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A comprehensive understanding of the human immune response to virus infection is
imperative for developing effective therapies, antivirals, and vaccines. Dendritic cells (DCs)
are among the first cells to encounter the virus and are also key antigen-presenting cells
that link the innate and adaptive immune system. In this study, we focus on the human
immune response to the mosquito-borne Japanese encephalitis virus (JEV), which is the
leading cause of virus-induced encephalitis in south-east Asia and has the potential to
become a global pathogen. We describe the gene regulatory circuit of JEV infection in
human monocyte-derived DCs (moDCs) along with its functional validation. We observe
that JEV can productively infect human moDCs leading to robust transcriptional activation
of the interferon and NF-kB-mediated antiviral and inflammatory pathways. This is
accompanied with DC maturation and release of pro-inflammatory cytokines and
chemokines TNFa, IL-6, IL-8, IL-12, MCP-1. and RANTES. JEV-infected moDCs
activated T-regulatory cells (Tregs) in allogenic mixed lymphocyte reactions (MLR) as
seen by upregulated FOXP3 mRNA expression, suggestive of a host response to reduce
virus-induced immunopathology. The virus also downregulated transcripts involved in
Peroxisome Proliferator Activated Receptor (PPAR) signalling and fatty acid metabolism
pathways suggesting that changes in cellular metabolism play a crucial role in driving the
DCmaturation and antiviral responses. Collectively, our data describe and corroborate the
human DC transcriptional network that is engaged upon JEV sensing.

Keywords: Japanese encephalitis virus, flavivirus, monocyte-derived dendritic cell, innate immune response,
NF-kB, Tregs, PPAR, lipid metabolism
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INTRODUCTION

The mosquito-borne flaviviruses such as Japanese encephalitis
virus (JEV), Dengue virus (DENV), West Nile virus (WNV), and
Zika virus (ZIKV) are a significant cause of disease globally, with
regular epidemics reported from many countries. JEV is majorly
observed in South-East Asia, and despite availability of vaccines,
is a leading cause of encephalitis-related morbidity and mortality
in these parts of the world. Close to 100,000 cases of Japanese
encephalitis (JE) occur annually associated with a high case-
fatality rate of 20-30%. Significant neurological and psychiatric
sequelae persist in nearly 30-50% of the survivors (1, 2). Based on
these data, JEV infection and its associated immune-pathologies
and disease, continue to remain a major challenge to public
health. The lack of effective antiviral therapies reinforces the need
to understand how the human immune response to JEV
infection is regulated.

JEV pathogenesis has been primarily explored through in
vitro studies and animal models (3, 4). The disease manifests
upon ineffective clearance of the virus from the periphery, which
ultimately leads to breaches in the blood-brain barrier (BBB)
through one or more of several potential mechanisms (5, 6). The
peripheral immune response is thus critical for limiting
neuroinvasion and determines the outcome of infection. Most
infected individuals recover completely and develop robust
protective immunity, as both an effective humoral and T cell
response determines the clinical outcome of disease (7, 8).

Dendritic cells (DCs) prime T cells through antigen presentation
and therefore are considered as linkers of the innate and adaptive
immune responses. DCs play a key role in driving an adaptive
immune response during virus infection. DCmaturation, activation
and the secretion of specific cytokines ultimately determine the
quality of the T cell response (9). JEV cannot replicate in human
erythrocytes, granulocytes or lymphocytes (10). Monocytes,
macrophages and DCs in blood and tissue have been established
as JEV permissive cells in both humans and mice (10–14). The C-
type lectin receptor DC-specific intercellular adhesion molecule-3-
grabbing non-integrin (DC-SIGN), has been shown to act as the
JEV receptor on DCs, and facilitates its transmission to T cells via
the virological synapse (15).

Studies in the mouse model have elucidated that JEV-infected
bone-marrow-derived DCs (bmDCs) do not upregulate the surface
expression of CD40 and MHC class II, and release both pro-
inflammatory cytokines (IL-6, TNFa, IL-12) and the anti-
inflammatory cytokine IL-10, resulting in inadequate CD8+ T cell
priming and ineffective CTL responses (11, 16). Moreover, JEV
could suppress in vivo cross-presentation of soluble and cell-
associated antigens through the TLR2-MyD88 and p38 MAPK-
signalling (17). Another study has shown that JEV infection of
mouse bmDCs and spleen-derived DCs inhibited the expression of
maturation markers and expanded CD4+Foxp3+Tregs (12).

JEV infection of human moDCs leads to the induction of
maturation markers along with CD274/PD-L1. The PD-L1-PD1
axis was implicated in the expansion of Tregs via JEV-infected DCs
(18). A recent study has shown that JEV infects human moDCs and
induces TNF and INF-b (19). However, the primary human innate
immune response to JEV remains incompletely characterized.
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In the present study, we describe the transcriptional circuitry
of human moDCs after JEV infection. We observe activation of
the DC antiviral and inflammatory gene regulatory network. We
further experimentally validate the resulting DC maturation
program and inflammatory cytokine release. JEV-infected DCs
generated Tregs in an allogenic response. Downregulation of
lipid and fatty acid metabolic pathway transcripts highlighted the
role of metabolism in controlling dendritic cell functions.
MATERIALS AND METHODS

Ethics Statement
Peripheral blood mononuclear cells (PBMCs) were isolated
from blood obtained from healthy volunteers after written
informed consent. THSTI Human Ethics committee approved
the protocol.

Generation of Immature moDCs
An experimental system for the generation of human moDCs
was established. PBMCs were isolated from whole blood using
density gradient centrifugation (20). Primary human monocytes
(CD14+) were isolated from PBMCs using CD14+ magnetic
beads (130-050-201, Miltenyi Biotec) as per the manufacturer’s
protocol. The purity of the monocyte prep (>95% CD14+cells)
was established (Figure S1). The cells were differentiated in vitro,
by incubating in Mo-DC differentiation medium (130-094-812,
Miltenyi Biotec), and by day 5 immature DCs were obtained
(CD14- CD209+). The quality of the prep was confirmed through
the moDCs differentiation inspector kit (130-093-567, Miltenyi
Biotec) (Figure S1). Cell viability was examined using an
automated cell counter (Countess™ II FL Automated Cell
Counter, Invitrogen) through Trypan Blue exclusion.

Cell Lines
Vero and C6/36 cell lines were obtained from National Centre
for Cell Science, Pune. Vero cells were maintained in Minimal
Eagle’s media (MEM) with 10% foetal bovine serum (FBS) and
antibiotics. C6/36 cells were maintained in Leibovitz’s L-
15 Medium.

Virus Generation and Assays
JEV genotype 3 strain P20778 (AF080251) was used in this study
(21). Virus was generated in C6/36 cell line and concentrated
through PEG precipitation, followed by purification through
sucrose-based density gradient ultracentrifugation. The moDCs
were infected with purified JEV at 5 MOI for 1 h at 37°C in RPMI
medium with 2% FBS. After 1 h of virus incubation, cells were
washed twice with PBS and resuspended in complete medium.
At the indicated time post-infection, cells were harvested for
subsequent experimentation. qRT-PCR for JEV was performed
as described previously (22). Virus titration was performed
through focus forming unit (FFU) assays in Vero cells. Briefly,
cells were grown in a 24-well plate, and 10-fold serially diluted
virus stock was added for 1 h at 37°C with gentle rocking. After
washing, cells were incubated with complete medium for 48 h,
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followed by immunostaining with flavivirus anti-E (4G2)
primary antibody, and HRP-conjugated secondary antibody.
Foci were rendered visible by treatment with true blue
peroxide substrate for 30 min. The virus titre was calculated by
the following formula: Virus titre (ffu/ml) = Average count of
foci/Volume of infection (ml) x Dilution factor.

Quantification of mRNA
Expression levels of various genes were evaluated using qRT-PCR
assays. Total RNA extraction was performed using Trizol reagent.
The cDNA was prepared using random hexamers with
the GoScript™ Reverse Transcription System (Promega). The
samples were analysed in technical triplicates by SYBR green PCR
(SYBR premix Ex Taq, Takara) on a QuantStudio 6 Flex Real-
time PCR machine (Applied Biosystems). Relative expression of
each gene during JEV infection was calculated using the Ct
method with mock infection as the reference and GAPDH as
an internal control. Primer sequences of all the genes tested in the
study are given in Table S1.

Co-Stimulatory Protein Levels
Surface levels of DC maturation and other markers (CD80,
CD83, CD86, CD209, CD274 and HLA-DR) were assessed by
flow cytometry. The fluorochrome-conjugated monoclonal
antibody staining was performed as per the manufacture’s
protocol. Analysis was done on BD Biosciences FACSCanto II
flow cytometer. Data was analysed using FlowJo (TreeStar). The
antibodies used in the study are listed in Table S2.

Mixed Lymphocyte Reaction
Naïve CD4+ T cells were isolated from PBMCs obtained from
healthy donor peripheral blood using the CD4+ T cell isolation
kit (130-045-101, Miltenyi Biotech). Immature moDCs were
mock/JEV infected (5MOI, 24 h), and washed thoroughly
before co-culture. In a 96-well U bottom plate, mock/JEV-
infected moDCs were co-cultured with CD4+ naïve T cells
(1:10 ratio) in RPMI supplemented with 10% human serum
for 4 days (18). mRNA levels of the T-subset specific
transcription factors T-BET, GATA3, FOXP3 and RORgt was
analysed through qRT-PCR.

Cytometric Bead Array (CBA)
CBA was performed to quantitatively measure the cytokine level
of IL-6, IL-8, IL-10, IL-12, MCP-1, RANTES, IFNg and TNFa in
JEV-infected moDCs using the CBA Flex kit from BD
biosciences (Table S3). Samples were prepared according to
manufacturer’s protocol and acquired on BD Biosciences
FACSCanto II flow cytometer. Analysis was performed using
CBA software FCAP array™ v3.0.1. The quantity of the
cytokines detected in the samples was measured against the
standard curve obtained from defined concentration of protein
provided in the flex set kit (Figure S2).

RNA Sequencing and Analysis
moDCs were generated from three donors and were mock/JEV
infected at 5 MOI for 24 h. Cell pellets stored in Trizol were sent
for further processing (RNA extraction, rRNA depletion,
Frontiers in Immunology | www.frontiersin.org 3
sequencing library preparation) and RNA sequencing to the
National Institute of Biomedical Genomics, Kalyani, India.
Paired-end sequencing (2 x 100 bp) was performed on
Illumina HiSeq 2500 System. Reads that passed quality
thresholds (Phred Score <30; FastQC, Version 0.11.9 followed
by adapter removal through Trim Galore, Version 0.6.5) were
used for further analyses and were mapped to the latest stable
version of the human reference genome GH38 (GRCh38.p5,
Ensembl) using Bowtie2 and Tophat 2.1.1 (23). The expression
of the assembled transcriptomes was estimated using Cufflinks
2.2.1 (24, 25). Computation of normalized gene and transcript
expression profiles for each sample was performed. The FPKM
(Fragments Per Kilobases per Million fragments) method was
used followed by log2 transformation of the value. The gene-level
differential expression between mock- and JEV-infected
conditions were estimated using the log2-transformed FPKM.
The uncorrected p-value of the test statistic, and the FDR-
adjusted p-value of the test statistic (q-value), were also
estimated during the process of identifying differentially
expressed genes (DEGs). Any gene with a p-value greater than
the FDR, after Benjamini-Hochberg correction for multiple-
testing, was deemed significantly differentially expressed in the
JEV-infected condition as compared to the mock. Several
graphical representations were also created using the R
package CummeRbund [V2.7.2.].

Statistical Analysis
All statistical analyses were performed using GraphPad Prism,
Version 8.1.2 (332) software. Statistical significance was
determined by p-value of <0.05 using Wilcoxon matched-pairs
signed rank test.
RESULTS

JEV Replication in Human moDCs
Monocytes isolated from the blood of healthy individuals were
differentiated into immature DCs that showed high surface
expression of CD209 (Figure S1). These were infected with
JEV at 5 MOI, and replication kinetics of JEV within the
moDCs was monitored by measuring relative expression of
viral RNA levels in cells and virus titres in the culture
supernatant, across multiple donors. As indicated, JEV
replication progressed rapidly 6 h post-infection (hpi) and
plateaued between 24 and 48 hpi (Figure 1A). Infected moDCs
remained healthy up till 48 hpi, after which a decline in the
viability of JEV infected-moDCs was observed (Figure 1B).
Consistently, virus titres in the culture supernatant of infected
moDCs also peaked at 24 hpi (Figure 1C). Active virus
replication at 24 hpi was also validated by detection of NS4a
protein through Western blotting (Figure 1D). Flow cytometry
analysis using the pan-flavivirus 4G2 antibody estimated the
percentage of JEV-infected cells to be in the range of 15-66% at
24 hpi (Figure 1E). In comparison, JEV infection at 1 MOI
resulted in a very low number of infected cells and significantly
delayed replication kinetics (data not shown). Hence JEV
June 2021 | Volume 12 | Article 638694
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infection at 5 MOI for 24 h was chosen for all further analyses.
Collectively, these data established that human moDCs support
productive JEV replication.

Transcriptome Analysis of Host Response
to JEV Infection
To gain insights into the transcriptional programming of JEV-
infected moDCs, we performed an RNA-seq analysis of mock-
and JEV-infected moDCs from three donors (Figure 2A).
Principal-component analysis (PCA) was performed to assess
the overall similarity of the expressed genes from each sample
within these two groups, and it showed independent clustering of
the mock and infected samples (Figure 2B). Differentially
expressed genes (DEGs) were identified on the basis of log2
fold-change ≥ 2 (FDR-adjusted p < 0.05) (Figures 2C, D).
Pathway enrichment analysis of the DEGs was performed on
the basis of biological processes, molecular functions and cellular
compartments (Figures 2E, F; S3). The key functional networks
observed to be upregulated were those related to activation of the
innate immune pathway (interferon/JAK-STAT signalling);
cytokine secretion and signalling; NF-kB activation and
inflammation; and apoptosis (Figure 2E). The significantly
downregulated transcripts were majorly involved in
monocarboxylic acid, fatty acid and lipid metabolic processes,
exocytosis, sterol transport and extracellular matrix organization
(Figure 2F).

JEV-Infected Human moDCs Upregulate
Maturation Markers and CD274
Upon activation, DCs undergo a maturation program that is
marked by an increased surface expression of co-stimulatory
Frontiers in Immunology | www.frontiersin.org 4
molecules, which enhances their ability to prime T-cell responses
(26). We first tested DC maturation signatures in our
transcriptome data, and observed upregulation of CD80,
CD86, CD83 and CD40 expression (Figure 3A). In
concordance with our RNA-seq data, we observed a modest
but significant upregulation of CD80, CD83, and CD86 in JEV-
infected moDCs (Figures 3B, C). CD209/DC-SIGN showed
downregulation at both transcriptional and protein levels,
while HLA-DR showed no significant change (Figures 3A, B).
As reported earlier (18), significant upregulation of CD274 (PD-
L1) ranging from 14-75% was also observed (Figures 3A, B).
This indicates that JEV-infected moDCs undergo maturation. In
contrast, UV-inactivated JEV did not increase the surface
expression of CD80, CD83 CD86 and CD274 (Figure 4),
suggesting that productive replication of JEV in moDCs is
essential to activate the maturation program.

JEV Infection Leads to Upregulation
of Innate Immune and
Inflammatory Signalling
KEGG pathway analysis of the upregulated DEGs highlighted the
following signalling pathways: NOD-like receptor, cytokine
receptor, TNF, RIG-I & Toll-like receptor, Jak-STAT and NF-kB,
showing a robust activation of innate immune signalling (Figures
5A, B). Most of the critical PRRs such as RIG-I (DDX58), MDA-5
(IFIH1), LPG2 (DHX58), Pyrin (MEFV), AIM2, TLR2, TLR3 and
TLR7 were upregulated in the transcriptome data (Figure 5C),
and their activation was substantiated in independent samples
by qRT-PCR (Figure 5D). Upregulation of several of the crucial
transcription factors (TF) and related genes involved in innate
immune and inflammatory signalling were also validated
(Figure 5E). JEV infection also led to robust activation of
interferons, cytokines and chemokines, and a diverse panel of
interferon-stimulated genes (ISGs) (Figures 6A–C). Activation
of a select group of cytokines, chemokines and ISGs was also
verified independently by qRT-PCR (Figures 6D, E). A crucial
aspectofDCactivation is the release ofpro-inflammatorymediators
thatmodulate the immuneresponse.Weobserved that JEV-infected
moDCs secreted significantly high amounts of TNFa, MCP-1,
RANTES and the cytokines IL-12, IL-6 and IL-8 (Figure 6F). In
addition to these proinflammatory cytokines, the key regulatory
cytokine IL-10 was also secreted (Figure 6F). Collectively our data
indicate that JEV infection of moDCs leads to their maturation and
robust activation of innate and inflammatory response, along with
the secretion of an array of inflammatory cytokines.

JEV Infection Upregulates Treg Cells
We next checked the functional capacity of JEV-infected moDCs
to induce T-cell activation in allogeneic mixed lymphocyte
reactions. To understand which effector and/or regulatory
T-cell subsets are induced by JEV-infected moDCs, specific
transcriptional factors of Th1, Th2, Th17 and Tregs were
tested in the moDC-T cell co-culture experiments. A
significant upregulation of FOXP3 mRNA expression was
observed in moDCs-T cells co-culture assays, suggesting the
induction of Treg population (Figure 7).
A B

D EC

FIGURE 1 | JEV replication kinetics in human moDCs. (A–C) Immature
moDCs from multiple donors were mock/JEV infected at 5MOI, and samples
were harvested at the indicated time post-infection (hpi: hour post-infection)
for analysis. (A) Relative JEV RNA levels for each donor with mean,
normalized to mock infection (n = 6 to 14 donors). (B) Cell viability of mock/
JEV infected moDCs for n = 4 donors. (C) Virus titres in the culture
supernatant for each donor with mean (n = 3 to 12 donors). (D) Western blot
showing expression of JEV NS4a protein in cell lysate of JEV infected moDCs
at 24 hpi. GAPDH blot serves as a loading control. (E) Percentage of JEV
infected moDCs at 24 hpi as estimated by 4G2 antibody staining through
flow cytometry. Data along with mean are shown for n = 7 donors.
June 2021 | Volume 12 | Article 638694
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Downregulation of PPAR Signalling and
Fatty Acid Metabolism Genes in
JEV-Infected moDCs
Metabolic changes through nuclear receptor family of
transcription factors such as PPARg and liver X receptor (LXR)
have been shown to influence innate immune and inflammatory
pathways in macrophages and DCs (27, 28). Activation of DCs
by TLR agonists results in enhanced glycolysis and metabolic
conversion. Downregulation of macrophage PPARg signalling and
sterol metabolic pathways has been reported earlier in the context
of virus infections (29, 30). KEGG analysis of the significantly
downregulated DEGs in our data highlighted the PPAR/lipid and
fatty acid metabolism pathways suggesting global changes in the
DC metabolism during JEV infection (Figure 8A). Critical
transcripts of PPAR/lipid biosynthetic pathway (LPL, PPARG,
FABP3, FABP4, SCD), and regulation of sterol transport were
found to be suppressed in infected moDCs suggesting that
Frontiers in Immunology | www.frontiersin.org 5
downmodulation of lipid metabolism is likely to be intimately
linked to an inflammatory response during JEV infection (Figures
8B, C).
DISCUSSION

The expanding threat of zoonotic virus infections to mankind
highlights the necessity and urgency of biomedical research-
driven health-care solutions. Defining the molecular signatures
of the human immune response during pathogen infection is
crucial to understand the disease process and for designing
effective therapies.

The pathogenesis of JEV infection is a combination of direct
virus-induced neuronal cell death and the host neuroinflammatory
response (31). The magnitude and phenotype of the immune
response mounted during JEV infection can restrict virus
A B

D E

F

C

FIGURE 2 | RNA-seq analysis of JEV infected moDCs. (A) Schematic representing the work plan for RNA-seq analysis. moDCs from three healthy donors were
mock/JEV infected (5 MOI, 24 h), and RNA-seq analysis was performed. (B) The normalized raw intensities of all samples was used to generate the Principal-
component analysis (PCA) plot using ClustVis server. (C) Volcano plot showing genes detected by RNAseq. Differentially expressed genes (DEGs) are marked as red
dots and were identified on the basis of log2 fold-change ≥2 (FDR-adjusted p < 0.05) (D) Heatmap showing hierarchical clustering of DEGs between mock and JEV-
infected condition in the three donors. (E, F) Gene Ontology (GO) enrichment analysis of upregulated and downregulated genes in JEV vs mock condition was
performed using Metascape to study biological processes.
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replication before and after the BBB is breached. The protective
effect of neutralizing antibodies is well documented in both human
and animal studies (8, 32, 33), and is one avenue for development of
therapeutics (34). Further, an efficient adaptive immune response by
Frontiers in Immunology | www.frontiersin.org 6
CD4+ T-cells is involved in effective antibody production and
prevention of virus entry in the CNS (32, 35). The quality of the
CD4+ T-cell response was found to be a crucial factor most strongly
associated with complete recovery from JE (8). A recent study in the
A

B

C

FIGURE 3 | Upregulation of maturation markers in JEV infected moDCs. (A) Heatmap showing transcriptional upregulation of DC maturation and other co-
stimulatory markers in mock vs JEV-infected condition in the three donors. (B, C) The cell surface expression of DC maturation and co-stimulatory markers was
quantified by flow cytometry in mock/(5 MOI) JEV-infected moDCs at 24 hpi. Data for each donor is shown as median fluorescence intensity (MFI) with the mean
(n = 13 donors). *p < 0.05; **p < 0.01 (Wilcoxon matched-pairs signed-rank test). (C) Representative flow cytometry profile of one donor. Ns, not significant.
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mouse model of JE has also shown a crucial role of CD4+ T-cells in
protective immunity and humoral response, which is augmented by
the vaccine primed CD8+ T-cells (36).

DCs play a crucial role in the regulation of adaptive immune
response to virus infection via regulation of T-cell priming (37).
The aim of this study was to define the molecular signatures of
human DC responses following JEV infection in moDC from
healthy donors. We observe on an average 30% JEV infection in
the human moDCs. Thus, in addition to direct infection, it is
possible that the effect of secreted soluble factors (cytokines/
chemokines) on the uninfected cells also contribute to the
observed transcriptional changes. We observe strong activation
of innate immune responses and an antiviral inflammatory
Frontiers in Immunology | www.frontiersin.org 7
program resulting in DC maturation. This was however
accompanied by Treg expansion, suggesting a reduction of
effector T-cell responses.

The transcriptional signatures of DENV-2, WNV and ZIKV
infections in human moDCs have been characterized (38–40).
DENV-2-infected moDCs undergo maturation and activate a
robust antiviral and inflammatory program that was shown to be
dependent on the infection-generated ROS and Nrf2
transcription factor (39). Another study showed high levels of
cytokine secretion by DENV-2-infected moDCs, but poor T-cell
priming (41). ZIKV-infected moDCs upregulated host antiviral
proteins and type I IFN transcriptionally, but showed minimal
up-regulation of maturation markers and poor cytokine
A

B

FIGURE 4 | UV-inactivated JEV does not lead to DC maturation. (A) The cell surface expression of DC maturation and co-stimulatory markers was quantified by
flow cytometry in mock/(5MOI) UV-inactivated JEV/(5MOI) JEV infected, moDCs at 24 hpi. Data for each donor is shown as median fluorescence intensity (MFI) with
the mean (n = 4 donors). (B) Representative flow cytometry profile of the experiment.
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secretion (38). Several strains of ZIKV were also shown to inhibit
STAT1 and STAT2 phosphorylation. Similarly, while WNV-
induced transcription of antiviral effector genes, transcription
and secretion of proinflammatory cytokines was blocked (40).
Frontiers in Immunology | www.frontiersin.org 8
WNV-infected moDCs also underwent minimal maturation and
poorly stimulated CD4 and CD8 T-cells, suggesting
compromised T-cell immunity. STAT5 was identified as a key
regulator of DC activation and immune response and was
A

B

D

E

C

FIGURE 5 | Activation of innate immune and inflammatory responses in JEV-infected moDCs. (A) KEGG pathway enrichment analysis of the upregulated immune-
related significant DEGs in JEV-infected moDCs. (B, C) Heatmap showing DEGs mapped to various innate immune and inflammatory pathways (B), and Pathogen
recognition receptors (PRRs) (C), between mock and JEV-infected condition across the three donors. (D, E) Relative mRNA levels of selected PPRs (D) and innate
immune/inflammatory regulators (E) was analysed in JEV-infected (5 MOI, 24 h) moDCs from four donors by qRT-PCR. Value from each donor along with the mean
shown as log2 expression normalized to mock infection.
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A

B

D E

F

C

FIGURE 6 | Activation of interferons, cytokines, chemokines and Interferon stimulated genes (ISGs) in JEV-infected moDCs. (A–C) Heatmap showing DEGs coding
for interferons (A), cytokines and chemokines (B), and ISGs (C), between mock and JEV infected condition from three donors. (D, E) Relative mRNA levels of
selected cytokines/chemokines (D) and ISGs (E) was analysed in JEV-infected (5 MOI, 24 h) moDCs from four donors. Value from each donor along with the mean
shown as log2 expression normalized to mock infection. (F) Secretion of various cytokines and chemokines was analysed by multiplex bead array following JEV
infection of moDCs (5 MOI, 24 h). Data for 12 donors is shown along with the mean. **p < 0.01; ***p < 0.001 (Wilcoxon matched-pairs signed-rank test).
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specifically shown to be antagonised by WNV and ZIKV.
However, the four serotypes of DENV and the Yellow fever
virus 17D vaccine strain (YFV-17D) did not negatively affect
STAT5 phosphorylation (42). The YFV-17D lead to efficient
activation of innate immune sensors, DC maturation and
secretion of proinflammatory cytokines (43).

While the human DC responses to the major flaviviruses is
well documented as described above, only few studies have
examined this interaction in the context of JEV previously (18,
19). It was shown that JEV-infected moDCs undergo a
maturation program along with upregulation of PD-L1 and
expansion of Tregs (18). Here we expand the field further and
show that JEV is proficient in activating the innate immune
and inflammatory response pathways in human moDCs, as seen
by transcriptional upregulation of several innate immune
sensors, interferons, cytokines, chemokines and ISGs. This was
accompanied by DC maturation and robust secretion of several
proinflammatory cytokines and chemokines. This suggests that
unlike WNV and ZIKV, JEV-infected human moDCs activate an
antiviral program.
FIGURE 7 | JEV-infected moDCs lead to expansion of Tregs in mixed
lymphocyte reactions. CD4+ T cells were co-cultured with mock/JEV infected
moDCs at 10:1 (T:DC) ratio in an allogenic co-culture assay for 4 days. mRNA
levels of T-subset specific transcription factors T-BET, GATA3, FOXP3 and RORgt
were analysed through qRT-PCR. Plotted are values and mean from 4 independent
experiments shown as log10 expression normalized to mock-treated moDCs.
A B

C

FIGURE 8 | JEV-infected moDCs transcriptionally downregulate PPAR/lipid and fatty acid metabolism pathways. (A) Significantly downregulated DEGs during JEV
infection were subjected to KEGG pathway enrichment. (B) Heatmap showing the downregulated DEGs encoding for proteins implicated in PPAR, regulation of
sterol transport and lipid biosynthesis process pathways. (C) A functional gene association network for DEGs involved in lipid biosynthetic processes was generated
using STING 11.0. The line thickness (-) indicates the strength of data support.
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The DC immunophenotype and functional specification is
also intimately linked to cellular metabolism (44–46). Our
transcriptomic data showed a clear downregulation of PPAR/
lipid and sterol metabolism pathways during JEV infection. An
inverse relationship between lipid metabolism and innate
immune responses has been shown in several studies (27, 45,
47). PPARg, a lipid-activated transcription factor associated with
lipid metabolism and adipocyte development, has been shown to
modulate inflammatory responses in macrophages and DCs (48,
49). PPARg agonists repress NF-kB, AP-1, STATs and IRF3
exerting a strong anti-inflammatory effect (28, 50, 51). PPARg
activation following TLR stimulation downregulated DC
activation markers and reduced secretion of T cell stimulatory
cytokines (29). Transcriptionally PPARg was observed to be
downregulated in alveolar macrophages following Influenza A
virus infection in an INF-dependent manner (30). INFg and
IFNb secretion during virus infection leads to downmodulation
of sterol metabolic pathways and reduction in metabolic output
in macrophages (52). Our study suggests that a similar
downmodulation of lipid/sterol metabolism in moDCs may be
linked to an effective immune response.

As has been reported previously (18), we observe that the
functional outcome of JEV infection in moDCs derived from
healthy donors is Treg induction. Tregs have been shown to exert
a beneficial effect in acute viral infections by maintaining an
equilibrium between pathogen clearance and excessive
inflammation related pathologies. Higher Tregs are protective
against WNV, HSV and Coronavirus-induced encephalitis
(53–55), while reduced Tregs have been reported in
neuroinvasive WNV infections and in Covid-19 hospitalized
patients (54, 56, 57). Thus, the observed expansion of Tregs by
JEV-infected moDCs is likely to favour the virus at the early stages
of infection by reducing effector T-cell responses, but serves as a
protective mechanism for reducing virus-induced inflammatory
damage later during infection.

Most people who get infected with JEV are asymptomatic and
disease develops in less than 1% of cases. Thus, in most healthy
individuals the virus is likely to be efficiently targeted and cleared
through an efficient DC response. The immunological signatures
of different clinical outcomes of JE infection remain to be
understood. A comparative transcriptional study of moDCs
from naturally-infected ZIKV patients and in-vitro-infected
moDCs from healthy donors showed a significant
downregulation of antiviral innate immune sensors and ISGs in
patient samples (58). A similar comparative study with JE patient
samples will define the likely causes of disease progression. It could
also be possible that JE disease susceptibility has an underlying
genetic cause. Further studies with other JEV strains/genotypes
and patient samples are essential to gain a complete functional
understanding of the JEV-DC interaction.
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