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Human B-lymphopoiesis is a dynamic life-long process that starts in utero by around

six post-conception weeks. A detailed understanding of human fetal B-lymphopoiesis

and how it changes in postnatal life is vital for building a complete picture of normal

B-lymphoid development through ontogeny, and its relevance in disease. B-cell acute

lymphoblastic leukemia (B-ALL) is one of the most common cancers in children, with

many of the leukemia-initiating events originating in utero. It is likely that the biology

of B-ALL, including leukemia initiation, maintenance and progression depends on the

developmental stage and type of B-lymphoid cell in which it originates. This is particularly

important for early life leukemias, where specific characteristics of fetal B-cells might

be key to determining how the disease behaves, including response to treatment.

These cellular, molecular and/or epigenetic features are likely to change with age in a

cell intrinsic and/or microenvironment directed manner. Most of our understanding of

fetal B-lymphopoiesis has been based on murine data, but many recent studies have

focussed on characterizing human fetal B-cell development, including functional and

molecular assays at a single cell level. In this mini-review we will give a short overview of

the recent advances in the understanding of human fetal B-lymphopoiesis, including its

relevance to infant/childhood leukemia, and highlight future questions in the field.
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INTRODUCTION

Unraveling the details of human hematopoietic development during embryogenesis is crucial
for both basic and medical science. Relative contributions of different progenitor compartments
and downstream lineage specificity vary during human ontogeny. Detailed immunophenotyping
of fetal hematopoietic tissues from 6 to 20 weeks post conception (pcw) has identified that
a much higher proportion of fetal bone marrow (FBM) cells are B-lymphoid than fetal liver
(FL) and adult bone marrow (ABM) (1). In keeping with this, the changing lymphoid/myeloid
specification in aging bone marrow has been described (2–4). Secondly, a switch from multipotent
to largely oligo/unipotent stem cells is also known to occur between fetal and adult life (5). Thirdly,
differences in the proliferative capacity of human fetal and postnatal hematopoietic stem and
progenitor cells (HSPC) have been demonstrated using functional and molecular studies, with
a marked and progressive increase in stem cell quiescence evident during physiological aging
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(6–9). In addition, some fetal gene expression programs are
inherently oncogenic (10–12), and high mutation rates are
seen both in hematopoietic and non-hematopoietic fetal stem
cells when compared to postnatal tissues (13, 14). Therefore,
understanding how hematopoiesis changes through human
ontogeny is crucial if we are to understand the site- and stage-
specific variation in HSPC throughout the human lifetime and
the role it plays in hematological disorders/diseases.

Fetal hematopoiesis is of particular interest in understanding
childhood blood disorders that originate before birth.
Significantly all infant leukemia and much of childhood
acute lymphoblastic leukemia (ALL) originate before birth
(15, 16).

ALL is the most common childhood malignancy, and 80% of
childhood-ALL are of the B-lymphoid lineage. Early onset B-ALL
can be divided into infant ALL (iALL) presenting at age <12
months or childhood-ALL presenting at age >12 months. While
outcomes for childhood-ALL have improved dramatically over
the past few years to reach an overall survival (OS) rate of >90%
(17); the OS rate is only ∼60% in infants (18). The reasons for
such disparate outcomes is not clear, but the clues might lie in the
developmental origins of infant and childhood-ALL.

Advances in understanding fetal hematopoiesis and prenatal
oncogenic events, have been limited by a number of factors.
The scarcity of human fetal biological samples is compounded
by the difficulty in working with very small numbers of HSPC
that can be obtained from each sample. Thus, majority of
our understanding of early hematopoiesis development has
come from murine studies. Neither these, nor adult human
models can be used as a faithful surrogate for human fetal
hematopoiesis (5, 19, 20). This in turn leads to difficulties in
making developmentally relevant model systems for human
leukemia (21, 22).

In this review we will focus on recent advances in
our understanding of human B-lymphopoiesis during
ontogeny, especially in fetal life, and review progenitor
compartments therein which may align to the origin of iALL and
childhood-ALL.

HUMAN B-LYMPHOPOIESIS

Hematopoiesis has traditionally been described as a hierarchical
process with hematopoietic stem cells (HSCs) at the apex; these
divide and differentiate into progressively restricted progenitors
that subsequently give rise to the mature cell types of the
hematopoietic and immune system (23, 24).

The traditional human B-lymphoid developmental hierarchy
in adult life demonstrates the following lineage progression in
ABM: HSC, multi-potent progenitors (MPP), lymphoid-primed
multi-potent progenitors (LMPP) (25, 26), multi-lymphoid
progenitors (MLP) (27, 28), common lymphoid progenitors
(CLP) (29), ProB-progenitors, PreB-cells and finally mature B-
cells (30–32) (Figure 1). Lineage commitment is a multi-stage
process defined by transcription factors and their related gene
regulatory networks, influenced both by cell intrinsic factors and
extracellular signals from the microenvironment (29, 33–35).

CD19 expression is the hallmark of B-lineage commitment, with
ProB-progenitors being the first CD19+ cells in ABM that also
initiate immunoglobulin heavy chain VH-DH-JH rearrangement
(31, 36). In recent years, single cell approaches have been
extensively applied to delineate cellular hierarchies andmolecular
pathways in hematopoiesis (37, 38). However, the majority of
studies have been done in human cord blood (5, 39) or adult
tissues (38, 40, 41).

Recent studies have begun to leverage sophisticated
transcriptomic and functional assays to identify B-lymphoid
progenitor compartments in the fetus that are not represented
in the adult. These, and/or their microenvironment, are
hypothesized to be important for the pathogenesis of infant and
childhood leukemias, and perhaps also adult malignancies with
in utero origins (15, 42).

HUMAN FETAL B-LYMPHOPOIESIS

The timings and sites of fetal hematopoiesis have been broadly
mapped out in humans. Hematopoiesis is initiated at day 18
post conception in the yolk sac, independently definitive HSC
emerge from the aorta-gonad-mesonephros (AGM) at 4 pcw and
subsequently migrate to the FL and then bone marrow, which
remains the main site of hematopoiesis after birth (43–47). HSCs
colonize the FL from 5th pcw, and they are detectable later in the
long bones at 10–12 pcw (1, 48).

In humans, the first evidence of onset of embryonic
lymphopoiesis is in the FL at 6 pcw, with multi-potent
progenitors (HSC, MPP, LMPP) and fetal-specific oligo-potent
early lymphoid progenitors (ELP) detectable. B-progenitors and
B-cells are seen in FL by 7 pcw (9, 30, 49, 50). From 2nd
trimester the FBM takes over from the FL as the main site of
B-lymphopoiesis (1, 51).

Fetal Lymphoid Progenitors
Interestingly, in murine models immune restricted cells with
lymphoid potential are observed in the yolk sac (YS), preceding
the first HSCs found in FL; these have potential to produce
lymphocytes and granulocyte macrophage progenitors (52) and
express Il7 receptor (Il7-r/CD127). Transcriptomic data suggests
that such lymphoid progenitors may also be present in human YS
(9) but these have not been systematically characterized yet. In
humans a potentially analogous cell has been identified in the FL,
from 6 pcw; (CD34+CD19−IL7R+) (1, 50, 53, 54). Similar IL7R+

progenitors have been described in human FBM (1). FL and FBM
CD34+CD127+CD19−CD10− ELP have been characterized by
functional and transcriptomic assays, and shown to generate B, T
andNK cells while retaining some residual myeloid output. These
fetal-specific ELP are very rare in postnatal life (1, 54). There has
therefore, been considerable interest in these cells as potential
target cells for childhood-ALL.

Fetal B-Progenitors
From 7 pcw the presence of two committed CD19+ B-
progenitors downstream of ELP has been confirmed in
human FL samples; PreProB (CD34+CD19+CD10−) and ProB
(CD34+CD19+CD10+) progenitors; differing in their CD10
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FIGURE 1 | Human fetal and postnatal B-lymphoid compartments and their

immunophenotypes. Dashed outlines indicate cell types that have been

described immunophenotypically, but have not yet been characterized by

detailed functional and molecular profiling. Faded progenitors, postnatal early

lymphoid progenitor (ELP) and PreProB-progenitors are exceedingly rare in

adult life. HSC, hematopoietic stem cell; MPP, multi-potent progenitors; LMPP,

lymphoid-primed multi-potent progenitors; MLP, multi-lymphoid progenitors;

CLP, common lymphoid progenitor. Lin1, lineage cocktail 1:

CD2/3/14/19/56/235; Lin2, lineage cocktail 2: CD2/3/14/56/235.

expression (1, 50, 54). Similar progenitors have been described in
cord blood (55, 56). PreProB-progenitors account for∼2.5% and
ProB-progenitors ∼8% of FL CD34+ cells, and these frequencies

remain fairly stable in FL between 7 and 20 pcw. These cells have
also been identified by single cell transcriptomic approaches in
the human FL (9).

PreProB and ProB-progenitors are also present and markedly
expanded in human FBM (1). Both B-progenitor compartments
undergo marked expansion in the early stages of colonization
of FBM, to account for up to around 20% and 11% of FBM
CD34+ cells, respectively, at 11 pcw. Later in the second trimester
PreProB-progenitors plateau while ProB-progenitors expand
further to >30% of CD34+ cells in FBM. By contrast, ABM
CD34+ compartment was found to have only 0.5% PreProB-
progenitors and 14% ProB-progenitors (1).

Both PreProB and ProB-progenitors lie downstream of ELP
and generate exclusively B-lymphoid progeny in vitro and in vivo.
Functional and molecular studies have established that FBM
PreProB-progenitors lie upstream of ProB-progenitors, and are
therefore the earliest B-lymphoid restricted progenitors in the
fetal B-cell developmental hierarchy (1).

B cell maturation, defined by B cell receptor diversification,
commences in B-lymphoid progenitors in fetal life. Fetal ELP and
PreProB-progenitors show partial (DH-JH) IgH rearrangement
(1, 54), whereas the more mature ProB-progenitors demonstrate
complete VH-DH-JH rearrangement (1).

Fetal B-Cells
CD19+ B-cells have been reported in FL and FBM by many
groups (30, 48, 49, 57–59), and recently been characterized in
greater detail (1, 9, 60, 61). Evidence of B cell maturation is
demonstrable in human fetal life, with polyclonal CD19+IgM+

B-cells (60–63). Although FL and FBM immunoglobulin heavy
chain repertoires are equally diversified, FL appears to be the
main source of IgM natural immunity during the 2nd trimester,
and this correlates with the majority of B-cells in 2nd trimester
FBM being CD34−CD19+CD10+IgM/D− PreB-cells with a
relative lack of more downstream immature and transitional
B-cells (60).

B1 B-Cells and their Putative Progenitors
B cells can be further divided into B1 B-cells of the
innate immune system and “conventional” B2 B-cells of the
adaptive immune system. This division is well-established
in mice, where sIgM+CD11b+CD5+ B1a B-cells were first
identified (64, 65) through the search for, the still elusive,
cell of origin of adult human CLL (42, 66). B1b B-cells
(sIgM+CD11b+CD5−) were subsequently described (67); both
these subtypes are seen predominantly in serous cavities.
Further characterization of splenic B1 cells have identified them
to be CD5+/−CD19hiCD1dmidCD23−CD43+IgMhiIgDlo (68).
Murine B1 B-cell progenitors are found in the yolk sac (69) prior
to the emergence of the first definitive HSCs in the FL, which
have both B1 and B2 B-cell output (70). The B-cell output skews
toward B2 B-cells over ontogeny, with B1 B-cell output being
exceedingly rare in ABM (65, 71).

Human B1 B-cells and their upstream progenitors have
been proposed as the in utero cell of origin for infant and
childhood-ALL (72) and as having a role in auto-immune
disease (73, 74). In humans, B1 B-cells were described in
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umbilical cord blood and adult peripheral blood. These cells
were CD20+CD27+CD43+CD38lo/int and functioned in line
with murine counterparts, including spontaneous IgM secretion,
constitutional BCR receptor activity and ability to induce
allogeneic T cell proliferation (75). Putative B1 B-cells have
also been described in human fetal hematopoiesis, with greatest
frequencies in 10 pcw FL, decreasing as FBM is colonized
(59). After birth, estimates of B1 B-cell populations range
from 1 to 10% circulating B-cells, this frequency falls as age
increases (76–78).

The progenitors of B1 B-cells in humans remain elusive and
contentious. Two theories posit either a lineage (or layered)
model where different subtypes arise from different progenitors
or a selection model whereby there is interconversion between
B1 and B2 B-cells. In humans, CD27 (one of the cell surface
markers of B1 B-cells) expression in ABM ProB-cells coincides
with LIN28B expression levels similar to that seen in FL. These
cells mature preferentially to B1-like B-cells compared to their
CD27− counterparts. It is not clear whether this relates to a
separate lineage or alternative differentiation potential (79).

In summary, human fetal B-lymphopoiesis starts around 6
pcw in FL, with B-cell production happening simultaneously in
FL and FBM from 2nd trimester. Hematopoiesis in the FBM is
skewed toward B-lymphopoiesis in 2nd trimester. In addition
there are fetal-specific B-lymphoid progenitors (ELP and
PreProB-progenitors), B-cells (B1 B-cells) and developmental
pathways that are different from human adult life (Figure 1).

MOLECULAR PROFILE OF FETAL B CELL
PROGENITORS

Recent studies suggest that the ontogenic switch of B1 to
B2 B-cells in murine B-cell lineage fate of progenitor cells is
determined by a combination of intrinsic fetal gene expression
programs (Lin28b) (80) and extrinsic FL environmental factors
(81). Whole transcriptome profiling of murine fetal and adult
B cell progenitors showed distinct differences between B-1 and
B-2 B-cells as well as between fetal and adult progenitors (82).
Although it is well-accepted that human fetal and adult B-
lymphopoiesis differ significantly, very few studies have directly
compared the molecular pathways underlying these differences.
However, both human adult (35, 41, 83) and fetal (1, 9, 84)
RNA-seq data sets across many hematopoietic subpopulations
have been produced separately and are publicly available for
such analyses.

The advent of single cell sequencing technology has allowed
the transcriptome of hematopoietic cells to be investigated in
unprecedented detail. Recent single-cell transcriptome profiling
of human FL and FBM hematopoiesis has demonstrated the
transcriptomic changes that drive differentiation in the fetal B
cell hierarchy from HSC to mature B-cells; with upregulation of
genes such as SPIB, SP100 and CTSS at HSC/MPP to B-lymphoid
transition, followed by gradual upregulation of B-cell specific
genes such asMS4A1, CD79B, and DNTT (1, 9).

Although fetal PreProB-progenitors are functionally identical
to ProB-progenitors in being restricted to a B-lineage output;

these two progenitor subtypes are molecularly distinct in their
gene expression and chromatin accessibility patterns, with many
myeloid (MPO, CSF1R), T-cell (CD7, CD244) and stem cell
(SPINK2, PROM1) genes being accessible and expressed in
PreProB-progenitors (1). In addition, when transcriptomes of
iALL blasts are compared with different fetal HSPC populations,
they most closely match the two fetal-specific progenitor
populations, ELP and PreProB-progenitors (1) implicating these
cells as potential targets for leukemic transformation.

Direct comparisons focusing on human B-progenitors showed
that although adult and fetal counterparts were functionally
similar, they did exhibit ontogeny-related transcriptomic
differences at a single cell level, with fetal B-progenitors
expressing high levels of genes involved in DNA recombination
(DNTT, RAG1), as well as myeloid genes and known fetal-specific
genes such as LIN28B (1, 80).

Previous studies have also shown that B cell receptor (BCR)
development differs in fetal life, in particular with respect to VH-
DH-JH joining (85). Fetal BCR have a shorter CDR3 length, and
show preferential usage of VH6, DHQ52 and the JH3 and JH4
loci compared to postnatal B-cells (60, 86–89).

RELEVANCE TO CHILDHOOD-ALL

The practical importance of characterizing human fetal B-
lymphopoiesis is to understand the origins of childhood B-ALL,
many of which are initiated before birth. This has led to the
suggestion that fetal specific B1 B-cells and their progenitors
could be the target cells for leukemia initiation in many subtypes
of childhood leukemia. Gene expression signatures from mice
which distinguish B1 and B2 B-cells have been mapped to human
orthologs; application of these signatures to human pediatric ALL
transcriptomic datasets separates B1 B-cell-like ALL subtypes
including ETV6-RUNX1 ALL, from B2 B-cell-like subtypes such
as BCR-ABL1, hyperdiploid, and KMT2A ALL subtypes (90).
Intriguingly, in murine models BCR-ABL transduction into B1
B-progenitors yields greater tumor burden in resulting murine
leukemia than B2 B-progenitors (91).

These data suggest that it is likely that the biology of different
types of infant/childhood Precursor B-ALL depends on the
developmental stage specific characteristics of the leukemia-
initiating cell although this remains to be demonstrated directly.
Nevertheless, it is likely that this is particularly relevant for iALL,
which invariably originates in utero and presents as a rapid onset
aggressive leukemia within the 1st year of life.

Clinical and Biological Features of Infant
and Childhood-ALL
The clinical course and molecular features of iALL are distinct
from childhood-ALL. iALL remains a disease with dismal
event-free survival (EFS) (18, 92–94), although recent risk-
stratified treatment protocols suggest that outcomes could be
improved (95). In iALL, blasts are predominantly CD19+CD10−,
often with aberrant myeloid cell surface markers suggestive
of an immature B-progenitor, as opposed to a CD19+CD10+

Pre-B phenotype in childhood-ALL (18, 96). KMT2A gene
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rearrangements (KMT2A-r) is the main genetic driver for 70–
80% iALL cases, as opposed to only 2–5% of childhood-ALL cases
(97, 98).

Current evidence suggests that iALL (particularly KMT2A-r
ALL) originates in utero and has been traced back to its fetal
origin through retrospective detection of the fusion gene in
neonatal blood spots (99), as well as studies in monozygotic
twins with ALL (100, 101). A characteristic feature of iALL
is the fact that a single hit (KMT2A-r) before birth seems to
be sufficient to induce a rapidly-proliferating, therapy-resistant
leukemia without the need for additional mutations (102).

Unlike iALL, many cases of childhood-ALL also originate
in utero but only develop into full-blown leukemia after a second
post-natal hit (15, 16). Several subtypes of childhood B-ALL have
been shown to arise in utero including those characterized by
KMT2A-r (103, 104), ETV6-RUNX1 (105–107), BCR-ABL (108),
TCF3-PBX1 (109), TCF3-ZNF384 (110) gene fusions and high
hyperdiploid ALL (111, 112) (Figure 2).

There are several properties of fetal hematopoietic cells that
may underlie the pathogenesis of iALL and childhood-ALL.
Firstly, fetal HSPC are more proliferative (6, 7) and have better
long term repopulating ability in xenograft models (8, 113–115).
Fetal-specific gene expression programs such as the LIN28B-
LET-7-HMGA2 axis (79, 80, 116, 117) have been shown to
drive self-renewal (118) and oncogenesis (10–12, 119). Activation
of LIN28B, in particular, has been demonstrated in several
cancers and results in suppression of LET-7 micro-RNAs and
subsequent de-repression of an array of oncogenes including
MYC, RAS, BLIMP1, ARID3A and HMGA2 (10, 120). ARID3A
is necessary for fetal B lymphopoiesis and B1 cell division
(121, 122), and has also been shown to promote cancers by
driving higher MYC expression (123, 124). HMGA2 is a fetal-
specific transcription factor that is re-expressed in many cancers.
It promotes cell proliferation, and the Lin28-Let-7-HMGA2
axis maintains cancers in an undifferentiated state (125). The
expression of oncogenes such as LIN28B in fetal HSPC, may
therefore play a role in leukemia initiation and transformation of
fetal target cells, and in particular the development of aggressive
leukemias in infancy and early childhood.

Secondly, there is a higher proportion of B-progenitors in fetal
life compared to adults (1, 2). B-lymphopoiesis itself changes
through the human lifetime with a switch in the ratio of B-
progenitors to more mature B-cells (30, 49). Regardless of
the mechanism, hematopoiesis in the human FBM is skewed
toward the B-lymphoid lineage with the presence of a very high
frequency of B-progenitors (1, 126) thus expanding the pool of
target cells for malignant transformation.

Developmental Origins of iALL
It is also possible that the fetal cell of origin for iALL and
childhood-ALL are different (Figure 2). We suggest that an
attractive hypothesis is that iALL arises in a unique B-progenitor
found only in fetal life. Of particular interest are fetal-specific
IL7R+ ELP (1, 50, 53, 54) and PreProB-progenitors (1, 50,
55, 56) that share immunophenotypic, transcriptomic and IgH
rearrangement patterns with iALL blasts (1, 96). Compared to
ABM counterparts, fetal PreProB-progenitors uniquely express

known oncofetal genes, such as LIN28B, as well as genes
implicated in KMT2A-r iALL, such as KLRK1 and PPP1R14A
(127, 128) that have not previously been recognized as being fetal-
specific (1). Fetal ELP/PreProB-progenitors also demonstrate
features that could account for lineage plasticity such as an
accessible chromatin pattern, together with residual expression,
ofmyeloid and stem cell genes (1). In addition, iALL can switch to
a myeloid lineage at relapse, especially after B-lymphoid directed
treatment (129–132). This could either be a feature of residual
preleukemic primitive progenitors that are capable of giving
rise to both myeloid and lymphoid leukemia, or because of
plasticity and/or reprogramming of leukemic early B-lymphoid
progenitors (130, 133). For example,KMT2A-r, themost frequent
genetic driver of iALL, may drive leukemogenesis by binding
to accessible genes in permissive fetal progenitors; or indeed
alter the chromatin accessibility and gene expression patterns
of target genes. KMT2A is a lysine methyltransferase, and
KMT2A-r is thought to promote leukemogenesis by activating
key target genes such asHOXA9 andMEIS1 (134, 135). Although
there is some heterogeneity in KMT2A-r ALL based on the
specific fusion partner gene, most KMT2A-fusion proteins
drive and maintain leukemia via a protein complex involving
AF4/ENL/AF9/PTEF-B. KMT2A-fusion proteins bind directly to
gene targets where they aberrantly upregulate gene expression,
partly by increasing histone-3-lysine-79 dimethylation through
DOT1L (135).

These mechanisms of KMT2A-r mediated transformation
are difficult to validate without a bona fide model of iALL,
which has been very difficult to generate. However, we have
recently developed a novel iALL model derived by CRISPR-
Cas9 mediated KMT2A-r in primary human FL HSPC (136).
This demonstrates that a human fetal cell context is permissive,
and indeed probably required; to give rise to an ALL that
recapitulates key features of iALL. In this model, recruitment
of fetal-specific genes by KMT2A-AF4 is demonstrated by
KMT2A-N and AF4-C binding and H3K79me2 at these genes by
ChIP-seq (136). Furthermore, maintenance of fetal-specific gene
expression programs accounts for the unique molecular profile of
iALL, suggesting that it is the specific fetal target cell(s) in which
it arises that provide the permissive cellular context (136).

Developmental Origins of Childhood-ALL
It is possible that childhood-ALL on the other hand is likely
to arise from a more mature CD19+CD10+ fetal B-progenitor
such as ProB-progenitors or PreB-cells. These cell populations
are found in abundance in FBM and expand rapidly throughout
the second trimester. As in iALL, several genes that have
been implicated in the pathogenesis of childhood-ALL are
also important in fetal B lymphoid development. Some of
these, such as PAX5, EBF1, TCF3, and IL7R (137, 138), are
expressed at higher levels in fetal B-progenitors compared to
postnatal counterparts (1). This is also true for the B-cell specific
gene RAG1 that may play a role in driving childhood-ALL-
associated chromosomal translocations such as ETV6-RUNX1
(139). In addition, childhood-ALL is characterized by multiple
lesions affecting cell cycle and B-cell differentiation genes
(138). It is hypothesized that the proliferative capacity and
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FIGURE 2 | Developmental origins of ALL. Schematic representation of the main sites of early life B-lymphopoiesis (FL, fetal liver; FBM, fetal bone marrow; PBM,

pediatric BM). Different fetal lymphoid progenitors could be the target cell for infant ALL (iALL), and childhood-ALL. While iALL can develop after just one intrauterine

“hit” such as KMT2A gene rearrangement (KMT2A-r), childhood-ALL usually develops after a second postnatal hit. Fetal-specific gene expression programs are down

regulated after birth. These programs might be key in providing a permissive cellular context for prenatal B-progenitor leukemia initiation in specific target cells as

described above.

complementary epigenetic profile (such as greater chromatin
accessibility of highly expressed genes) of the cell of origin
provide the right substrate for leukemic transformation (35,
140). This permissive cell-state is likely to be present in
FBM ProB-progenitors where their rapid proliferation at the
expense of differentiation during a particular developmental
time window may make them more susceptible to oncogenic
hits. Others have hypothesized that it is the fetal/neonatal BM
niche that drives the lymphoid-biased phenotype of KMT2A-r
infant/childhood leukemia (141).

CONCLUSION

Recent advances in developmental hematopoiesis have allowed
better characterization of human fetal B-lymphopoiesis using
molecular and functional studies. This has revealed fetal-specific
B-lymphoid progenitors and B-cell developmental pathways
that can be distinguished from postnatal B-lymphopoiesis.
Lineage specification of fetal progenitors, the enrichment of
multi/oligopotent progenitors and their proliferative capacity is
also likely to be driven by microenvironmental cues from the FL
and FBM hematopoietic niche.

Studies directly comparing fetal B-lymphoid cells and their
microenvironment with childhood and adult counterparts are
crucial if we are to understand the site- and stage-specific
variation in hematopoiesis throughout the human lifetime and
the role it plays in normal and abnormal B-lymphopoiesis.
This also has implications for using age-appropriate controls
for studies of disorders of hematopoiesis, particularly in
early life.

The lymphoid bias of normal fetal hematopoiesis may well
be a key factor in the predominance of ALL among infants and
children. A better understanding of the importance of the fetal
context for leukemogenesis is likely to require models derived
from human fetal HSPCs and/or niche. Using human fetal
cells to develop faithful infant and childhood-ALL models will
allow better understanding of disease pathogenesis and rational
development and testing of therapeutics in the future.
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