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After a year of evolution of the SARS-CoV-2 epidemic, there is still no specific effective
treatment for the disease. Although the majority of infected people experience mild
disease, some patients develop a serious disease, especially when other pathologies
concur. For this reason, it would be very convenient to find pharmacological and
immunological mechanisms that help control SARS-CoV-2 infection. Since the COVID-
19 and BCoV viruses are very close phylogenetically, different studies demonstrate the
existence of cross-immunity as they retain shared epitopes in their structure. As a possible
control measure against COVID-19, we propose the use of cow’s milk immune to BCoV.
Thus, the antigenic recognition of some highly conserved structures of viral proteins,
particularly M and S2, by anti-BCoV antibodies present in milk would cause a total or
partial inactivation of SARS-COV-2 (acting as a particular vaccine) and be addressed more
easily by GALT’s highly specialized antigen-presenting cells, thus helping the specific
immune response.
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INTRODUCTION

COVID-19 is a severe human pandemic caused by the SARS-CoV-2 virus. Since there is currently
no specific treatment for severe cases, it is critical to find immune mechanisms and strategies to help
control the disease. We propose the use of heterologous passive immunity using Bovine
Coronavirus immune milk (BIM) as an immunostimulant therapy to control SARS-CoV-2
infection, helping to activate the intestinal immune system.

The coronaviruses were initially classified according to their antigenic characteristics into three
serological groups (1), known as Groups 1, 2, and 3, which were later renamed as the new genera
Alphacoronavirus, Betacoronavirus, and Gammacoronavirus, respectively (2). Based on their
phylogenetic relationships and genomic structures, the Betacoronavirus genus now contains five
lines or subgenera, including the Sarbecovirus (which includes SARS-CoV and SARS-CoV-2),
Merbecovirus (MERS-CoV), and Embecovirus subgenera.

Notable among the embecoviruses are HCoV-OC43 (OC43), which causes a mild human
endemic respiratory infection, and Bovine Coronavirus (BCoV). These are two different biotypes
of the same species, since the human virus probably evolved from strains of the bovine coronavirus
that jumped the species barrier and caused sustained infection in humans (3). BCoV and OC43
share a global nucleotide identity of 96% (4); in contrast, the SARS-CoV-2 genes shared less
than 80% nucleotide sequence identity to other Sarbecovirus as SARS-CoV, and about 50% to
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MERS-CoV (5). Viral seroneutralization techniques show that
there is a close antigenic relationship between BCoV and OC43
viruses (6).

Structurally, BCoV (also OC43) is an enveloped virus
composed of five structural proteins: the spike glycoprotein (S),
the envelope (E) protein, the membrane (M) protein, the
nucleocapsid (N) protein, and the hemagglutinin-esterase (HE)
protein. The SARS-CoV-2 structure is very similar to the other
members of Family Coronaviridae; also contains four structural
proteins: S, E, M, and N proteins (5), but it lacks the HE protein.

To attach to host cells, BCoV uses 5-N-acetyl-9-O-
acetylneuraminic acid as the preferred receptor to cellular binding
(7) whereas SARS-CoV-2 binding angiotensin-converting enzyme
receptor (5). Then, the fusion peptide is activated triggering the
fusion of viral particle to cellular membrane. The described
mechanism allows the virus to infect the host cells.
CROSS-IMMUNE REACTIVITY AMONG
BETACORONAVIRUSES

The most important immune response generated by coronaviruses
is produced against S protein, since it is widely exposed on the viral
surface and is an immunodominant structure. S protein is a large
class I fusion protein consists of S1 subunit (S1) that contains,
among other epitopes the receptor binding domain (RBD), and S2
subunit (S2) that mediates viral membrane fusion (8) contains
conserved regions that are necessary for function: the fusion
peptide and two conserved repeats (9, 10).

Transmembrane M protein is the most abundant structural
protein and is highly conserved among the coronaviruses, but
their function is not clearly understood (11). Different M protein
epitopes elicit a detectable immune response in the serum of
SARS and COVID-19 patients (12, 13). The OC43 M protein is
an antagonist of the host antiviral defenses interfering different
immune systems (14) and SARS-CoV-2 M protein plays similar
effects disabling antiviral signaling cascade (15).

The viral N protein is highly conserved maintaining antigenic
cross-reactivity among some coronavirus species, but no between
BCoV and SARS-CoV-2 (16). The HE protein, which is not
present in other betacoronaviruses (as SARS-CoV-2), enables the
BCoV to bind different types of cells. The small E protein is
poorly immunogenic for humoral response (17).

Cross-reactivity has been found between OC43 and SARS-
CoV (18, 19), which seems to be supported by different antigenic
determinants present in N, M, and S2 (a highly conserved region
that is almost invariant across the betacoronaviruses), as well as
between SARS-CoV and SARS-CoV-2 (20).

SARS-CoV monoclonal antibodies neutralize SARS-CoV-2
through a mechanism, yet unknown, but different from RBD
interference. Likewise, alternative mechanisms of coronavirus
neutralization by antibodies targeting RBD have been reported,
particularly inactivation of the S protein by altering its structure
in prefusion conformation (21–23).

A consistent cross-reactivity, but limited cross-neutralization,
has been reported between SARS-CoV-2 and other human
endemic coronaviruses, including OC43 (24). In addition, recent
Frontiers in Immunology | www.frontiersin.org 2
studies have found that between 40 and 60% of people not
previously exposed to SARS-CoV-2 have T helper cells (CD4+)
reactive to OC43 (25). This suggests that CD4+ cells specific for
endemic betacoronaviruses of the common cold may also
recognize the epidemic coronavirus SARS-CoV-2. This
hypothesis is reinforced by the seroconversion found in a high
proportion (one in three infected) of asymptomatic human SARS-
CoV-2 infections (26), some of which could be due to cross-
reactivity following exposure to other human coronaviruses
(particularly OC43, HCoV-229E, and HECoV viruses).

The formation of immunoglobulin G isotype (IgG) against
the RBD domain of the newly emerged SARS-CoV-2 is
considered essential for adequate immune protection. These
specific IgGs should be absent (or at a low level) in unexposed
people, nevertheless, a recent study (27) showed that IgGs
reactive to the S2 subunit of SARS-CoV-2 were present in
most of the unexposed subjects studied. The authors concluded
that cross-reactivity with other human coronaviruses was a
plausible explanation. They also found that convalescing
COVID-19 patients showed a significant increase in OC43-
reactive memory B cells compared with previously unexposed
healthy subjects. Consequently, since everything seems to point
to strong cross-reactivity between SARS-CoV-2 and OC43 at
both the cellular and humoral level, it is likely also to be found
with BCoV as reported previously (6). No specific cross-
reactivity studies have been performed between SARS-CoV-2
and BCoV, but when the epitope sequence alignment of the
SARS-CoV-2 spike proteins was analyzed, a high homology (57
to 83%) with BCoV was found (28).

The phenomenon known as antibody-dependent enhancement
(ADE), in which the presence of non-neutralizing antibodies can
aggravate the course of the disease, is one of the present general
concerns in immunotherapy (and the development of vaccines).
The pathophysiology of ADE is not yet well understood, but it
appears to be closely related to low levels of neutralizing antibodies
against RBD. However, it has been shown that ADE does not
occur when antibodies bind to the nucleoprotein or any other
structure different from RBD antigens (29).

BCoV causes specific syndromes in cattle with a very high
inter- and intra-herd prevalence (30, 31) and has been associated
with gastroenteritis and respiratory diseases in lactating calves
(32), shipping fever in fattening calves (33) and winter diarrhea
in dairy cows (34). Due to their economic, medical, and
epidemiological importance, different commercial vaccines
against BCoV (including live and inactivated viruses) are
currently available and have shown a very good protective effect.
IMMUNE MILK AGAINST BCOV

Functional foods are products that not only satisfy nutritional
requirements but also modulate organic functions and perform
highly beneficial tasks in some diseases (35). Bovine milk and
colostrum contain high levels of bioactive components, including
growth factors, immunoglobulins (Igs), lactoperoxidase, lysozyme,
lactoferrin, cytokines, nucleosides, vitamins, peptides, and
oligosaccharides, all of them beneficial to human health (36).
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Hyperimmune cow’s milk has been used against human infections
for a long time (37, 38). Raw and pasteurized milk can contain
specific antibodies against different human pathogens (39),
exerting a synergistic effect on the activity of nonspecific
antimicrobial factors (40, 41). Bovine IgG is functionally active
throughout the gastrointestinal tract and can prevent digestive and
respiratory tract infections in humans (42).

Whole cow’s milk contains more than 30 g/L of protein,
almost 1 g/L of which are immunoglobulins, which can reach
more than 200 g/L in colostrum (36). IgGs present in bovine milk
survive gastric exposure and resist proteolytic digestion in the
stomach and intestinal tract, maintaining their active binding
capacity to receptors (43). No evidence for the intestinal
absorption of intact IgG has been found. In addition, the
ingestion of Ig preparations obtained from serum leads to an
increase in anti-inflammatory cytokines and a decrease in pro-
inflammatory cytokines (44).

It was recently confirmed that SARS-CoV-2 RNA persisted
longer (over a month) in the feces of infected people, mainly
children, than in respiratory exudates (45, 46). This shows that
the infectious period could be prolonged due to the enteric
persistence of the virus, even when a person has been
considered negative after a routine diagnostic test. We think
that the presence of specific IgG in the intestinal lumen would
help control viral excretion.

Passive immunity conferred through breast milk has a
remarkable protective effect against most of the infectious
diseases of animals and has been well studied in almost all
coronaviruses of veterinary concern (47–49). The presence of
specific antibodies to SARS-CoV-2 has also been found in
human breast milk (50).

Ultra-high temperature (UHT) processing is the most widely
used heat treatment for the microbiological safety of milk for
human consumption, but this treatment destroys the
immunoglobulins present in the milk. However, pasteurization
is a less aggressive heat treatment that ensures microbiological
safety but also preserves most immunoglobulins in milk. Most
commercial pasteurized milk from Spain contains antibodies
against BCoV, probably due to the high prevalence of infection
and the systematic vaccination of cattle. Nevertheless, the heat
treatment process used reduces titers below 30. BIM, which we
obtained by cow hyperimmunization using commercial
coronavirus vaccine, contains antibodies with titers between
128 and 256 (unpublished results) and human consumption
could transfer heterologous antibodies against SARS-CoV-2,
thus conferring some passive immunity.
DISCUSSION

The evolution of antibody kinetics after natural infection appears
to be very similar between BCoV and SARS-CoV-2. Briefly, after
infection, different antibody class (i.e., IgA, IgM, IgG) are
produced directed against the different structural proteins of
the virus (16). Antibodies directed against RBD are highly
neutralizing, but are quite different between the two viruses, as
they target different domains. In contrast, antibodies directed
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towards the M protein may have cross-immunity among
coronaviruses, binding selectively to Fc receptors (FcRs) (51).
FcRs have interesting immunological functions including
phagocytosis, degranulation, antibody-dependent cellular
cytotoxicity (ADCC), cytokine formation, lipid mediator, and
superoxide production (52).

Animal respiratory coronaviruses often have a pneumoenteric
tropism and can persist in carriers who maintain and excrete the
virus in respiratory secretions, but mainly in the feces, for long
periods of time, even years (30, 53). Fecal excretion has also been
demonstrated in SARS-CoV-2 (45, 46) and is evenmore prolonged
than nasal excretion. For BCoV, it has been speculated that, after
initial replication, the virus spreads to the gastrointestinal tract by
ingestion of large amounts of virus coated in mucous secretions,
which would cause the virus to transit to the intestine, causing
intestinal infection and subsequent fecal excretion (8).

Gut-associated lymphoid tissue (GALT) (Peyer’s patches,
cecal and colonic patches) plays a key role in immunity since it
d i s c r imina te s be tween food ant igens , commensa l
microorganisms, and pathogens. It should therefore have very
safe mechanisms for adjusting immune response to the type of
antigen that it locates. These immunoregulatory functions
include mechanisms for the recruitment of lymphocytes and
myeloid cells from the bloodstream to antigen sampling from
surrounding tissue or the surface of the luminal epithelium, as
well as others for returning activated effector lymphocytes to the
bloodstream or remaining on the mucosal surface where they
eliminate pathogens or reside as memory cells.

After consumption of BIM, the ingested antibodies would
specifically bind to some shared antigenic structures of SARS-
CoV-2. This could totally or partially inactivate the virus and
facilitate the processing of SARS-CoV-2 antigens by GALT, but
also the formation of immune complexes that can activate the
antiviral signaling cascade (15), complement fixation, and
binding to the FcRs that control humoral immunity and are
essential for an adequate response to infections (52).

Bearing in mind that coronaviruses are markedly
pneumoenteric viruses, GALT and other mucosa-associated
lymphoid tissues are of enormous importance for the control
of infection (54). The reduction in the number of active viral
particles in the intestinal mucosa and the activation of other
immune mechanisms in the GALT could reinforce the specific
immune response against infection by SARS-CoV-2, improving
the regulation of the immune system.

Thus, recognition of SARS-CoV-2 by heterologous antibodies in
BIM could cause complement fixation of the immune complexes,
triggering activation of any of its pathways. This would generate
specific responses of neutralization, cytolysis, chemotaxis,
opsonization, and others (55), as well as the activation of other
immune mechanisms that would benefit immune action, such as
the production of IL-10, IFN-b (56), or CD27 cells (57) (which
would involve the activation, proliferation, and differentiation of B
lymphocytes) or even activation of immunoglobulin class switching
(58). The complexity of the cytokine network in humans makes
immunomodulation essential in the control of severe COVID-19
and could be achieved by the presence of specific immunoglobulins
in the GALT and gut lumen.
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Considering the arguments presented above, research should
be conducted, focused on exploring the effectiveness of BIM and
other immune compounds (milk, milk derivatives, egg yolk,
among others) in the control of COVID-19 in human patients.
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