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Integrins refer to heterodimers consisting of subunits a and b. They serve as receptors on
cell membranes and interact with extracellular ligands to mediate intracellular molecular
signals. One of the least-studied members of the integrin family is integrin-a9b1, which is
widely distributed in various human tissues and organs. Integrin-a9b1 regulates the
physiological state of cells through a variety of complex signaling pathways to participate
in the specific pathological processes of some intractable diseases. In recent years, an
increasing amount of research has focused on the role of a9b1 in the molecular
mechanisms of different refractory diseases and its promising potential as a therapeutic
target. Accordingly, this review introduces and summarizes recent research related to
integrin-a9b1, describes the synergistic functions of a9b1 and its corresponding ligands
in cancer, autoimmune diseases, nerve injury and thrombosis and, more importantly,
highlights the potential of a9b1 as a distinctive target for the treatment of these
intractable diseases.

Keywords: integrin-a9b1, cancer, autoimmune diseases, axon regeneration, thrombosis
INTRODUCTION

Integrins are specific transmembrane proteins that function as receptors on the surface of cell
membranes. The heterodimers of integrin members formed by noncovalent bonds of a-subunits
and b-subunits in response to corresponding ligands in the extracellular matrix mediate
intracellular mechanical and chemical signals (1). So far, 24 distinct ab receptor complexes
composed of 18 a-subunits and 8 b-subunits have been found, which play regulatory roles in
different developmental and physiological processes (2, 3). However, within the integrin family,
there has been relatively little research on a9b1.

Integrin-a9 (ITGA9) was found in guinea pig airway epithelial cells in 1991, when the
polymerase chain reaction (PCR) technique showed a new a-subunit with a novel sequence
compared to previously reported integrin subunits (4). In 1993, the human amino acid sequence
and cDNA of the new subunit was determined and definitively designated as a9 (5). The a9-subunit
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specifically groups together with the b1-subunit, combining to
form the unique heterodimer integrin-a9b1, which acts as an
indispensable receptor for cellular signal responses (6).

In the last few decades, more and more research has focused
on the roles of integrin-a9b1 in periods of growth, development
and disease. More importantly, integrin-a9b1 has been reported
as a new therapeutic target for some specific refractory diseases.

In this review, we focus on recent advances in research on
integrin-a9b1. We will discuss its individual potential clinical
value for the treatment of tumors, rheumatoid arthritis (RA),
axon damage and thrombosis.
STRUCTURE AND FUNCTION
OF INTEGRIN-a9b1

The ITGA9 gene is distributed on the human chromosome
3p21.3-22.2 segment, encodes the polypeptides of 1035 amino
acids, and has a size of 114.5 KD (7). The structure of a9 consists
of three parts: a large N-terminal extracellular domain, a
transmembrane segment and a short C-terminal cytoplasmic
tail (8). Among this structure, the N-terminal portion mediates
ligand binding (9), while the cytoplasmic domain specifically
binds to intracellular proteins that modulate the physiological
activity of cel ls , such as spermidine/spermine N1-
acetyltransferase, which has been proven to regulate inward
rectification of the inward-rectifier K+ channel to enhance cell
migration with interaction of the a9 cytoplasmic domain (10).

According to their homology, a-subunits can be divided into
three families. One includes subunits with a characteristic
disulfide-linked cleavage site and forms heterodimers that
recognize Arg-Gly-Asp (RGD)-containing ligands. Another
includes subunits that contain an inserted domain close to the
N-terminus but no cleavage site, which generally do not
recognize RGD-containing ligands. However, a9 and a4 can
form a special third subfamily that contains neither the insertion
domain nor the disulfide-linked cleavage site and does not
recognize the classic integrin-binding motif RGD (11). The
subfamily is one of the newest and most specific integrin
families from an evolutionary perspective and is only expressed
in vertebrates (12). Integrin-a9 used to be known as ITGA4L
(integrin-a4-like) since a9 and a4 show peptide sequence
similarities (39% amino acid identity) and share several
common ligands (13, 14). However, knockout of a9 and a4
results in different phenotypes in mice: a4-knockout mice die by
11-14 embryonic days due to improper chorioallantoic fusion,
cardiac hemorrhage (15), and defects in all hematopoietic
lineages in the fetal liver, bone marrow, and spleen (16); while
a9-knockout mice die within 12 days of birth with bilateral
chylothorax (17), impaired development of neutrophils (18), and
defective development of lymphatic valves and venous valves
(19). This indicates that a9 and a4 exert distinct as well as
similar physiological functions in vivo. In addition, it is
intriguing that the integrin family extensively regulates cellular
directional migration in an electric field (galvanotaxis), which is
necessary for precise control of wound healing, angiogenesis,
Frontiers in Immunology | www.frontiersin.org 2
immune responses and organismal development. In this
potentially endogenous guidance mechanism, cells expressing
a9 migrate to an anode in an electric field, whereas cells
expressing a4 migrate in random directions in an electric field
(20), demonstrated that integrin-a9 and a4 may differentially
contribute to cell migration in vivo.

In mouse tissue, immunohistochemistry has shown that
integrin-a9b1 is located in the epithelia and muscle of the
trachea, digestive system, skin, veins, liver and spleen, but not
in the aorta, pancreas or heart (5). Integrin-a9b1 plays an
important role in cell adhesion and migration, but more and
more research is showing that it has roles far beyond that. It
binds to a diversity of ligands in the extracellular matrix, like the
a-disintegrin and metalloprotease (ADAM) family, elastic
microfibril interface-located protein1 (EMILIN1), vascular
endothelial growth factor (VEGF), the extra domain A (EDA)
of fibronectin, tenascin-C (TNC), osteopontin (OPN), vascular
cell adhesion molecule-1 (VCAM-1) and C-motif-ligand-1
(XCL1)/lymphotactin (21–25). The interaction between these
proteins and integrin-a9b1 is vital for organismal growth and
development and cellular physiological activities (Table 1).
Recent studies have focused on the role of a9b1 in
pathological processes and its potential as a therapeutic target.
And great progress has been made towards certain specific
refractory diseases, including various malignant tumors,
autoimmune diseases, nerve damage and thrombotic diseases.
Here, we will describe in detail how integrin-a9b1 plays a pivotal
role in these diseases and, more importantly, makes a promising
target for clinical treatment.

Integrin-a9b1 and Corresponding
Ligands Have Potential as Tumor
Therapeutic Targets
Integrin-a9 is considered to be closely related to the growth,
metastasis and tissue invasion of cancer. The tumor
microenvironment provides a large number of ligands in the
extracellular matrix, leading to complex and diverse reactions
with integrins (62). The expression of a9b1 is up-regulated in
many cancers and affects tumor progression through a variety of
mechanisms, including regulation of cell migration and invasion,
mediation of cell cycle regulatory elements, promotion of the
growth of tumor-associated blood and lymphatic vessels, and
alternation of the epithelial-mesenchymal transition [EMT; (23,
35, 63, 64)]. Hence, there have been successive reports on the
performance of a9b1 in cooperating with specific ligands in
different cancers, and on the experimental effects of ITGA9-
targeted therapeutic agents (Table 2).

Prostate Cancer
The NotI-microarray analysis has identified ITGA9 as a potential
biomarker for the detection and discrimination of prostate
tumors with different aggressiveness and malignancy (78). In a
study of prostate cancer, a human bone metastasis tissue array
consisting of 63 metastasis samples was analyzed. The cells
showed immunoreactivity to ITGA9 in 74% of the cancer foci
associated with TNC, with the latter being an important ligand of
March 2021 | Volume 12 | Article 638400
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integrin-a9b1 (44). In prostate cancer, the deposition of TNC
during early cancer progression is a key marker of stromal
microenvironment alternation, which is overexpressed in the
endosteum when normal processes of cellular senescence and
death lead to microfracture repair (79, 80). Then, bone metastatic
cells interact with TNC in the endometrium through the
integrin-a9b1 to accelerate the spread, whereas the activity is
eliminated by small interfering RNA (siRNA) or neutralizing
antibodies of a9 (44). Besides, the reaction site where human
TNC binds to a9b1 is located in the isoleucine-aspartic acid-
glycine motif within the third fibronectin type III repeat, which is
absent in mice, which may explain why cancer rarely
metastasizes to the bone in murine models, while both
integrin-a9b1 and TNC are thought to have great significance
in metastatic prostate cancer (81, 82).

Melanoma
Melanoma has high aggressiveness and metastasis, which has been
defined as lethal melanocytic neoplasm (83). Integrin-a9b1 is
up-regulated in melanoma tissue and cells, and different active
states produce different effects. Under normal circumstances,
the intermediate activity state of a9b1 supports cell migration
through interaction with TNC and ADAM12, which are regulated
by guanosine triphosphatase (GTP)-Rac signaling. However,
manganese ions stimulate highly-active transformation with a
protein conformation change of a9b1, which then leads to cell
Frontiers in Immunology | www.frontiersin.org 3
focal adhesion accompanied by morphological change that is
dependent on the Rho kinase pathway [Figure 1A; (65, 84)].
It has been reported that focal adhesion in tumor cell is
closely associated with resistance to radio- and chemotherapy.
Considering that melanoma has much higher manganese
levels than other cancers, this mechanism may explain the
extreme radio- and chemo-resistant nature of melanoma and
its low patient survival (85, 86). Another study reported
that integrin-a9b1 binds to the OPN-activating p38- and
ERK-signaling pathways and activator protein (AP)-1. This
ultimately leads to expression of cyclooxygenase-2 (COX-2) and
accompanying secretion of prostaglandin E2 (PGE2) and matrix
metalloproteinase (MMP)-9 in tumor-associated macrophages
(Figure 1B). These factors contribute to melanoma growth and
angiogenesis (51).

The function-blocking anti-human a9 monoclonal antibody
Y9A2 has the ability to inhibit adhesion of human melanoma
cells. So does VLO5, a snake disintegrin that antagonizes a9b1
(26, 66). Furthermore, the regulation of endogenous integrin-
a9b1 depends on cell vesicle exocytosis, and the use of
primaquine (an effective inhibitor of vesicle trafficking)
effectively attenuates melanoma cell attachment in a dose-
dependent manner (65). These results reveal the effect of anti-
a9 treatment. Moreover, ITGA9 has been reported to be the
direct target of miR-125b and miR-296-3p. The expression of
miR-125b is clearly decreased in primary melanoma, and even
TABLE 1 | Major ligands and functions interacting with integrin-a9b1.

Ligands Functions References

ADAM1, 2, 3, 7, 9, 15, 28 Cell adhesion (21, 26–28)
ADAM8 Cell adhesion; stimulates osteoclast differentiation (14, 29)
ADAM12 Cell adhesion; promotes myoblast fusion (14, 30)
ADAM33 Cell adhesion; involved in asthma pathogenesis (14, 31)
EMILIN1 Inhibits dermal fibroblast and keratinocyte proliferation; anti-proliferation;

essential for lymphatic valve formation and maintenance.
(22, 32–34)

VEGF-A Cell migration/adhesion; angiogenesis (35)
VEGF-C Cell migration/adhesion; promotes sprouting of lymphatics (23, 36, 37)
VEGF-D Cell migration/adhesion; promotes sprouting of lymphatics (23, 36, 38)
EDA of fibronectin Cell migration/adhesion; promotes filopodia formation;

required for lymphatic valve morphogenesis;
induces epithelial-mesenchymal transition (EMT);
sustains subpopulation of CD133+/CD44+ cancer cells

(39–43)

TNC Cell migration/adhesion; cell proliferation;
participates in wound healing, fibrosis and neovascularization;
participates in neuronal regeneration;
required in the bone marrow microenvironment primed for hematopoietic regeneration;
mediates inflammatory response

(25, 44–48)

VCAM-1 Cell migration/adhesion; regulates lymphatic development (49, 50)
OPN Cell migration/adhesion/chemotaxis;

participates in wound healing, fibrosis and neovascularization;
mediates inflammatory response;
critically involved in the exacerbation of liver fibrosis;
contributes to tumor growth and angiogenesis

(25, 51–55)

XCL1/lymphotactin Cell migration; mediates inflammatory response (56)
Thrombospondin-1 Cell migration; promotes angiogenesis (57)
Blood coagulation factor XIII Cell adhesion (58)
L1-cell adhesion molecule Cell adhesion (59)
Nerve growth factor Cell chemotaxis and proliferation (60)
Propolypeptide of von Willebrand factor Cell adhesion (58)
Tissue transglutaminase Cell adhesion (58)
Plasmin Cell migration (61)
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TABLE 2 | Overview of experimental trials with therapeutic agents targeting ITGA9 in different cancers.

Types of cancer cells Function of integrin-a9b1 Involved
ligands

Participating mechanism and signaling pathways Therapeutic
agent targeting

ITGA9

References

VCaP (prostate cancer
metastatic cell line)

Promotes bone metastasis of
prostate cancer

TNC mAb Y9A2;
siRNA

(44)

G361 (human melanoma
cells)

High activation (activated by Mn2+)
induces cell focal adhesions

TNC;
ADAM-12

Through Rho kinase pathway and vesicle exocytosis mAb Y9A2;
Primaquine
(inhibitor of
vesicle
trafficking)

(65)

G361 Normally supports cell migration TNC;
ADAM-2,
-3, -12, -15

Through GTPase Rac signaling and vesicle exocytosis mAb Y9A2;
Primaquine;
VLO5

(26, 65, 66)

RAW264.7 (mouse
macrophage line)

Enhances angiogenesis,
melanoma growth and migration

OPN Up-regulates COX-2, PGE2 and MMP-9 through the
p38 and ERK signalling pathways

siRNA (51)

Mel Ju and Mel Im
(cutaneous malignant
melanoma cell lines)

Promotes the EMT and cell
invasion

Induces the expressions of mesenchymal markers:
vimentin, SNAIL and N-cadherin

siRNA;
miR-125b

(67)

A375 and A875 (melanoma
cell lines)

Promotes cell proliferation,
migration, glucose consumption,
lactate production, EMT and
inhibits apoptosis

Up-regulates hexokinase 2 (HK2), proliferating cell
nuclear antigen (PCNA), cyclin D1 and B-cell
lymphoma (Bcl)-2

MiR-296-3p;
si- and sh-
CCAT1

(68)

LM2 and SUM159
(triple-negative breast
cancer cell lines)

Associates with cancer stem cell-
like property, tumor angiogenesis,
growth and metastasis

ITGA9 depletion promotes b-catenin degradation
through the ILK/PKA/GSK3 pathway and affects the
Wnt/b-catenin pathway

siRNA (69)

468LN (a variant of the
468GFP human breast
cancer cell line)

Involves in migratory and invasive
functions.
Obligatory for promoting tumor-
associated lymphangiogenesis
and lymphatic metastasis.

VEGF-C;
VEGF-D

Activates ERK signalling pathway mAb sc-59969;
siRNA

(38)

LLC-1 (Lewis lung
carcinoma cells);
SW480 (colon carcinoma
cells)

Induces tumor growth,
vasculogenesis and metastasis.
Promotes molecular and
cytoskeletal changes consistent
with EMT.

TNC Induces phosphorylation of Src-Y416 and b-catenin-
Y654; forms a tri-partite complex with E-cadherin and
b-catenin, which dissociates following a9b1 interaction
with ligands

mAb Y9A2;
VLO5;
si- and sh- RNA

(64, 70, 71)

Colorectal carcinomas
cells;
A549 (human lung cancer
cell line);
NCI-H522 (human lung
adenocarcinoma cell line)

Promotes metastatic capacity,
EMT and invasion.
Leads to increased mesenchymal
markers and decreased epithelial
markers.

Fibronectin-
EDA

Activates FAK/c-Src and MEK/ERK signalling
pathways and activates the small GTPase Rac1

mAb;
Irigenin

(39, 72)

SW480;
HMVECs (human dermal
microvascular endothelial
cells)

Supports SW480 cell adhesion,
migration and invasion.
Supports HMVEC in forming the
endothelial tube.

VEGF-A
(EYP
peptide)

Activates the integrin signaling intermediates Src and
FAK

mAb Y9A2;
siRNA

(73)

SW480 Significantly elevates and is
essential for CD133/CD44-
positive cells.
Promotes spheroid formation.
Inhibits cell apoptosis.

Fibronectin-
EDA

Activates FAK/ERK and sustains the Wnt/b-catenin
signaling pathway;
blocking of a9b1 up-regulates cleaved caspase 3, 9,
cleaved poly (ADP-ribose) polymerase with
suppression of cyclin D1

mAb Y9A2 (40)

RH30, CW9019 and HTB-
82 (rhabdomyosarcoma
cell lines)

Promotes cell adhesion, motility
and invasion

Notch pathway mediates the expression of ITGA9
through downstream effectors NICD and Hes1

mAb 3E4;
GSI (Notch
signaling
inhibitor)

(74)

Rhabdomyosarcoma cell
lines RD (embryonal
subtype) and CW9019
(alveolar subtype)

Supports cell proliferation and cell
invasiveness

Activates FAK signaling pathway miR-7;
miR-324-5p;
sh-RNA

(75)

OSCC13 cell line;
CD11c+ myeloid cells;
lymphatic endothelial cells

Increases expression of CCL21.
Orchestrates an immune-
suppressive microenvironment to
facilitate tumor escape from
immunosurveillance.

TNC Supports CCL21/CCR7 signalling pathway;
Regulate the crosstalk and position of tumor-infiltrating
lymphocytes like CD11c+ cells and Tregs

Ab;
BOP (an
antagonist for
integrin-a9b1)

(76)

(Continued)
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less so in the metastatic invasion phenotype, which is negatively
correlated with the expression of ITGA9. Integrin-a9b1 advances
cancer growth and metastasis by potentiating EMT (64) so that
miR-125b shows the capacity to inhibit malignant melanoma cell
invasion and metastasis by targeting ITGA9 in vitro and in vivo
(67). Similarly, miR-296-3p is also downregulated in melanoma
cells and tissue. It targets ITGA9 to inhibit glucose metabolism,
lactic acid production, proliferation and migration of melanoma
cells while inducing cell apoptosis. In addition, the long
noncoding RNA (lncRNA) CCAT1 acts as a competing
endogenous RNA that sponges miR-296-3p to up-regulate
ITGA9 in vivo; thus, CCAT1 silencing inhibits melanoma cell
growth (68). This field of research provides a new direction for
the treatment of melanoma with micro-RNA and lncRNA that
target ITGA9 either directly or indirectly (Figure 1C).

Breast Cancer
Integrin-a9 exists in normal human breast tissue, but the
expression levels are heterogeneous in breast tumors (87). In a
study of 38 human samples, the mRNA expression level was
normal or increased in 45% of tumors, but decreased or absent in
another 44% of samples, while 11% of samples showed that
ITGA9 had a mutation or pathological alternative splicing (88).
Hypermethylation of CpG-island is considered to be the critical
mediation mechanism of ITGA9 inactivation of breast malignant
tumors. In triple-negative breast cancer, the level of ITGA9 is
drastically higher than in other subtypes of breast cancer, which
is related to worse distant metastasis-free survival and
recurrence-free survival rates. The nanoparticle-mediated
delivery of ITGA9 siRNA into tumor cells has the capacity to
sharply down-regulate angiogenesis, growth and metastasis by
inducing b-catenin degradation via the integrin-linked kinase
(ILK)/protein kinase A (PKA)/glycogen synthase kinase 3
(GSK3) pathway (69). The Wnt/b-catenin pathway is a crucial
cascade involved in the development of cancer and is linked to
decreased overall survival in breast cancer patients (89, 90).
Knockdown of ITGA9 promotes b-catenin degradation,
suggesting that integrin-a9 may interfere with the Wnt
signaling pathway to influence the tumor microenvironment.
On the other hand, integrin-a9b1 interacts with VEGF-C and -D
(produced by cancer cells or by macrophages) to confer the
functions of migration and invasiveness in human breast cancer
cell line 468LN, which can be abrogated by antibody blocking or
stable knockdown of integrin-a9. Similarly, the knockdown of
ITGA9 abrogates primary tumor growth, angiogenesis,
metastatic ability to the draining lymph node and intra-
tumoral lymphangiogenesis in vivo in nude mice (38).
Frontiers in Immunology | www.frontiersin.org 5
Lung Cancer
In human primary small cell lung cancer, the long-term survival
rate of patients is significantly lower with higher expression of
a9b1. Injection of LLC-1 lung carcinoma cells or SW480 colon
carcinoma cells with over-expression of a9b1 both induce
greater tumor growth and metastasis in mice (64). It is worth
noting that EMT is considered to be very crucial in metastatic
progression, which causes disruption to intercellular contacts
and enhances cell motility to release cancer cells from the parent
epithelial tissue (91). While a9b1 binding to TNC supports
phenotypic and functional alterations to EMT, with increases
in N-cadherin, a-SMA, vimentin and snail (mesenchymal
markers), as well as a decrease in E-cadherin [epithelial marker;
(64)]. The above process is accompanied by phosphorylation
of b-catenin through the Src signaling pathway, which has
been proved to be closely associated with EMT (70, 71). In
addition, fibronectin-EDA also imparts the EMT phenotype
through integrin-a9b1 (39), and irigenin (a novel lead from
the Western Himalayan chemiome that can be isolated from
the rhizomes of Belamcanda chinensis) has an anti-metastasis
capacity by selectively blocking the a9b1 and a4b1 integrin
binding sites with the C-C loop of EDA (92). In human
lung cancer cell line A549 and lung adenocarcinoma cell line
NCI-H522, irigenin conquers fibronectin-EDA-induced cell
proliferation, migration and invasion with dose-dependent
inhibition of EMT markers. Hence, irigenin may become a lead
compound in the management of lung carcinoma (72).

Colon Cancer
ITGA9 antigen has been detected in the basolateral domain of
colonic glandular epithelial cells at the fetal stage, but not in
adults under normal circumstances. Comparatively, colon
adenocarcinoma cells have the potential to express integrin-a9
with polarization features, thereby the a9 subunit may be
conditional on oncofetal pattern expression in the human
colonic epithelium (93). The peptide EYP of VEGF-A
specifically binds to a9b1 and induces invasion of colorectal
cancer cell line SW480 with phosphorylation of the integrin
signaling intermediates, Src and focal adhesion kinase [FAK;
(73)]. Additionally, endothelial cell-derived fibronectin-EDA
binds to a9b1, which promotes colorectal cancer metastasis
with EMT phenotypic conversion through activation of the
FAK, ERK and Rac signaling pathways and supports
endothelial tube formation (39). This research illustrates that
cooperation between integrin-a9b1 and paracrine or autocrine
extracellular matrix ligands is critical to the colon cancer
microenvironment. Furthermore, long-term application of
TABLE 2 | Continued

Types of cancer cells Function of integrin-a9b1 Involved
ligands

Participating mechanism and signaling pathways Therapeutic
agent targeting

ITGA9

References

SMMC-7721 and MHCC-
LM3 (hepatocellular
carcinoma cell lines)

Prevents tumor cell migration and
invasiveness in vitro, and tumor
growth and metastasis in vivo.

Suppresses the FAK/Src-Rac1/RhoA signaling
pathway and disrupts focal adhesion reorganization

Lentivirus
transduction of
human ITGA9
ORF subclone

(77)
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methotrexate, an important drug widely used in cancer therapy,
carries the risk of resistance emergence (94). Simultaneously,
ITGA9 is obviously up-regulated in already-developed drug-
resistant colon cancer cells, whereas a9 is reported to be a
Frontiers in Immunology | www.frontiersin.org 6
promising target candidate for overcoming methotrexate resistance
in colon cancer (95).

CD133+/CD44+ cancer cells, which have the properties of
tumour progenitor cells, are critical in the tumorigenesis of
A

B C

FIGURE 1 | The function of integrin-a9b1 in melanoma. (A) Under normal conditions, the intermediate activity state of integrin-a9b1 supports cell migration via
interaction with TNC and ADAM12. A high activation state (converted by manganese ions, which occur at much higher levels in melanoma than in other cancers)
changes the integrin conformation and cell morphology, and induces and localizes to focal adhesions. (B) In tumour-associated macrophages, integrin-a9b1 binds
to OPN, activating ERK- and p38-dependent AP-1, ultimately leading to enhanced expressions of COX-2, PGE2 and MMP-9, which contribute to melanoma growth
and angiogenesis. (C) miR-296-3p (regulated by lncRNA CCAT1) and miR-125b directly target ITGA9 to mediate the cell physiology of melanoma.
March 2021 | Volume 12 | Article 638400
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colorectal cancer (96, 97). The expression level of integrin-a9b1
is greatly up-regulated in human colorectal cancer samples and is
also increased in the CD133+/CD44+ subpopulation of SW480
cells compared with the CD133-/CD44- subpopulation.
Fibronectin-EDA also increases in CD133+/CD44+ cells and
activates the integrin-a9/FAK/ERK pathway to sustain Wnt/b-
catenin signaling activity. The latter is critical in the development
and progression of colon cancer (40). Blocking of fibronectin-
EDA and a9b1 suppresses the clonogenicity and sphere-
formation capacity of CD133+/CD44+ cells, and the
monoclonal antibody (mAb) of integrin-a9b1 obviously
promotes cell apoptosis by up-regulation of apoptotic protein
markers, like caspase-3, caspase-9 and poly (ADP-ribose)
polymerase, concomitant with suppressed expression of cyclin
D1 (cell cycle progression-promoting protein) (40, 98). Hence,
targeted methods based on integrin-a9b1 or fibronectin-EDA
can serve as treatment modes for the inhibition of cancer
progression and limitation of colon cancer progenitor cells.

Rhabdomyosarcoma
Rhabdomyosarcoma is an early onset malignancy, which is the
most common type of soft tissue sarcoma in children. About 15%
of rhabdomyosarcoma patients are diagnosed with distant
metastasis (99, 100). Despite the prognosis of most patients
with field cancerization being acceptable, the effectiveness of
treatments for metastatic rhabdomyosarcoma is particularly
poor and the long-term event-free survival rate is less than
20% (101). Integrin-a9b1 has been demonstrated as directly
involved in the attachment, migration and invasiveness of
rhabdomyosarcoma cells, and the specific anti-a9-blocking
antibodies significantly decrease the invasive properties (74).

The Notch pathway plays an important role in the expressions of
ITGA9 and N-cadherin, for which the downstream effectors Hes1
and NICD directly bind to their promoter regions. This mechanism
may explain why the pharmacological Notch signaling inhibitor
(GSI) impairs the adhesion of rhabdomyosarcoma cells. For the
purpose of metastasis resists, Notch-inhibiting molecules serve as
potential therapeutic agents (74). Moreover, after a screening
process, a recent analysis selected miR-7 and miR-324-5p as the
best candidates for regulating integrin-a9b1. Overexpression of
both types of miRNA leads to genetic down-regulation of ITGA9
following sharp decreases in cell proliferation and invasion in vitro
and in vivo, since integrin-a9b1 participates in cell proliferation and
tumour growth in the two main rhabdomyosarcoma subtype cell
lines RD and CW9019. In the murine model with intravenously
injected tumour cells, miR-7 also induces significant impairment of
rhabdomyosarcoma cell metastatic lung colonization (75). This
raises the possibility of using ITGA9-mediating miRNA as a novel
therapeutic tool to avoid rhabdomyosarcoma progression.

Squamous Cell Carcinoma (SCC)
In the healthy oral mucosa, integrin-a9b1 is mainly expressed at
the basal and immediately suprabasal cell layers. However, in
leukoplakic dysplasia, lichen planus and SCC samples, a9b1 is
more diffusely expressed at the epithelial cell membranes (102),
since both leucoplakia and lichen planus are considered to be
potential oral malignant disorders with certain risks of malignant
Frontiers in Immunology | www.frontiersin.org 7
transformation (103). TNC is reported to be a promoter of pro-
tumorigenic microenvironments as a classical ligand for
integrin-a9b1, taking part in immune suppression in oral SCC
(76). It works with a9b1 and TLR4 to activate the CCL21/CCR7
signaling pathway and induce the expression of CCL21, which is
known to be a chemoattractant for various leukocytes and
lymphoid tissue. This shifts the host’s immunogenic immune
response to being a tolerogenic response and facilitates tumour
progression and metastasis by evading immune surveillance
(104). Either integrin-a9b1 or TNC antibodies reduce CCL21
mRNA and protein expression to improve hypoimmunity,
suggesting that blocking integrin-a9b1 or TNC can alter the
SCC tumour microenvironment (76).

Hepatic Fibrosis and Hepatocellular Carcinoma
Integrin-a9 chains can be detected in hepatocytes and fetal
hepatoblasts, and the latter likely performing a key role in the
differentiation of liver stem cells (105). Thrombin-cleaved OPN
(which exhibits the a9-binding motif) interacts with a9b1 to
promote activation, proliferation and migration of hepatic
stellate cells via the mitogen-activated protein kinase (MAPK)
and nuclear factor-kappa B (NF-kB) signalling pathway, which
are essential for liver fibrogenesis (52). In addition, integrin-
a9b1 is also important for activating the motility of hepatic
stellate cells through cooperation with ligand fibronectin-EDA
(106). The sustained exacerbation of liver fibrosis predisposes
certain individuals to cirrhosis or even hepatocellular carcinoma
(107). However, it is interesting that unlike most other types of
tumors, the expression level of ITGA9 obviously declines in
hepatocellular carcinoma and works as an inhibitor of the
migration and invasion of hepatocellular carcinoma cells via
the FAK/Src (c-Src tyrosine kinase)-Rho GTPases signalling
pathway (77). ITGA9 overexpression inactivates the Rho GTPases
members Rac1/RhoA and reduces FAK/Src phosphorylation, which
are important in tumour angiogenesis and protease-associated
metastasis (108, 109). Although the protein or mRNA of ITGA9
are roughly increased in the above-mentioned cancer types, they
have previously been reported to be down-regulated in other
tumors, such as human squamous cell carcinoma of the head and
neck, bladder cancer and non-small-cell lung cancer, which is
similar to the case for hepatocellular carcinoma (110–112). The
research reviewed above reveals that ITGA9 has the potential to
become a diagnostic biomarker for hepatocellular carcinoma,
provides a potential treatment solution and, more importantly,
shows notable tumour heterogeneity in different cancer types.

Integrin-a9b1 Serves as a New Target for
the Treatment of Autoimmune Diseases
In the last decade, more and more literature has focused on the
characteristics of integrin-a9b1 in autoimmune diseases. It has
been identified as a novel putative therapeutic target for
rheumatoid arthritis [RA; (113)]. Various extracellular matrix
proteins, like TNC and OPN, have been demonstrated to up-
regulate at the hyperplasia of joint synovium in RA (114, 115).
They act as ligands for integrin-a9b1 to transduce intracellular
mechanical signals (116) and are deeply involved in the arthritic
inflammatory microenvironment (Figure 2).
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ITGA9 is overexpressed in human RA samples and precedes
the onset of arthritic symptoms in experimental models (113).
The membranes of both synovial fibroblasts and synovial
macrophages contain integrin-a9b1 but contribute differently
to the production of various chemokines that are responsible
for the recruitment and activation of inflammatory cells (117). In
synovial fibroblasts, TNC and OPN interact with a9b1 to induce
expressions of IL-1a, IL-6, MMP-1, -3, -9, -13, CCL2, CXCL5
and CXCL12. Meanwhile the expression levels of IL-1a, IL-6,
TNF-a, IL-1b, TGF-b, CCL2, CCL3, CCL4, CXCL2 and CXCL5
increase in synovial macrophages (117, 118). Furthermore, in
the conventional dendritic cells of an arthritis rodent model,
integrin-a9b1 collaborates with TNC and OPN to induce
secretion of IL-6 and IL-23 through both the NF-kB and MEK/
ERK signalling pathways (Figure 2), which promotes the
generation of pathogenic Th17 cells involved in osteoclast
differentiation and bone destruction (119). Blocking of a9b1
sharply inhibits the release of these chemokines, which contribute
to inflammatory cell activation and recruitment as well as
angiogenesis and osteoclastogenesis (118). Therefore, integrin-
a9b1 and its ligands act as key intrinsic mediators in the arthritis
process (120–122).
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In an arthritis animal model with inducements of anti-type
II collagen antibody and lipopolysaccharide (123), injection
of special anti-integrin-a9 (55A2C) antibody clearly reduced the
number of arthrogenic cytokines and chemokines and ameliorated
ongoing arthritis, demonstrating the therapeutic potential of the
anti-a9 antibody for RA (117). Similarity, another study reported
that intraperitoneal injection of blocking a9 antibody MA9-413 in
collagen-induced arthritic mice also repressed the development of
arthritis and inflammatory cell infiltration (113). Concurrently, it
significantly decreased activated fibroblast-like synoviocyte (FLS)-
derived biomarkers like MMP-3, IL-6, sRANKL and CXCL5 in
plasma (124–126). MA9-413, also known as AS2535093, specifically
recognizes a conserved loop region designated as amino acids
104–122 of a9, which binds to integrin-a9 but not a4 in humans
and mice. In bone marrow cells of arthritic mice, MA9-413
considerably decreases RANKL and IL-6 expressions while
inhibiting osteogenic differentiation (127). More important,
this a9 antibody does not influence the number of immune cells
in the spleen when it significantly prevents lymphocyte
accumulation in the arthritic joint microenvironment, so
MA9-413 plays a therapeutic role with minimal systemic immuno
modulation (113).
FIGURE 2 | Interactions between integrin-a9b1 and the extracellular matrix (ECM) ligands TNC and OPN regulate the RA microenvironment. OPN and TNC bind to
a9b1, promoting secretion of inflammation-related factors in conventional dendritic cells, synovial fibroblasts and macrophages, subsequently inducing osteoclast
differentiation and inflammatory cell infiltration and, ultimately, leading to bone destruction.
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Another study has demonstrated that the disruption of a9
with shRNA also inhibits the expression of TNC because of a
positive feedback loop in which the production of TNC is
dependent on a9b1-dependent FAK activation of integrin
signalling (45). Compared to osteoarthritis, the FLSs of RA
have activated FAK-mediated integrin-a9 signalling.
Knockdown of either ITGA9 or TNC in RA-FLSs quells the
phosphorylation of FAK, which is crucial for RA-FLS cell
adhesion, migration and intrinsic secretion of proinflammatory
mediators. Disruption of a9b1 or TNC also inhibits the
spontaneous creation of MMP1, MMP3, MMP14, IL-6,
cadherin-11 and TNFSF11/RANKL. Moreover, transfection of
shRNA-ITGA9 in 3D cultured RA-FLSs abrogates abnormally
condensed cellular accumulation structures (which reflects a
pathogenic feature) and shows no proliferative reaction to
stimulation of platelet-derived growth factor. Meanwhile, the
production of proinflammatory regulators in response to
exogenous TNF-a is nearly entirely absent compared with
controls (45, 128). These results suggest that integrin-
a9b1 plays an essential role in the aggressive behavior of
RA-FLSs, both under autonomy conditions and exogenous
inflammatory stimuli.

As mentioned above, OPN is also a key molecule in arthritis,
since it binds to integrin-a9b1 via the SVVYGLR amino acid
sequence rather than the full-length sequence (129). The
thrombin cleaves OPN, accompanied by subsequent exposing
of the SVVYGLR sequence at the N-terminal fragment in
humans (130). However, in rats and mice, the amino acid
sequence reacting to a9b1 is replaced by SLAYGLR (131).
Intravenous injection of the specific antibody reacting to the
SLAYGLR sequence inhibits the proliferation of synovium,
inflammatory cell infiltration and bone erosion in murine
arthritic joints (132), demonstrating that the cryptic epitope
is crucial to RA pathogenesis. Deferring from thrombin,
MMP-3/7 cleaves mouse OPN to expose the new sequence
LRSKSRSFQVSDEQY at the C-terminal fragment, which also
binds to a9b1 to participate in anti-type II collagen antibody-
induced arthritis. Meanwhile, the antibody of the LRSKSR
SFQVSDEQY sequence also shows an ability to diminish the
pathological features of arthritis. These results indicate that
MMP-3 and MMP-7 promote the development of RA via
interaction between OPN and integrin-a9b1 (133).

Recently, TNC, OPN and common receptor integrin-a9b1
have been identified as promising treatment targets for more
autoimmune inflammatory diseases, since both TNC- and
OPN-deficient mice have shown resistance against a variety of
Th1- and/or Th17-related autoimmune diseases (134). Except
for RA, integrin-a9b1 is also involved in experimental
autoimmune encephalomyelitis in mice via regulation of the
secretion of sphingosine-1-phosphate (S1P) receptors, which
affect the discharge of immune cells and are related to chronic
periodontitis via the MAPK pathway (116, 135). It is remarkable
that the new integrin-a9 ligand XCL1/lymphotactin has also been
reported to participate in RA and autoimmune encephalomyelitis.
Both a9b1-neutralizing and XCL1-neutralizing antibodies
ameliorate the symptoms of autoimmune disease in murine
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models, and injection of a9b1-antibody relieves experimental
autoimmune encephalomyelitis-related symptoms with clear
reductions in spinal cord-infiltrating cells and lymphocyte egress
via lymph node drainage (56, 136).

It is noteworthy that, apart from regulating lymphocyte egress
via lymphatic endothelial cells, integrin-a9b1 is also essential
for lymphatic valve formation and maintenance (32), which
are closely related to the rejection of transplantation (137).
Subconjunctival injection of a9-antibodies during orthotopic
keratoplasty in mice can inhibit the formation of lymphatic
valves without the intervention of lymphangiogenesis, so as
to significantly improve the survival rate of grafts after
transplantation (138, 139).

In conclusion, local antibody neutralization therapy using
integrin-a9b1 or corresponding ligands may be prospective
therapeutic directions for treating various refractory immune
diseases, even for preventing immune rejection of transplanted
organs. Hence, the underlying mechanism of integrin-a9b1
participation in immune-related cellular functions is worthy of
further research and has valuable clinical significance.

Integrin-a9b1 Promotes Axon
Regeneration
After neuronal injury of the central nervous system (CNS), it is
difficult for axons to regenerate and recover function, due to the
incompetent intrinsic regenerative ability of adult CNS neurons
and inhibitory factors in the microenvironment (140). Axonal
growth is a particular form of cell migration; meanwhile,
integrins and ligands are crucial in cell adhesion and neuronal
migration (141), so inhibitors of integrins that are present in the
microenvironment are non-negligible factors in blocking CNS
regeneration (142). For example, the integrin response
suppressors, myelin-derived Nogo-A protein and chondroitin
sulfate proteoglycans (CSPGs), impair integrin signalling by
decreasing phosphorylated FAK and Src levels, which may be a
potential factor affecting nerve self-repair (143, 144).

Furthermore, during postnatal corticospinal axon
development, cortical neurons introduce integrins into their
axons. However, integrins are clearly excluded from the axons
when the cortical neurons mature, especially the key receptor
integrin-a9b1, which is considered to be an important reason for
the low regenerative competence of the CNS (145). After damage
to the CNS, TNC is up-regulated, which is the main extracellular
matrix glycoprotein in the CNS environment and the important
ligand of integrin-a9b1; however, the a9 subunit is absent in
adult neurons. Forced expression of a9 leads to neurite
outgrowth in both PC12 cells and dorsal root ganglia axon
(DRG) neurons of adult rats (46), suggesting that the reaction
between a9b1 and TNC might play a key role in axonal
regeneration. Kindlin-1 is reported to counteract the effects of
CSPGs and Nogo-A to enhance integrin activation and signalling
in the DRG of rats and promote axon growth with sensory axon
regeneration (146). The interaction between kindlin-1-activated
integrin-a9b1 and TNC overcomes the inhibitory environment
of the adult axons: overexpression of kindlin-1 and ITGA9 can
achieve long-distance sensory axon regeneration (> 25 mm axon
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length) and sensory–motor recovery in rats, which has great
clinical significance, while overexpression of a9 or kindlin-1
alone is associated with substantially lower recovery and
regeneration (147).

In general, it is difficult to effectively transport integrin-a9
into CNS axons, since it is restricted to being transported along
axons in mature cortical neurons (148). The small GTPase Rab11
regulates the key pathway of integrin transport and participates
in the transport of various neuron membrane molecules (149–
151). It has been shown that a9 can be vesicle-transported
through Rab11 and RCP (Rab11 effector Rab coupling protein)
in differentiated PC12 cells and adult DRG neurons (152),
revealing that manipulation of Rab11 and RCP may be
beneficial to neuron therapy after injury. However, the
transportation speed of integrins through Rab11 is not fast,
and another study showed that the rapid transport of axons
and cell surfaces is regulated by ARF6, which is involved in the
exclusion of integrins from mature CNS axons (153). The ARF6
inactivator ACAP1 (ARF6 GTPase-activating protein) increases
axonal growth, integrin-a9 externalization and anterograde
transport, while the ARF6 activator EFA6 and ARNO
(neuronal ARF6 guanine nucleotide exchange factors) suppress
axon growth with increases in integrin retrograde transportation
and internalization in the DRG of adult rats (154). Therefore, the
role of ARF6 inhibitors in nerve regeneration is worthy of
further exploration.

On the other hand, transplantation of human-induced
pluripotent stem cell-derived neural progenitor cells (NPCs) is
considered to be another potential regenerative therapy after
nervous system injury, since hNPCs produce endogenous a9 and
b1 subunits (155). Both wild-type and lentivirus-mediated
overexpressing-a9 hNPCs induce axonal growth in the
developing nervous system of rats, but their effects on spinal
cord injury remain to be studied. Besides, integrin-a9b1 and
TNC synergistically improve the efficiency of differentiation
from mesenchymal stem cells into neuronal lineages, which
has important implications for stem cell therapies (156).

In brief, integrin-a9b1 has a significant supportive effect on
recovery and regeneration after nerve injury but is absent and
suppressed in adult neurons. The manipulation of increased a9
expression, transport and activation, could become valuable
strategies for driving integrin-dependent axonal regeneration.

Integrin-a9b1 Makes a Promising Target
for Antithrombotic Therapy
Integrin-a9b1 has attracted attention as a potential new target
for antithrombotic therapy in recent years (157). Numerous
studies have noted the importance of neutrophils in
thrombosis formation via modulation of platelet adhesion,
activation and coagulation, as well as by facilitating
coordinated interaction between endothelial cells and platelets
(158–160). Compared to monocytes, integrin-a9b1 is highly
expressed in neutrophils and is essentially for neutrophil
development, since ITGA9-deficient mice have dramatic
defects in neutrophil production due to a decrease in bone
marrow granulocyte precursors, accompanied by a reduced
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capacity to differentiate bone marrow cells into granulocytes
(18, 49). Besides, a9b1 is expressed on polymorphonuclear
leukocytes in human blood and is up-regulated after leukocyte
activation, implying its potential role in neutrophil migration
through lung and synovial fibroblast barriers (161). For instance,
in aspirated pneumonia patients, the expression of a9b1 in
circulating neutrophils is significantly higher than that in
healthy people, indicating that integrin-a9b1 may play a
potential role in neutrophil extravasation (162).

It is worth noting that a9b1 regulates the physiological
activity of neutrophils through a variety of different ligands.
After neutrophil activation, the expression of a9b1 has been
detected to increase two-to-three-fold. During neutrophil
transendothelial migration through human umbilical vein
endothelial (HUVE) cell-coated transwells, a9b1 was the only
up-regulated b1-type integrin (163). Antibodies against either
a9b1 or VCAM-1(vascular cell adhesion molecule-1) down-
regulate the augmented migration across TNF-a-activated
HUVE cell monolayers (49), and VCAM-1 is also a
fundamental ligand for a9b1 in regulating cell adhesion
[Figure 3A; (50)]. Additionally, after release from bone
marrow, neutrophils undergo spontaneous apoptosis within 24
hours under normal physiological conditions (164). However, in
inflammatory tissues, the survival of neutrophils is significantly
prolonged, while the interaction between VCAM-1 and a9b1
involves inhibition of neutrophil apoptosis through PI3K and
NF-kB activation (165). This induces an extension of lifespan
upon full activation of the neutrophils, so as to promote
thrombosis (166). Another study revealed that integrin-a9b1
activates the PI3K and MAPK-ERK signalling pathways in
human neutrophils with NF-kB nuclear translocation, pro-
apoptotic protein Bad degradation and enhanced anti-
apoptotic protein Bcl-xL, resulting in spontaneous delay of cell
apoptosis [Figure 3B; (167)]. The novel heterodimeric
disintegrins EC3 and EC6, which have been isolated from the
venom of Echis carinatus, are both effective inhibitors of
adhesion mediated by reaction between integrin-a9b1 and
VCAM-1. They also disrupt neutrophil migration across
endothelial cells. These natural integrin inhibitors are
considered to have a therapeutic potential to inhibit excessive
migration of leukocytes through integrin-a9b1 (168).

Polymeric-OPN, which is another ligand that employs integrin-
a9b1 as the receptor and is formed by transglutaminase mediation,
can attract neutrophils by presenting a special binding site, while
unpolymerized OPN cannot (169). Polymeric-OPN has been
detected in aortic tissue and bone and induces neutrophil
recruitment via a9b1 in a mouse model, in which injection of the
transglutaminase inhibitor cystamine attenuates the recruitment
(53). Furthermore, OPN has also been reported to interact with
both integrin-a4b1 and a9b1 in neutrophils in an alcoholic liver
disease rodent model, causing high hepatic neutrophil infiltration
and liver injury (170). Interestingly, the reaction sites of OPN
exposure reported by these studies are diverse. The latter declared
that the SVVYGLR fragment of thrombin-cleaved OPN was
identified by integrin-a9b1 to induce neutrophil infiltration;
however, the former reported that the polymeric-OPN did not
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have this classical sequence, suggesting that OPN might present an
undiscovered binding site after transglutaminase mediation. The
same point is that a9b1 cannot recognize the complete OPN, which
needs proper enzyme treatment to play the role of a ligand.
Furthermore, different enzymes produce divergent binding sites,
suggesting a redundant mechanism of OPN and a9b1 in
neutrophil chemotaxis.

ADAM family members selectively modulate different
integrin-mediated cell migrations as extracellular matrix ligands
(171). ADAM9D has been proven to contribute to neutrophil
activation and chemotaxis via the cooperation of integrin-a9b1
and aVb3, concomitant with activation of the PI3K/Akt and
ERK pathways, while blockade of either a9b1 or aVb3 impairs
the migration of human neutrophils toward ADAM9D (172). The
PI3K/Akt pathway is involved in leukocyte function and the
recruitment of both neutrophils and macrophages (173). It also
leads to subsequent phosphorylation of the ERK, which supports
the antiapoptotic function of integrin-a9b1 for neutrophils
[Figure 3B; (167)].

It has been reported that myeloid cell-specific integrin-a9-/-

mice that were less susceptible to arterial thrombosis and had
unaltered hemostasis under conditions of ferric chloride and
laser injury-induced thrombosis. They had reduced numbers of
neutrophils, red blood cells and myeloperoxidase levels in the
diminished carotid thrombi compared with normal mice. More
striking was the therapy of a wild-type group with anti-a9 mAb
(55A2C), which obviously suppressed ferric chloride-induced
arterial thrombosis, thereby revealing the suitability of a9 as a
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therapeutic target for arterial thrombosis (174). It is also worth
noting that deletion of the ITGA9 gene from myeloid cells can
improve both short- and long-term stroke outcomes and survival
rates in an ischemic stroke rodent model. This is concomitant
with a reduction in the cerebral thrombo-inflammatory
response, as evidenced by decreases in fibrin, platelet thrombi,
neutrophils, phospho-NF-kB, TNF-a and IL-1b levels, as well as
diminishment of neutrophil extracellular trap formation (web-
like chromatin structures that induce activation of endothelial
cells, antigen-presenting cells and platelets, as well as triggering
the proinflammatory immune response, atherosclerotic plaque
formation and arterial thrombosis). In addition, intravenous
infusion of 55A2C antibody into hyperlipidemic mice
following reperfusion significantly reduces infarct volume and
improves both short-term and long-term functional outcomes
(175, 176). Taken together, these studies show that the targeting
of myeloid-specific integrin-a9b1 may become a new treatment
direction for thrombotic diseases.
DISCUSSION AND FUTURE PROSPECTS

In this paper, we provide an enhanced and updated review of
current research on integrin-a9b1 as a therapeutic target for
different refractory diseases, focusing on the trends and changes
that have occurred in the past ten years. As mentioned above, the
specific antibodies, microRNA and other inhibitors that target
integrin-a9b1 or corresponding ligands have shown therapeutic
A B

FIGURE 3 | Integrin-a9b1 is involved in thrombosis through the regulation of chemotaxis, adhesion and apoptosis of neutrophils. (A) Integrin-a9b1 up-regulates during
neutrophil activation and interacts with its ligands (VCAM-1 and Polymeric OPN), mediating neutrophil chemotactic activity and stabilizing adhesion to endothelial cells,
eventually resulting in increased risk of thrombosis. (B) Integrin-a9b1 inhibits apoptosis of neutrophils through the PI3K and ERK signaling pathways.
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effects on tumors, autoimmune diseases and thrombosis. On the
other hand, the overexpression, transport and activation of
integrin-a9b1 hold great promise in curing axon damage.

The function of a9b1 is mainly driven by corresponding
ligands in the extracellular matrix. These form a complicated
signalling network and regulate the physiological and pathological
behaviors of cells. However, the reactions are redundant and
complex, because co-existing ligands simultaneously collaborate
with integrin-a9b1 to mediate the same or different signalling
pathways. Although the experiments considered in this review
testify to the effectiveness of blocking these ligands to interdict the
pathological process, other additional effects were not fully
considered. This is because a large fraction of ligands not only
interact with a9b1 but also react to other receptors and create
crosstalk of molecular signalling pathways in a variety of ways
(177–179). On the other hand, despite the functional alternation
of a9b1 having been demonstrated to have therapeutic potential
in many animal models, the possible side-effects remain to be
studied. Since integrin-a9b1 also plays an indispensable role in
normal physiological processes, such as the development and
renewal of lymphatic and venous valves (19, 41) and proper
re-epithelialization in cutaneous wound healing (180). We were
pleasantly surprised to discover a very recent clinical trial using
anti-a9 antibodies. ASP5094, a humanized mAb against
integrin-a9, was used in a phase 2a, multicenter, randomized,
double-blind study to cure refractory RA with resistance to
methotrexate (181). Although intravenous ASP5094 (10 mg/kg)
did not show efficacy in patients with moderate to severe
refractory RA, this result could be due to insufficient exposure
of ASP5094 in the target tissue. No safety signals were evident,
such that ASP5094 is considered to be well-tolerated and safe
overall. Because integrin-a9b1 is positioned at the cell membrane,
local injection of inhibitors can act as an effective blocking factor
in lesion locations (182) and play a therapeutic role through non-
immunosuppressive pathways, which may benefit treatment
without excessive systemic effects (45). Consequently, we look
forward to further clinical trials that target a9b1 with diverse
treatment modalities.

However, notwithstanding that integrin-a9b1 is distributed
in so many types of organs and cells, its wider range of activity
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and precise mechanisms require further investigation, given that
some recognized a9b1 ligands are up-regulated in many
diseases. For example, TNC is remarkably increased in
bronchoalveolar lavage fluid and serum in coronavirus disease
2019 (COVID-19) patients, while serum levels of VCAM-1 are
also elevated in mild cases and dramatically up-regulated in
patients with severe disease (183, 184). Likewise, VEGF has been
reported to be involved in the brain inflammation caused by
attack from severe acute respiratory syndrome coronavirus 2
(SARS-COV-2, the viral pathogen of COVID-19) (185). These
extracellular matrix molecules are considered to be biomarkers
or therapeutic candidates for COVID-19 and are under a
recognized ligand of a9b1. For this reason, it can be inferred
that a9b1 may play a regulatory role in the pathological process
of COVID-19. In addition, OPN is highly associated with
autoimmune diseases of the skin, such as lupus erythematosus
and pemphigus vulgaris (186, 187); hence, it is likely to work
with the a9b1 in skin cells to produce inflammatory reactions
similar to RA, as previously described. Overall, a9b1 is a
potential mediator of other diseases and further insights are
urgently needed.

To summarize, treatments targeting integrin-a9b1 have been
effective in many experiments and a9b1 may play important
roles in more unexplored diseases. Integrin-a9b1 is of great
research value as a candidate therapeutic target for clinical
treatment and its future prospects are worth exploring.
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