and late inflammatory states.

DISCUSSION

In vitro activation of circulating immune cells have been widely
used for immune monitoring and identification of disease
mechanisms since 1980s (8, 48). However, such assays are
generally limited in scope and often only provide information
regarding a single cell type. A holistic study of circulating
immune cell responses to activators will uncover how the system
as a whole respond to an immune challenge and how cell-cell
interactions contribute to these responses. Hence these studies
will bring us closer to a better understanding of immune cell
responses in health and disease. CITE-seq enables precise studies
of in vivo and in vitro immune cell responses. However, these
assays are costly to generate and harbor technical challenges
that might confound data interpretation (i.e., multiplets, batch
effects). Herein we describe a cost-effective and in-depth study
to uncover responses of peripheral blood mononuclear cells
(PBMCs) from 10 healthy donors (5 men, 5 women) to two

widely used activators—anti-CD3/CD28 and LPS—to activate
adaptive and innate cells, respectively. PBMCs were profiled

using CITE-seq technology with 39 antibodies before and after
activation; libraries were multiplexed using both cell hashing
and genotypes, which permitted the super-loading of cells

to reduce costs and batch effects (49). This design enabled
studying activated cells in a cost-effective manner while also
detecting and labelingmultiplets from (i) different conditions, (ii)

different individuals; and (iii) different cell types. We observed

an increase in biological multiplets upon activation, potentially
due to increased cell-cell interactions, which should be taken into
consideration in future study designs to decouple biological (i.e.,
cellular interactions) from technical (i.e., due to super-loading)
multiplets (50, 51). One caveat of multiplexing many libraries is
the limited number of cells detected per donor (∼1,600 cells),
which was enough to study responses of major cell populations
(e.g., CD14+ monocytes), but not that of less abundant ones (e.g.,
CD16+ monocytes, dendritic cells). Multiplexing fewer samples
can effectively address this caveat in future studies.

Anti-CD3/CD28 treatment activated all classes of
lymphocytes either directly (T cells) or indirectly (B, NK
cells). Upon activation, co-stimulatory molecules (CD28,
CD278) and activation markers (CD69, CD25) were expressed
on the surface of both naïve and memory T cells. Transcriptomic
changes in naïve T cells were the greatest likely due the fact that
these cells start from a “lower transcriptional state” compared
to their memory counterparts as they need to differentiate and
initiate clonal expansion (52). Activated T cells highly expressed
senescence (e.g., CDKN1A—encoding p21, CDKN2A—encoding
p16, SESN2, and PRKAA1), effector and cytotoxic molecules
(e.g., GZMA/B/H, IFNG). Using CITE-seq antibodies, under
baseline conditions, we detected distinct subsets of memory
cells (e.g., Th subsets, MAIT). However, these subsets were not
detected upon activation, potentially due to the internalization
of cell surface molecules and increased transcriptional similarity
between memory subsets.

Indirect activation of NK cells via anti-CD3/CD28 activated
74 genes, most of which were shared with T cell responses
including CD69, interferon stimulated/response, and cytotoxic
genes. Scoring of single cells using different gene sets showed that
activated NK cells had the highest scores for cytotoxicity whereas
activated T cells had highest scores for senescence. Clustering and
trajectory analyses revealed heterogeneity among activated NK
and B cells. Late stage activated NK cells resembled previously
described “helper” NK cells and expressed CD83 protein (35),
whereas late stage activated B cells expressed molecules that
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FIGURE 7 | Pseudo-temporal ordering of monocytes reveals distinct LPS-activation states. (A) K-means clustering (n = 4) of the monocyte trajectory divides baseline

cells into one group and activated cells into three groups (LPS1, LPS2, LPS3). (B) Proportions of monocytes found in each of the four states across the 10 donors.

(Continued)
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FIGURE 7 | (C) Inflammation scores of monocytes in distinct states. LPS3 state monocytes show the highest average inflammation score. (D) Network of genes

induced in activated monocytes from LPS2 state using Ingenuity Pathway Analysis (IPA). Molecules in bold are associated with immune cell migration and chemotaxis.

(E) Network of genes induced in LPS3 activated monocytes. Bolded molecules are associated with inflammatory responses. For both networks, molecules with

different functions were depicted with different shapes, as provided by IPA. Molecules are colored based on their log2 fold change in expression in that state vs. all

other baseline and activated states. Direct and indirect gene interactions are depicted by solid and dashed lines, respectively.

have been expressed in B cells associated with aging and auto-
immune diseases (TLR7, PRDM1, ITGAX/CD11c, TBX21/T-bet)
(39–41). However, compared toDN2s andABCs, activated B cells
retained follicular and conventional memory markers (CXCR5
and CD27), likely as a reflection of acute vs. chronic activation.
Future single cell activation studies from different populations
should help further characterize these B cells.

LPS stimulation specifically activated monocytes and pseudo-
temporal analyses uncovered two states of activated monocytes:
(i) a first state that includes pro-inflammatory alarmins
(S100A8/A9) and molecules to attract and interact with other
immune cells (PPBP, CCL7, CCL8); and (ii) a second, possibly
more terminated inflammatory state, with increased expression
of bona fide inflammatory cytokines (IL1B, IL6, IL8, and IL24)
and potential anti-inflammatory molecules (IL-10, SOCS3, HLA-
E, and IDO1) to mitigate the effects of increased inflammation.
A similar phenomenon was noted in human blood dendritic cell
subsets in which cellular responses to influenza virus infection
resulted in three waves of chemokine secretion to attract effector
immune cells (53). Induction of interferon response genes and
TFs (STAT1 and IRF1) previously reported in IFN-g-primed
(24 h) (54) and LPS-induced (0–4 h) monocytes (43), was not
observed in our study, potentially due to the 24-h stimulation,
which is a later time-point in the activation cascade. Anti-
CD3/CD28 treatment reduced the numbers of monocytes in
PBMCs likely due to the induced apoptosis via activated T cells
(28). LPS treatment had no effect on B cells because B cells from
healthy human donors lack TLR4 on their surfaces (55–59) and
respond poorly to TLR4 (60, 61).

In summary, this study provides an experimental and
computational framework to carefully study activated immune
cells using single cell methods by multiplexing to handle batch
effects and cut costs and by quantifying protein expression to
identify cell types, cell states, and multiplet cells. The data,
analyses, and application developed here will be important
resources for future studies such as exposure of immune cells to
antigens, microbes, adjuvants and other targeting agents. It will
guide the design of subsequent experiments to further expand
our understanding of cellular responses to additional in vivo and
in vitro activation conditions in healthy and diseased individuals.
Overall, this study provides a foundation for future immune
activation experiments using single cell technologies. The data
is freely shared via Human Cell Atlas platform as well as via
an interactive R shiny application (https://czi-pbmc-cite-seq.jax.
org/).

METHODS

Blood Collection
Blood was collected at the UConn Health Clinical Research
Center (CRC) at 263 Farmington Avenue Farmington, CT

06030-3805 following informed consent of participants for
a UConn Health IRB-approved protocol (IRB Number: 18-
151J-2). Approximately 50ml of blood was collected from
each donor. Samples were collected BD vacutainer tubes
containing Acid Citric Dextrose (ACD) Solution A, and
peripheral blood mononuclear cells (PBMC) were isolated
immediately after.

Isolation and Stimulation of PBMCs
Peripheral blood mononuclear cells (PBMCs) were isolated
with gradient centrifugation using Lymphoprep (StemCell
Technologies) and the red blood cells were removed by
incubating the cells with RBC lysis buffer (Tonbo Biosciences).
After that, the PBMCs were immediately cultured using
activation conditions described below for 24 h at 1 million
cells/ml density in complete RPMI (RPMI supplemented
with 10% heat-inactivated Fetal bovine serum, 100 U/ml
Penicillin/Streptomycin, 2mM L-glutamine, 10mM HEPES,
0.1mM Non-essential amino acids, 1mM Sodium pyruvate) at
37◦C + 5% CO2. The PBMCs were cultured in three different
ways: (1) Plate-bound anti-CD3 + anti-CD28 (clones OKT3
and CD28.2 at 2µg/ml each—Tonbo Biosciences)—plates were
coated with Goat anti-mouse IgG (clone Poly4053 at 10 µg/ml—
BioLegend) for 1 h at 37◦C, washed, then coated with both
anti-CD3 and anti-CD28 also for 1 h at 37◦C. After that cells
were added to the plates for stimulation; (2) lipopolysaccharide
(LPS) (10 ng/ml—InvivoGen); and (3) Complete medium only
as control. After 24 h in culture, an aliquot of each sample
was stained for flow cytometry analysis and the remaining cells
were harvested and frozen for subsequent CITE-seq analysis
and genotyping.

Flow Cytometry and Antibodies
PBMCs cells were incubated with Ghost DyeTM Violet 510
(Tonbo Biosciences) to stain dead cells for 10min at room
temperature (RT). After, Fc receptors were blocked for 5min
at RT using FcR-blocking reagent (Miltenyi Biotec) and then
incubated with fluorochrome-conjugated surface antibodies for
15min at RT. The surface antibodies CD3 (UCHT1), CD11b
(M1/70), CD14 (HCD14), CD16 (3G8), CD19 (HIB19), CD20
(2H7), CD25 (BC96), CD27 (O323), CD69 (FN50), HLA-
DR/MHC class II (L243) were all from BioLegend and CD80
(2D10.4) from eBioscience. FACS analysis was performed on a
BD LSR Fortessa (BD Biosciences) and data were analyzed with
FlowJo software (Version 10.2, TreeStar).

CITE-seq Data Generation With Cell
Hashing
CITE-seq data was generated from 30 samples (10 individuals, 3
experimental conditions) by multiplexing to reduce batch effects
and costs using cell hashing (49) (for experimental conditions)
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and genotype-based demultiplexing (27) (for individual donors).
For CITE-seq experiments, antibody-oligo conjugates against
39 surface proteins (e.g., CD8, CD45RA, CD4, CD3, CCR7,
CD69) as well as the Cell Hashing Antibodies (HTOs) were
purchased from BioLegend. PBMCs from different donors were
independently stained with one of our HTO-conjugated antibody
pools (based on the experimental condition) and a pool of
39 immunophenotypic markers for CITE-seq. Equal numbers
of cells from all 30 samples were pooled and super-loaded
onto 10 lanes of 10× Genomics Single Cell 3P v2 (10×
Genomics, USA), yielding approximately 25K cells per lane.
All libraries were sequenced together on Illumina NovaSeq
S4 flowcells.

Genotyping of PBMCs
PBMCs from 10 donors were genotyped using Infinium
Omni2.5-8 v1.3 BeadChip Array (Illumina) according to
manufacturer’s instructions. We mapped the Illumina array
probe sequences to hg19 genome assembly and excluded
potential problematic ones as in (62, 63). Furthermore, we filtered
out SNPs with an alternate allele frequency difference with
1000G EUR samples > 20%, or palindromic SNPs with a minor
allele frequency > 20%, genotype missingness > 2.5%, Hardy-
Weinberg p < 10–4. Finally, 1,147,545 genotyped SNPs were
considered for further analyses.

Sample Demultiplexing Using Cell Hashing
Three hashtag oligonucleotides (HTO) were used to multiplex
samples from different experimental conditions (e.g., HTO A for
baseline samples; HTO B for Anti-CD3/CD28 treated samples).
Cell HTOs were counted in raw sequencing data using CITE-
seq-Count version 1.4.2. (49). CITE-seq-Count was used to count
HTOs for each cell using recommended parameter settings (“-
cells 25,000 -cbf 1 -cbl 16 -umif 17 -umil 26 –max-error 3”).
HTO counts per cell were normalized with respect to the total
read counts for that cell and scaled and log2 transformed.
Distributions of read counts for each HTO across all cells were
bimodal. To classify whether a cell has detectable counts for
an HTO, we fit a Gaussian mixture model (with 2 mixture
components) for each HTO using mclust R package (64) (version
5.4.5). Based on these models, we labeled each cell as: (i)
empty: if there are no sufficient read counts for any HTO; (ii)
singlet: only if counts for a single HTO were detected; (iii)
multiplets: if there are detectable counts for 2 (“doublet”) or
3 (“triplet”).

Sample Demultiplexing With Demuxlet
Genotypes were used to demultiplex the donor of origin for each
sample using Demuxlet version 2 (27) with default parameters.
For this we used 167,703 genotyped SNPs overlapping exonic
regions in the genome. Cells annotated to one individual were
retained, while “ambiguous” and “doublet” cells were discarded
from further analyses.

RNA Quantification
Single cell RNA-sequencing libraries were prepared using the

Chromium Single Cell 3
′

Reagent Kit (v2 Chemistry) according

to the user guide (10× Genomics). Resulting libraries were
sequenced using Illumina NovaSeq S4 flowcells to an average
depth of ∼150,000 reads per cell. Reads were aligned to
human reference sequence GRCh37/hg19 and unique molecular
identifiers (UMIs) were quantified using the Cell Ranger
“count” software (10x Genomics, version 2.1.0) and with
additional parameters “–expect-cells=25000.” Cell barcodes
with fewer than 400 detected genes, and those not identified
to be singlets via cell hashing or Demuxlet were discarded
from analyses.

Protein Quantification
Read counts for antibody derived tags (ADTs) for 39 distinct
antibodies were measured from raw sequencing reads using
CITE-seq-Count with the following parameters: “-cells 25,000 -
cbf 1 -cbl 16 -umif 17 -umil 26 –max-error 3”. Raw counts were
normalized using a centered log ratio approach using Seurat R
package version 3.0.2 (65).

Multiplet Cell Removal Using Surface
Protein Expression
Number of multiplet cells increases upon activation, due to the
increase in cell-cell interactions. To remove such multiplets,
we took advantage of cell surface protein expression levels
and identified cells that co-expressed multiple cell-type-specific
proteins. First, we determined which cells were “positive” and
“negative” for each protein using the HTODemux function from
Seurat (65). Since some immune cells co-express certain cell
surface markers (e.g., NK and CD8+ T cells both express CD8),
we devised a multiplet removal protocol for each cell type. For B
cell multiplets, we filtered out cells that express CD19 in addition
to one of the following (i) a T cell marker (CD3, CD4, CD8);
(ii) an innate cell marker (CD14, CD16, CD56). For CD14+

monocyte multiplets, we removed cells that express CD14 and
(i) a T cell marker (CD3, CD8, CD28); (ii) NK marker CD56;
(iii) a B cell marker (CD19, CD20). For NK cell multiplets,
we removed cells that are positive for CD56 and one or more
of the following (i) T cell markers (CD3, CD4, CD28); (ii)
monocyte markers (CD14, CD11c); (iii) B cell markers (CD19,
CD20). For CD4+ T cell multiplets, we removed cells that express
CD4 markers (CD3, CD4) and one or more of the following
(i) CD8 (for CD8+ T), CD56 (for NK), CD19, CD20 (for B
cells), CD14, CD16 (for monocytes/NK). Lastly, for CD8+ T
cell multiplets, we removed cells that co-expressed CD8 markers
(CD3, CD8) and one or more of the following (i) CD4 (for
CD4+ T cells), (ii) CD56 (for NK), (iii) CD19, CD20 (for B
cells), and iv) CD14, CD16 (for monocytes/NK). After all cells
are removed we obtained comparable number of single cells for
each individual upon 3 conditions. These cell numbers correlated
significantly with cell numbers inferred from flow cytometry
data (R= 0.97).

Cell Clustering
Cells were clustered using top 500 most variable genes and
proteins, which are determined by fitting a line to the relationship
of the variance and mean using a local polynomial regression
(loess). Protein/gene expression values were standardized using
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the observed normalized mean and expected variance (given
by the fitted line). Feature variance was then calculated on the
standardized values after clipping to a maximum of the square
root of the number of cells. After scaling and centering the feature
values, principal component analysis (PCA) was performed on
the top 500 variable features. Following this, uniform manifold
approximation and projection (UMAP) was applied on the top
20 principal components to reduce the data to two dimensions.
Next, a shared nearest neighbor (SNN) graph was created by
calculating the neighborhood (Jaccard index) overlap between
each cell and its 20 (default) nearest neighbors. To identify cell
clusters, we used a SNNmodularity optimization based clustering
algorithm (66).

Differential Expression
To identify cell-type-specific response genes and proteins,
we conducted pairwise Wilcoxon Rank Sum tests between
each PBMC cell-type under stimulation and baseline
conditions (e.g., LPS stimulated monocytes vs. baseline
monocytes). In each differential expression analysis, genes
detected in at least 10% of each cell group were considered.
Features with an absolute difference in expression >

log2(0.25) and false discovery rate <5% were regarded as
significant results.

Single Cell Pseudo-Temporal Trajectory
Inference
Benchmarking and inference of single cell pseudotime
trajectories were performed with the R package dyno (version
0.1.1) (67). Briefly, for each cell-specific response (e.g., monocytes
induced by LPS) trajectories were inferred using Slingshot
(the method determined to minimize error and maximize
scalability and accuracy). Pseudo-temporal ordering of cells
were derived using the corresponding baseline and activated
cells as well as the genes and ADTs previously determined to
be differentially induced (FDR < 5%) between the two groups
of cells.

Ingenuity Pathway Analysis
Response genes were uploaded to Qiagen’s Ingenuity Pathway
Analysis (IPA) version 01-16 system to build gene networks
for each gene set. Networks were constructed using the
Connect tool with “Human” as the species parameter and
otherwise default parameters to map direct and indirect
interactions between molecules as described in the Ingenuity
Knowledge Base (IKB). IPA’s core analysis function was
also used to annotate each response gene set and resultant
networks with canonical pathways, relevant diseases, and
biological functions.

Single Cell Scoring
Genes associated with inflammation were obtained from
NanoString Technologies, Inc. (cite, https://www.nanostring.
com/products/gene-expression-panels/gene-expression-panels-
overview/ncounter-inflammation-panels) and used to calculate

an inflammation score for PBMCs at baseline and LPS-
stimulated conditions. Feature counts for each cell were divided
by the total counts for that cell, multiplied by a scale factor of
10,000, and then log normalized. Normalized read counts for all
inflammation-associated genes were divided by the normalized
counts of all transcripts and then min-max scaled between 0
and 1. Gene lists (Supplementary Table 3) were used to score
cytotoxicity, MAIT or senescence expressions across T and NK
cell clusters. To do so, we calculated the mean expression for
each cell, within each cluster.

Pathway Analysis of Stimulation-Response
Genes
Differentially expressed genes for each cell-type-response to
stimulation were functionally annotated using the R package
clusterProfiler (version 3.14.0) (42). The Kyoto Encyclopedia
of Genes and Genomes (KEGG), gene ontology (GO), and
WikiPathways databases were used to determine association
with particular biological processes, diseases, and molecular
functions. The top pathways with an FDR-adjusted p < 5% were
summarized in the results.
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