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Recently, host whole blood gene expression signatures have been identified for diagnosis

of tuberculosis (TB). Absolute quantification of the concentrations of signature transcripts

in blood have not been reported, but would facilitate diagnostic test development. To

identify minimal transcript signatures, we applied a transcript selection procedure to

microarray data from African adults comprising 536 patients with TB, other diseases

(OD) and latent TB (LTBI), divided into training and test sets. Signatures were further

investigated using reverse transcriptase (RT)—digital PCR (dPCR). A four-transcript

signature (GBP6, TMCC1, PRDM1, and ARG1) measured using RT-dPCR distinguished

TB patients from those with OD (area under the curve (AUC) 93.8% (CI95% 82.2–100%).
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A three-transcript signature (FCGR1A, ZNF296, and C1QB) differentiated TB from

LTBI (AUC 97.3%, CI95%: 93.3–100%), regardless of HIV. These signatures have been

validated across platforms and across samples offering strong, quantitative support for

their use as diagnostic biomarkers for TB.
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INTRODUCTION

Despite over a century’s research effort to identify new diagnostic
tools we still lack diagnostic tests for tuberculosis (TB) that are
sensitive, affordable and robust. The majority of TB diagnostics
are based on identifying the pathogen in sputum, by microscopy,
culture or PCR. However, current methods fail to identify the
pathogen in a significant proportion of cases, either due to
inadequacies in sputum collection, paucibacillary disease, HIV
infection or in patients with extrapulmonary forms (1). As a
result the World Health Organization (WHO) estimates that
approximately three in every ten TB cases go unreported or
undiagnosed (2). Given the problems associated with using
sputum as a clinical sample, the WHO and the Foundation for
Innovative New Diagnostics published a target product profile
(TPP) for a non-sputum biomarker test in 2014 (3). This specified
the seven proposed key characteristics of a rapid biomarker-
based non-sputum-based test for detecting TB includingminimal
and optimal sensitivity and specificity of such a test and
also discussed sample accessibility, time to result, maintenance
and cost.

Recent years have seen a rise in the emergence of host-
response-based infectious disease diagnostics. These detect
evidence of a host immune response to an infection, which is
advantageous when there are very low numbers of the pathogen
in the body or when pathogens colonize inaccessible sites. A
number of disease specific “omic” signatures have been identified,
facilitated by advances in technology to analyse the genome,
transcriptome, epigenome, lipidome, metabolome, and proteome
in a high-throughput and quantitative manner (4). As well as
improving our understanding of the pathogenesis of a range of
infectious diseases, these signatures have the potential to be used
as diagnostic biomarkers.

Gene expression studies have significantly enhanced our
knowledge of the roles of various components of the immune
system in TB disease (5–7). A number of gene expression
signatures have been published that can distinguish TB from
healthy controls (HCs) and correlate with disease progression
(8–10). These could serve as important indicators of disease
progression from latent TB infection (LTBI) to TB, and therefore
guide antibiotic selection (11).

The most clinically important need is for biomarkers to
distinguish TB from the range of other conditions with similar
clinical presentation. TB shares symptoms and clinical signs with
many other diseases (OD), including a wide range of infectious,
inflammatory and malignant conditions, such as pneumonia or
other HIV-associated opportunistic infections. Distinguishing
between TB and OD is particularly important in patients living

with HIV, because extrapulmonary TB is more common in these
patients (12, 13) such that most sputum-based tests are poorly
sensitive, and HIV-associated malignancies or opportunistic
infections can have similar clinical presentations. However, the
majority of TB gene expression studies published to date have
compared TB cohorts to HCs, LTBI or patients with OD, mostly
in the absence of HIV infection.

A previous study Kaforou et al. (14) addressed these issues
by studying patients with symptoms suggestive of TB in
Malawi and South Africa (including both HIV-infected and
uninfected persons) and classifying them as TB, LTBI or
OD. Blood gene expression signatures were identified using
genome-wide microarrays that distinguished TB from OD and
LTBI (14). A 44-transcript signature was found to distinguish
TB from OD with sensitivity of 93% (CI95% 83–100) and
specificity of 88% (CI95% 74–97). A 27-transcript signature
distinguished TB from LTBI with sensitivity of 95% (CI95% 87–
100) and specificity of 90% (CI95% 80–97). These signatures
showed only slightly reduced accuracy in HIV-coinfected
individuals (14).

Further reduction in the number of transcripts comprising
these gene expression signatures makes their use as diagnostic
markers more feasible for clinical translation, particularly at
the point-of-care and in resource-limited settings (15). This has
been the subject of significant research effort and a number of
bioinformatics approaches have been employed. Sweeney et al.
identified a three-gene signature for TB, comprised of GBP5,
DUSP3, and KLF2 in a meta-analysis of publicly available gene
expression microarray data (16). Maertzdorf et al. used random
forest models and confidence interval decision trees to identify
a four-transcript signature comprising GBP1, IFITM3, P2RY14,
and ID3, that distinguished between TB and HC, regardless of
HIV infection status (17). Other recent studies identifiedminimal
gene expression signatures in populations from high-endemic
countries that predict progression from latent infection to active
TB disease with accuracy, excluding cases with HIV co-infection
(18, 19).

Quantification of individual TB gene expression signature
transcripts would be useful to determine the limits of
detection required for diagnostic tests based on these signatures.
The established method of choice for performing absolute
quantification of nucleic acids is quantitative PCR (qPCR), where
amplicon generation is measured in real time and related back
to the starting concentration of template. While RNA-seq has
emerged as a powerful technique for investigating RNA species
within a given sample, it can only provide relative quantification
of RNA species (20). In recent years, digital PCR (dPCR)
has emerged as a promising alternative to qPCR. dPCR is a
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useful method for quickly and efficiently providing absolute
quantification of individual mRNA species and has been shown
to be more reproducible and less prone to inhibition than
qPCR (21, 22). The high precision offered by dPCR makes
it ideally suited to the detection of rare point mutations and
the accurate detection of low microbial loads, among other
applications (23–25).

We hypothesized that we could further reduce the number
of transcripts comprising the previously reported signatures
distinguishing TB from OD and LTBI Kaforou et al. (14) using
feature selection algorithms applied to microarray data, and that
reverse transcription-dPCR (RT-dPCR) could be used to quantify
the concentrations of individual gene transcripts in purified RNA
from whole blood. We postulated that this cross-sample, cross-
platform (microarray and RT-dPCR), cross-population study
will aid the advance of the TB transcriptomics field toward
developing and establishing the use of host transcriptomics for
TB diagnosis.

MATERIALS AND METHODS

Ethics Statement
The study was approved by the Human Research Ethics
Committee of the University of Cape Town, South Africa
(HREC012/2007), the National Health Sciences Research
Committee, Malawi (NHSRC/447), and the Ethics Committee
of the London School of Hygiene and Tropical Medicine
(5212). Written information was provided by trained local
health workers in local languages and all patients provided
written consent.

Derivation of Reduced Signatures Using
Microarray Data
The patient cohorts recruited in South Africa and Malawi for
the original prospective cohort microarray study were fully
described previously, including the diagnostic procedures and
patient assignment as TB, OD or LTBI (14). In addition, the
whole-blood genome-wide expression measured in this cohort
was reported (14), and made publicly available at NCBI’s Gene
Expression Omnibus, accessible through GEO Series accession
number GSE37250. The microarray data was pre-processed as
described in (14). Data from the processed and normalized
expression set were split randomly into training and test set (80–
20 split). FS-PLS (26, 27) was employed in order to generate
smaller gene expression signatures. FS-PLS is an iterative forward
selection algorithm which at each step selects the most strongly
associated variable after projecting the data matrix into a space
orthogonal to all the variables previously selected. It combines
the dimensionality reduction strength of PLS and the model
simplicity and interpretability of FS regression. The classificatory
performance of the signatures was evaluated in the test set using
the disease risk score method (DRS), as in (14). The derived
signatures were further validated in two publicly available gene
expression studies (5, 28) (Supplementary Material). The FS-
PLS code is available for download and use (27).

Power Calculations for RT-dPCR Study
Size
For the retrospective RT-dPCR study, as the discrimination
using the DRS had a binary outcome and followed a binomial
distribution, in order to achieve a statistic significance level of
0.05, and assuming the dPCR sensitivity to be at least 75% for
patient classification, we used 40 samples for each comparison
(TB vs. OD and TB vs. LTBI) to assess the performance of each
signature, with equal numbers of samples for each group (nTB =

20, nOD = 20, nLTBI = 20) (Supplementary Tables 1, 2). Samples
were chosen at random from a microarray test patient cohort for
TB vs. OD, stratified for HIV status and country of origin, which
had not been used to derive the signature. An additional 10 LTBI
HIV-infected and 10 LTBI HIV-uninfected samples from the test
microarray cohort were analyzed.

Patient Characteristics for RNA Samples
Used in the RT-dPCR
Patient recruitment was conducted in two highly contrasting
study sites in Cape Town, South Africa and Karonga District,
Northern Malawi. Patients were classified as having active TB
disease only upon culture confirmation. Patients were deemed
to have OD if they presented with symptoms that might suggest
the possibility of TB disease, but for whom an alternative
diagnosis was found and TB treatment was not administered.
These patients were followed up 26 weeks post diagnosis to
confirm they remained TB-free. Healthy LTBI controls were
classified according to the results of interferon-gamma release
assay (IGRA) and tuberculin skin test (TST) investigations (14).

RNA Purification From Whole Blood and
Storage
2.5 ml whole blood was collected at the time of recruitment
(before or within 24 h of commencing TB treatment in suspected
patients) in PAXgene blood RNA tubes (PreAnalytiX), frozen
within 3 h of collection, and later extracted using PAXgene blood
RNA kits (PreAnalytiX). RNA was shipped frozen and stored
at−80◦C.

Assessment of RNA Purity and Integrity
Before proceeding with reverse transcription, the RNA quality
of the samples was assessed using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA).

Reverse Transcription of Purified RNA
From Whole Blood
RNA concentration was measured using a NanoDrop 2000c
(Thermo Scientific) and 500 ng was used for the reverse
transcription reaction in a total volume of 10 µL nuclease-
free H2O. RT was performed in one batch using the High-
Capacity cDNA RT Kit (Applied Biosystems) according to the
manufacturer’s instructions. The cycle was 25◦C for 10min,
37◦C for 120min, 85◦C for 5min, followed by a hold at 4◦C.
cDNA samples were stored at −20◦C for fewer than 6 months
before use.
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dPCR Using the QuantStudioTM Platform
Up to 5 µL of RT product was added to 7.5 µL QuantStudio
3D Digital PCR Master Mix (Thermo Fisher Scientific), 0.75
µL of TaqMan Assay (20X) (Thermo Fisher Scientific) (see
Supplementary Table 3) and the volume made up to 15 µL
using nuclease-free H2O (Supplementary Figure 3). All TaqMan
Assays were inventoried and none were custom-made. At least
one no template control was used for each TaqMan assay on each
PCR run. The reaction mix was applied to each QuantStudio 3D
Digital PCR 20K Chip (Applied Biosystems) according to the
manufacturer’s instructions. The dPCR was run on a GeneAmp
PCR System 9700 (Applied Biosystems) with a cycle of 10min at
96◦C, followed by 39 cycles of 60◦C for 60 s and 98◦C for 30 s,
followed by 2min at 60◦C before holding at 10◦C. Chips were
read, and absolute quantification (copies per µL) determined
using the QuantStudio 3D Digital PCR Instrument (Thermo
Fisher Scientific).

Data Analysis RT-dPCR
Data was exported and analyzed using QuantStudio 3D
AnalysisSuite Cloud Software Version 3.0.3 (Thermo Fisher
Scientific). The quantification algorithm selected was Poisson.
The software assesses whether the data on a chip is reliable
based upon loading, signal, and noise characteristics and displays
quality indicators for each chip. Any chip that gave a precision
value of >10% was deemed to have failed and was repeated.
Similarly, if the negative and positive wells did not separate into
distinct populations, the sample and probe combination was
repeated. This failure to separate into two populations could be
caused by the chips leaking, evaporation or a loading issue of
the sample onto the chip. This methodology is further explained
in the supporting information (Supplementary Figure 1) and all
dilutions, FAM call thresholds and lambda values are given in

Supplementary Table 4, in accordance with theMIQE guidelines
(21). The output given by the QuantStudio software is in
copies/µL. This value was then corrected according to the
dilution of cDNA used for the dPCR in order to determine the
absolute concentration of a given transcript in purified RNA
samples (Supplementary Figure 3). RT-dPCR derived copies per
µL values are reported. The DRS method was used to classify
patients on the basis of log2 (copies per µL).

Statistical Analysis
The datasets were analyzed in “R” Language and Environment for
Statistical Computing version 3.4.1 (29, 30). In order to evaluate
the performance of the DRS as a binary classifier, the area under
the curve (AUC) for a receiver operating characteristic (ROC)
curve was calculated, as well as the sensitivity and specificity
using pROC (29). The calculation of the confidence intervals
(CI) for the AUC was based on the DeLong method (31), an
asymptotically exact method to evaluate the uncertainty of an
AUC, except for the one case that AUC = 100%, where we used
a smoothed ROC followed by DeLong for the calculation of the
lower 95% bound. For each data set we report the point estimate
for sensitivity as the closest value>90% (as specified in theWHO
TPP) and the corresponding specificity.

RESULTS

Discovery and Validation of Small
Signatures From Microarray Data Using
FS-PLS and DRS
In order to derive reduced gene expression signatures with
diagnostic potential, the variable selection method, FS-PLS,
was applied to the previously published microarray data (80%
training set) (n = 293 for TB vs. OD, n = 285 for TB vs. LTBI

FIGURE 1 | Workflow. Identification of small signatures for TB/LTBI and TB/OD from microarray data using Forward Selection-Partial Least Squares (FS-PLS),

followed by classification performance in a separate test set and finally, validation using RT-dPCR using the test set. Performance of the signatures was also assessed

in publicly-available microarray datasets. OD, other diseases; LTBI, latent TB infection.
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TABLE 1 | Forward Selection-Partial Least Squares (FS-PLS) signatures for (A)

TB/LTBI and (B) TB/OD.

Gene symbol and name* Illumina Probe ID Direction of regulation*

A

GBP6

Guanylate Binding Protein

Family Member 6

ILMN_1756953 Up

TMCC1

Transmembrane and

Coiled-Coil Domain Family 1

ILMN_1677963 Down

PRDM1

PR/SET Domain 1

ILMN_2294784 Up

ARG1

Arginase 1

ILMN_1812281 Down

*In patients with TB compared to OD.

Gene symbol and name* Illumina Probe ID Direction of regulation*

B

FCGR1A

Fc Fragment of IgG

Receptor Ia

ILMN_2176063 Up

ZNF296

Zinc Finger Protein 296

ILMN_1693242 Down

C1QB

Complement C1q B Chain

ILMN_1796409 Up

*In patients with TB compared to LTBI.

These were taken forward for further characterization and validation using dPCR, and

subsequently development as diagnostic biomarkers for TB. Gene names are according

to HUGO Gene Nomenclature Committee. LTBI, Latent TB infection; OD, other diseases.

including HIV co-infected cases), tested in the test set (n =

76 TB vs. OD and TB vs. LTBI including HIV co-infected cases),
and further validated in two other publicly available studies
(Figure 1) (5, 28). Using the FSPLS method we identified a
signature comprising four transcripts for TB/OD in the training
set and a signature comprising three transcripts for TB/LTBI;
the signatures are detailed in Tables 1A,B, respectively. The
TB/OD FS-PLS signature using the DRS had an AUC of 93.9%
CI95% (88.4–99.4%) in the 20% test set, which had not been
used for discovery (Figure 2), sensitivity of 90.5 CI95% (77.4–
97.3) and specificity of 82.4% CI95% (65.5–93.2), with confidence
intervals overlapping with the previously identified the 44-
transcript elastic net signature for TB/OD (14). The TB/LTBI
FS-PLS signature using the DRS had an AUC of 95.4% (CI95%
91.2–99.6%) in the 20% test set, which had not been used for
discovery, sensitivity of 91.9 CI95% (78.1–98.3) and specificity of
84.6% CI95% (69.5–94.1), with confidence intervals overlapping
with the previously reported 27-transcript elastic net signature
(14) (Figure 2, Supplementary Table 5).

Validation of the FS-PLS TB/OD and
TB/LTBI Signatures in External Datasets
In order to further validate the performance of the DRS based
on the TB/OD four transcript and TB/LTBI three transcript
signature, we employed the whole blood expression datasets

of Berry et al. (5) and Bloom et al. (28) (GEO: GSE19491,
GSE42834) as validation cohorts. The cohorts comprised HIV-
uninfected individuals; TB, LTBI, and OD including pneumonia,
lung cancer, Still’s disease, adult and pediatric Systemic Lupus
Erythematosus (ASLE, PSLE), Staphylococcus, and Streptococcus
(Table 2). The TB/OD four transcript signature distinguished TB
from all other diseases with an AUC ranging from 88 to 98%,
with the exception of sarcoidosis. The TB/LTBI three transcript
signature had an AUC of over 91% in the datasets tested.

Clinical Characteristics of Cohorts Used in
RT-dPCR Analysis
The clinical characteristics of each disease cohort used for
RT-dPCR analysis with the TB/LTBI signature genes and the
TB/OD signature genes are shown in Tables 3A,B, respectively.
The mean age, body mass index (BMI) and TST induration
are shown. The clinical diagnoses of the OD cohort are listed
in Supplementary Table 2. The range of diagnoses among this
cohort is representative of the variety of conditions that have
similar clinical presentations to TB.

Absolute Quantification by RT-dPCR of
Genes Comprising the Four-Transcript
FS-PLS Signature for TB/OD
(Cross-Platform, Cross-Sample Validation)
Figure 3A shows the concentration (in copies per µL) of each
of the transcripts comprising the FS-PLS signature for TB/OD
in purified RNA from whole blood, as determined by RT-dPCR.
GBP6 transcript levels are higher in TB patients, compared
to those with OD. The opposite case is observed for the
ARG1 transcript, which is more abundant in patients with
OD compared to TB. For TMCC1 and PRDM1, there is more
overlap between concentration values of TB and OD patients.
All four of these genes were identified in the 44 gene expression
signature for TB/OD, and although GBP6 is induced by the
interferon (IFN) cytokine family, its levels were significantly
higher in active TB cases when compared to confirmed viral
and bacterial infections the GSE73464 (32) and GSE39941 (33)
datasets (Supplementary Figure 2). The original concentration
(in copies per µL) for the samples stratified by HIV status is
shown in Supplementary Figure 4.

Absolute Quantification by RT-dPCR of
Genes Comprising the Three-Transcript
FS-PLS Signature for TB/LTBI
The concentrations (in copies per µL) of each of the transcripts
comprising the FS-PLS signature for TB/LTBI in purified RNA
from whole blood, as determined by RT-dPCR, are shown in
Figure 3B. The genes FCGR1A and C1QB are more abundant
in patients with TB compared to LTBI, whereas ZNF296 is
downregulated. All three genes were identified in the original
27 TB/LTBI signature (14). Supplementary Figure 4 shows the
concentration (in copies per µL) for the samples stratified by
HIV status.
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FIGURE 2 | Classification performance of the FS-PLS-derived four-transcript signatures for TB/OD and three-transcript for TB/LTBI using microarray gene expression

data (only test dataset shown). (A) Box plots of DRS and (B) receiver operating characteristic (ROC) curve based on the TB/OD FS-PLS signature applied to the

combined HIV ± TB and OD SA/Malawi cohorts (TB DRS vs. OD DRS Mann–Whitney p = 1.33 × 10−13) (C) Box plots of DRS and (D) ROC curve based on the

TB/LTBI FS-PLS signature applied to the combined HIV ± TB and LTBI SA/Malawi cohorts (TB DRS vs. LTBI DRS Mann–Whitney p = 4.92 × 10−15). Gray shaded

areas represent the 95% CIs of the ROC curve sensitivities, plotted at 0.5% specificity intervals. ROC curves (B,D) have been benchmarked against target criteria for

a tuberculosis triage test (green boxes): Minimum criteria (90% sensitivity, 70% specificity) are indicated by the dashed green boxes and optimum criteria (95%

sensitivity, 80% specificity) are indicated by the green solid boxes. The TB vs. OD ROC curve (B) has been benchmarked against the minimum criteria for a

confirmatory test (65% sensitivity, 98% specificity) which are indicated by the orange box. AUC, area under the curve; OD, other diseases; LTBI, latent TB infection.

Correlation of the Microarray Intensity
Values and the RT-dPCR Concentration
Values
The expression profiles of the seven genes comprising the
two signatures described above were compared between the
two platforms, at individual sample level. High correlations
were observed between the gene expression profiles generated
by the two platforms for most of the genes (Figure 4).
However, differences in expression profiles were also apparent
between the two platforms, with a number of samples/genes
exhibiting relatively higher expression values in either platform.
Pearson correlation and p-values for all the genes can be

found in Supplementary Table 6. The Illumina microarray
probes and the RT-dPCR TaqMan assays are provided in
Supplementary Table 3.

Performance of the Four-Transcript
FS-PLS Signature for TB/OD Using
RT-dPCR Analysis Disease Classification in
HIV-Infected and HIV-Uninfected
Individuals
The performance of the FS-PLS signature for TB/OD was
evaluated by applying the DRS to the concentration values that
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TABLE 2 | Performance of FS-PLS signatures in classifying TB and other

diseases (OD), or TB and latent TB infection (LTBI), in other publicly available

microarray datasets.

Comparison Cohort N AUC (95% CI)

TB vs. OD Berry (Overall) 213 92.8 (87.6–97.9)

TB vs. OD

(non-pulmonary)

Berry (Still’s disease) 85 94.7 (88.9–100)

Berry (adult systemic lupus

erythematosus; ASLE)

82 94.6 (89.0–100)

Berry (pediatric systemic

lupus erythematosus; PSLE)

136 91.9 (86.0–97.8)

Berry (Staphylococcus) 94 88.3 (79.6–96.9)

Berry (Streptococcus) 66 98.3 (95.2–100)

TB vs. OD Bloom (Lung cancer) 51 94.6 (87.2–100)

Bloom (Pneumonia) 49 90.4 (75.0–100)

Bloom (Sarcoidosis) 96 63.4 (54.6–74.0)

TB vs. LTBI Berry (South Africa) 51 98.9 (96.8–100)

Berry (UK training + test) 72 90.6 (83.2–98.1)

TABLE 3 | Clinical characteristics of patients used for the RT-dPCR analysis of the

(A) TB/OD signature and (B) the TB/LTBI signature.

Group TB HIV+ TB HIV– OD HIV+ OD HIV–

A

Number 10 10 10 10

Age (years) mean

(range)

32.3

(26.3–48.0)

31.9

(18.1–60.7)

34.3

(24.9–53.1)

41.1

(19.1–68.1)

Sex (male, %) 50 50 20 30

BMI (kg/m2 ) mean

(range)

19.5

(16.8–22.9)

19.4

(15.3–24.2)a
24.3

(18.0–39.3)

22.1

(17.2–33.0)b

CD4 count (mm3 )

mean (range)

222.5

(29.2–646.0)

NA 252.8

(19.3–838.0)

NA

Anti-retroviral

therapy (%)

0 NA 50 NA

aOne missing value; bThree missing values.

Group TB HIV+ TB HIV– LTBI HIV+ LTBI HIV–

B

Number 10 10 10 10

Age (years) mean

(range)

32.6

(24.2–47.5)

39.7

(290.0–59.8)

36.7

(22.5–53.2)a
31.9

(18.9–59.2)

Sex (male, %) 60 50 20 40

BMI (kg/m2 ) mean

(range)

20.3

(16.8–25.1)

20.4

(14.3–29.4)

21.6

(16.5–25.8)a
21.9

(17.7–29.4)

CD4 count (mm3 )

mean (range)

226.0

(29.2–345.0)

NA 466.1

(227.0–958.0)b
NA

Anti-retroviral

therapy (%)

0 NA 0 NA

TST induration

(mm) mean (range)

ND ND 22.9 (4.0–50.0)a 16.6

(10.0–21.0)

aOne missing value; bTwo missing values.

BMI, body mass index; NA, not applicable; ND, not done; TST, tuberculin skin test; LTBI,

Latent TB infection; OD, other diseases.

were derived from the RT-dPCR data. Figures 5A–D shows
the cross-platform (from microarray to RT-dPCR) and cross-
sample (from the training set to the test set) performance of
the four gene signature DRS in TB vs. OD. In the combined
SA/Malawi HIV-infected and -uninfected cohort, the signature
had an AUC of 93.8% (CI95%: 82.2–100), a sensitivity of
95.0% (CI95%: 85.0–100), and a specificity of 85.0% (CI95%:
75.0–100) (Figures 5A,B, Supplementary Table 6). The mean
accuracy of classification varied with HIV status, although there
was extensive overlap in the 95% confidence intervals. The
four gene TB/OD signature had an AUC of 91.0% (CI95%:
73.3–100%) among the HIV-uninfected individuals, and an
AUC of 93.0% (CI95%: 82.4–100%) for the HIV-infected cohort
(Figures 5C,D).

Performance of the Four-Transcript FS-PLS
Signature for TB/LTBI Using dPCR Analysis
The performance of the FS-PLS signature for TB/LTBI was
evaluated by applying the DRS to the absolute log2 transformed
concentration values that were derived from the RT-dPCR
data. Figures 5E–H show the cross-platform and cross-sample
performance of the three gene signature DRS in TB vs. LTBI.
In the combined SA/Malawi HIV-infected and uninfected cohort
the signature had an AUC of 97.3% (CI95%: 93.3–100%),
sensitivity of 95.0% (CI95%: 85.0–100), and specificity of 85.0%
(CI95%: 75.0–100) (Figures 5E,F).

As observed previously, the mean accuracy of classification
varied with HIV status, although again, there was extensive
overlap in the 95% confidence intervals. The four gene
TB/LTBI signature had an AUC of 100% (CI95%: 94.2–100%)
among the HIV-uninfected individuals and an AUC of 94.0%
(CI95%: 84.1–100%) among HIV-infected cohort (Figures 5G,H,
Supplementary Table 6).

Contribution of Individual Genes to
Disease Classification
Finally, we examined the contribution of each gene to the AUC
for the classification of the TB/OD and TB/LTBI patients in
the microarray and RT-dPCR datasets in a stepwise manner.
By definition, in the FS-PLS algorithm, each gene needs to
significantly increase the AUC to be included in the signature
in the training set (Supplementary Figure 5). The sequential
addition of all genes is increasing the AUC in the microarray test
and RT-dPCR for the TB/OD comparison, while the inclusion
of C1QB in the TB/LTBI signature is not increasing the AUC
in the microarray test and RT-dPCR sets, in contrast to the
microarray training dataset. As the confidence intervals are
largely overlapping, further work is needed to explore the
potential of further minimizing the TB/LTBI signature.

DISCUSSION

In this study, we report a four-gene signature discriminating TB
from OD (TB/OD) and a three-gene signature discriminating
TB from LTBI (TB/LTBI). These signatures were identified by
applying an advanced methodology, FS-PLS, furthering previous
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FIGURE 3 | Absolute quantification of signature transcripts, as determined by RT-dPCR, and according to disease group. (A) TB/OD signature transcripts.

Mann–Whitney p: GBP6 3.722 × 10−4, TMCC1 2.447 × 10−2, PRDM1 4.612 × 10−1, and ARG1 2.138 × 10−3. (B) TB/LTBI signature transcripts. Mann–Whitney p:

FCGR1A 1.06 × 10−7, ZNF296 9.25 × 10−6, C1QB 9.65 × 10−6. Transcript concentration is expressed as copies per µL. Culture confirmed TB cases are shown in

pink (n TB = 20), OD cases in cyan (n OD = 20), and LTBI individuals in green (n LTBI = 20). OD, other diseases; LTBI, latent TB infection.

FIGURE 4 | Comparison of expression profiles of common genes and samples between the two platforms. Scatter plots are shown for (A) TB/OD signature

transcripts and (B) TB/LTBI signature transcripts. Plots show log2 transformed expression values between two platforms per individual. Pearson’s correlation for each

transcript is shown. Black line represents the line of best fit. OD, other diseases; LTBI, latent TB infection.
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FIGURE 5 | Classification of the SA/Malawi cohorts using the DRS based on the FS-PLS signature RT-dPCR results. (A) Box plots of disease risk score (DRS) (TB vs.

OD DRS p = 1.34 × 10−7) and (B) Receiver operating characteristic (ROC) curve based on the TB/OD FS-PLS signature applied to the combined TB and OD cohorts

(n TB = 20, n OD =20). Gray shaded areas represent the 95% CIs of the ROC curve sensitivities, plotted at 0.5% specificity intervals. The ROC curve has been

(Continued)
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FIGURE 5 | benchmarked against target criteria for a tuberculosis triage test: Minimum criteria (90% sensitivity, 70% specificity) are indicated by the dashed green

boxes and optimum criteria (95% sensitivity, 80% specificity) are indicated by the green solid boxes; and the minimum criteria for a confirmatory test (65% sensitivity,

98% specificity) which are indicated by the orange box. (C) Box plots of DRS (TB vs. OD DRS HIV uninfected p = 1.05 × 10−3, HIV infected p = 4.871 × 10−4), and

(D) ROC curve for TB/OD signature, according to HIV infection status (red line is HIV infected; blue line is HIV uninfected) (n TBHIV− = 10, n TBHIV+ = 10, n ODHIV− = 10,

n ODHIV+ = 10). Blue and orange shaded areas represent the 95% CIs of the ROC curve sensitivities, plotted at 0.5% specificity intervals. (E) Box plots of DRS (TB vs.

LTBI DRS p = 2.83 × 10−9) and (F) ROC curve based on the TB/LTBI FS-PLS signature applied to the combined TB and LTBI cohorts (n TB = 20, n LTBI = 20). Gray

shaded areas represent the 95% CIs of the ROC curve sensitivities, plotted at 0.5% specificity intervals. The ROC curve has been benchmarked against target criteria

for a tuberculosis triage test: Minimum criteria (90% sensitivity, 70% specificity) are indicated by the dashed green boxes and optimum criteria (95% sensitivity, 80%

specificity) are indicated by the green solid boxes. (G) Box plots of DRS (TB vs. LTBI DRS HIV uninfected p = 1.083 × 10−5, HIV infected p-value 3.248 × 10−4, and

(H) ROC curve for TB/LTBI signature, according to HIV infection status (red line is HIV infected; blue line is HIV uninfected) (n TBHIV− = 10, n TBHIV+ = 10,

n LTBIHIV− = 10, n LTBIHIV+ =10). 95% confidence intervals are shown in brackets. The orange shaded area represents the 95% CIs of the ROC curve sensitivities,

plotted at 0.5% specificity intervals. The blue shaded area for the perfect classifier represents the 95% CI for sensitivity. All p-values reported are Mann–Whitney

p-values. AUC, area under the curve; OD, other diseases; LTBI, latent TB infection.

work in TB transcriptomics (14, 17). The performance of the
two novel transcriptomic signatures, for TB/OD and TB/LTBI
was assessed in the 20% test set and publicly available cohorts.
The two signatures were subsequently validated using RT-dPCR
and samples from the test cohort, confirming their accuracy of
patient classification. We also report estimates for the abundance
of each of the individual transcripts in the signatures in purified
RNA from whole blood. A weighted regression model was
not used in this work, reducing the risk of overfitting and
providing more flexibility for application transfer in different
detection platforms. This work provides compelling evidence of
the robustness and reproducibility of the FS-PLS signatures and
the DRS in classifying patients with TB, OD, and LTBI and the
results presented here support the excellent discriminatory power
of both the small gene number TB/OD and TB/LTBI FS-PLS
signatures. The point estimates of sensitivity and specificity for
our FS-PLS-derived signature, expressed as DRS and measured
by bothmicroarray and RT-dPCR, were benchmarked against the
WHOTPP recommendations (3). For themicroarray test dataset,
both the TB/OD and TB/LTBI signatures’ point estimates were
within the WHO TPP minimum recommendations for a triage
test. For the RT-dPCR, the TB/OD signature’s point estimates
met the WHO TPP requirements of a confirmatory/diagnostic
test for TB, and both the TB/OD and TB/LTBI signatures’ point
estimates overlapped with the requirements of a triage test. While
the findings support the discriminatory performance of both
signatures, the relatively small sample size and wide confidence
intervals of the point estimates should be considered when
interpreting these results.

To our knowledge, this study is the first example of the
use of RT-dPCR for absolute quantification of transcriptomic
signatures in infectious diseases, as anticipated by review
articles (34). Previous studies showed that RT-dPCR has a high
accuracy for assessing absolute quantification of RNA and did
not show significant inter-assay agreement (22). However, it
should be noted that the efficiency of reverse transcriptase
enzymes can be extremely variable and future investigations
will be needed to provide further information on absolute
abundances of individual RNA transcripts in purified RNA
from whole blood. Nevertheless, the concentration values
reported in this study provide novel insights that could be
of significant use to the diagnostics development research
community, providing information regarding the required limits
of detection and dynamic range for assays designed to detect

signature transcripts. Although high correlation was observed
between the gene/sample measurements for the two platforms
for most of the genes, the differences reported highlight that a
larger number of highly correlated candidate biomarker genes
and different target regions within the genes themselves need
to be screened with technology reflective of the point-of-care
platforms intended to be used in order to ensure maximum
diagnostic potential.

Clinical applications of dPCR exploit its ability to perform
absolute quantification of nucleic acids without the need for
rigorous calibration or standardization between laboratories.
This advantage is a result of the design of dPCR assays, which
involve large numbers of reaction partitions, and the Poisson
statistics that are used to calculate initial concentrations of
nucleic acids (21). RT-dPCR and dPCR have been used to
determine copy numbers for a range of pathogens, including the
hepatitis B virus, HIV, Mycobacterium tuberculosis, Helicobacter
pylori, and Plasmodium spp. (23). While dPCR is more
technologically advanced than qPCR, offering absolute rather
than relative quantification, the implementation of dPCR in
clinical laboratories has been impeded by its relatively low
throughput, higher complexity and cost. However, as new
instrumentation for dPCR becomes more widely available and
simpler to use, it is highly likely that it will play a key role in
diagnostic laboratories in the near future (23).

Out of the four transcripts in the TB/OD transcript signature
GBP6 and PRDM1 are upregulated, and TMCC1 and ARG1 are
downregulated, in patients with TB compared to OD. Genes in
the guanylate-binding protein gene cluster (such as GBP2, GBP5,
and GBP6) appear in numerous TB gene signatures (10). These
are induced by the interferon (IFN) cytokine family (35) and have
been shown to be important for cell-autonomous defense against
intracellular pathogens (36). PRDM1 encodes a DNA-binding
protein that acts as a transcriptional repressor of various genes,
including IFN-β (37) by binding specifically to the PRDI (positive
regulatory domain I element). PRDM1 has also been shown
to regulate the differentiation of B cells into plasma cells that
produce antibodies, as well as myeloid cells, such as macrophages
and monocytes (38). Little is known about the function of
TMCC1 in TB pathogenesis, but expression of ARG1 is induced
by toll-like receptor signaling in macrophages (39). The gene
product, ARG1, plays an important role in the production of
nitric oxide (NO), used to kill intracellular pathogens, when nitric
oxide synthase-2 (NOS2) is unable to metabolize arginine in

Frontiers in Immunology | www.frontiersin.org 10 March 2021 | Volume 12 | Article 637164

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Gliddon et al. dPCR Validation of TB Signature

hypoxic environments, such as the granuloma (40). ARG1 is able
to produce NO in the absence of oxygen and is therefore critical
for the control of intracellular TB (41).

The three gene signature for TB/LTBI reported here consists
of two genes that are upregulated (FCGR1A and C1QB) and
one gene that is downregulated (ZNF296) in TB compared to
LTBI. FCGR1A appears in a number of other gene expression
signatures for TB (10), and was the most discriminatory gene
in a three-gene signature for TB/LTBI (6). Fc receptors (FcR)
play an important role in regulating the immune system and
are expressed by a number of innate immune effector cells,
particularly monocytes, macrophages, dendritic cells, basophils
and mast cells (42). It has been shown that the monocytic THP-
1 cell line upregulates surface expression of Fcγ-RI in response
to IFN-γ (43). C1QB encodes a component of the complement
1 (C1Q) complex, part of the complement immune system.
Expression of genes encoding components of C1Q have been
shown to correlate with the progression of active TB compared
to HC and LTBI cohorts (44) and a recent study showed that,
in four independent cohorts, components of the C1Q complex
are elevated in patients with active TB compared to those with
LTBI (45). ZNF296 encodes a member of the C2H2 zinc-finger
protein family, which contain DNA binding motifs often found
in transcription factors. A microarray study identified this gene
as upregulated in response to viral infection (46). The TB/LTBI
signature presented here was evaluated by Gupta et al. (8) for
the purposes of predicting progression from LTBI to active TB
disease. Out of a total of 17 candidate signatures identified,
eight accurately predicted incipient TB among people at risk of
disease over a two-year time period with AUCs ranging from
70% (CI95%: 64–76%) to 77% (CI95%: 71–82%). Our TB/LTBI
signature ranked second in terms of point estimate for AUC,
with overlapping 95% confidence intervals with the other top-
ranking signatures. Significantly lower AUCs were found for the
remaining nine signatures.

This study has certain limitations. Although a case-control
validation study is an important step in the biomarker discovery
pipeline, it has certain limitations in extrapolating how the
findings would transfer in a real-world clinical setting. A
prospective cohort study design where positive and negative
predictive values of a test would be the next step to evaluate
the signatures’ potential and applicability. This study is further
limited by the small sample size used for the RT-dPCR evaluation,
which is reflected in the relatively wide 95% confidence intervals
reported for the classification measure.

It is widely accepted that TB diagnosis using transcriptomic
signatures offers a number of clear advantages over various
sputum-based techniques. However, there are a number of
technical challenges of detecting mRNA from whole blood,
including sample processing to extract mRNA transcripts that is
generally intracellular and inherently less stable than DNA, and
that can vary in concentrations by multiple orders of magnitude
between samples.

The gene expression signatures for TB/LTBI and TB/OD
reported in this study represent extremely promising biomarkers
for TB, particularly since they can be measured in whole blood
and comprise few analytes. A number of technologies exist that

might facilitate their translation into a test, which could include
the use of nanomaterials, to quantify mRNA transcripts without
an amplification step (47). A whole blood-based diagnostic test
for TB would transform the diagnostic pipeline and enable earlier
treatment commencement for patients that would otherwise be
missed, and thus prevent onward transmission of the disease,
contributing toward paving the way for the end of the TB
epidemic by 2030, Goal 3.3 of the Sustainable Development
Goals, as set out by the United Nations (48).
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