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Background: Clostridioides difficile is a major cause of healthcare-associated and
community-acquired diarrhea. Host genetic susceptibility to Clostridioides difficile
infection has not been studied on a large-scale.

Methods: A total of 1,160 Clostridioides difficile infection cases and 15,304 controls were
identified by applying the eMERGE Clostridioides difficile infection algorithm to electronic
health record data. A genome-wide association study was performed using a linear mixed
model, adjusted for significant covariates in the full dataset and the antibiotic subgroup.
Colocalization and MetaXcan were performed to identify potential target genes in
Clostridioides difficile infection - relevant tissue types.

Results: No significant genome-wide association was found in the meta-analyses of the
full Clostridioides difficile infection dataset. One genome-wide significant variant,
rs114751021, was identified (OR = 2.42; 95%CI = 1.84-3.11; p=4.50 x 10-8) at the
major histocompatibility complex region associated with Clostridioides difficile infection in
the antibiotic group. Colocalization and MetaXcan identified MICA, C4A/C4B, and
NOTCH4 as potential target genes. Down-regulation of MICA, upregulation of C4A and
NOTCH4 was associated with a higher risk for Clostridioides difficile infection.
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Conclusions: Leveraging the EHR and genetic data, genome-wide association, and fine-
mapping techniques, this study identified variants and genes associated with
Clostridioides difficile infection, provided insights into host immune mechanisms, and
described the potential for novel treatment strategies for Clostridioides difficile infection.
Future replication and functional validation are needed.
Keywords: Clostridioides difficile, MICA, C4a, NOTCH4, GWAS
INTRODUCTION

Clostridioides difficile (C. difficile) is an anaerobic, Gram-positive,
and spore-forming bacterium. C. difficile is a major cause of
antibiotic-associated diarrhea. It is also associated with the
community-acquisition of diarrhea. A surveillance study across 10
geographic areas in the United States in 2011 estimated 453,000
incident C. difficile infections (CDI) and 29,000 associated deaths
per year (1). Individuals who harbor C. difficile in their gut may be
carriers with no discernible symptoms, may have diarrhea of
variable severity, or may progress from fulminant colitis to
systemic disease and death (2). The clinical manifestations are
determined by several major factors, including the strain type and
associated virulence (3), the host immune response (4), disruptions
in the host’s microbiome (for example, those caused by antibiotics)
(5), patient medications (6), and gastric acid suppression (7).

Toxins are the major virulence factors of C. difficile (8). Toxins A
(TcdA) and B (TcdB) are large secreted glucosyltransferase proteins
that target intestinal epithelial cells and disrupt the epithelial barrier
leading to secretory diarrhea (9). The hypervirulent BI/NAP1/027
strain is often fluoroquinolone resistant and the most common
cause of CDI globally (10, 11). Host risk factors include advanced
age (≥ 65 years), underlying comorbidities such as inflammatory
bowel disease (IBD), organ transplantation, immunodeficiency,
certain medications including antibiotics, chemotherapy, and
proton pump inhibitor (PPI) (7), and prolonged hospital stay (4).
Antibiotic use and altered intestinal microbiota can reduce
colonization resistance against pathogens, including C. difficile,
therefore, certain antimicrobial agents remain the most prominent
risk factors for CDI (4, 12).

Multiple studies have investigated the genetics of the bacteria
and identified genes and genetic variation that are associated
with the virulence factors, deepening our understanding of the
emergence and global spread of C. difficile strains (11, 13, 14).
However, the identification of host genetic susceptibility to CDI
has not been extensively investigated. Several candidate
gene studies have mainly focused on proinflammatory
cytokine genes such as interleukin-8 (IL-8) (15–17), or IBD-
associated single nucleotide variants (SNVs) (18, 19). One SNV,
rs4073(–251T>A), found in the promoter region of IL8, was
reported to be associated with CDI (15) and recurrent CDI (16).
However, this association was not validated in independent
studies (17). Eight IBD-associated SNVs were found associated
with CDI at a nominal significance level (p<0.05) in an ulcerative
colitis population (18). Another study reported that rs2243250,
an IL4-associated SNV, was associated with CDI in an IBD
population (19). Hitherto, only one study with 57 CDI patients
org 2
performed a genome-wide association study (GWAS) in a cohort
of patients with multiple myeloma undergoing autologous stem
cell transplantation. None of these associations reached genome-
wide significance (20).

All the published studies suffer from small sample size (CDI
cases < 60) that limit the statistical power. There is an unmet
need to identify host genetic risk factors for CDI in general and
in high-risk populations such as antibiotics-users. In this study,
we leveraged the electronic health record (EHR) linked to genetic
data and performed GWAS to identify common variants
associated with CDI.
METHODS

Study Cohort
The MyCode® Community Health Initiative (MyCode) is an
ongoing project with deidentified EHR linked to genomic data
supporting genetic studies (21–23). The primary cohort in this
study consist of approximately 92,000 consented participants
from MyCode Phase I (approximately 60,000 participants) and
Phase II (approximately 32,000 participants). This study was
exempted as non-human subjects research by the Geisinger
Institutional Review Board for using de-identified information
and was approved by the MyCode Governing Board. Figure 1
illustrates the study design and pipeline for sample selection and
data analysis.

Definition of CDI Cases and Controls and
Extraction of Clinical Variables
Geisinger houses a continually growing deidentified EHR database
for research, including information describing patients’
demographics, diagnosis, laboratory test results, prescriptions,
procedures, and vital signs. A phenotyping algorithm to identify
CDI cases and controls from EHR data was developed by the
eMERGE Network and was implemented in the Geisinger EHR
(dbGaP study accession: phs000888.v1.p1; phenotype accession:
phd004976.1). Briefly, the eMERGE algorithm identified CDI
cases using the reference standard, based on positive laboratory
results, or the silver standard, based on diagnosis codes combined
with information from the patients’ chart. Controls were defined
as patients without CDI, based on negative laboratory results, but
exposed to similar risk factors, such as antibiotic use,
hospitalization, high-risk conditions, and medications (details in
the Supplementary Note). Polymerase chain reaction (PCR) was
used as the laboratory reference standard test with the
BD GeneOhm™ Cdiff Assay (Becton Dickinson, Franklin Lakes,
March 2021 | Volume 12 | Article 638913
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NJ) used prior to mid-April 2014 and the Xpert C. difficile/Epi
assay (Cepheid, Sunnyvale CA) used after that. Only adults (age
>=18) were included in this study. Risk factors and demographic
information were extracted from EHR data. Using data through
Dec 31, 2018, we identified 946 cases and 10,840 controls from
Phase I and 214 cases and 3,304 controls from Phase II. Of these,
587 cases and 3,166 controls had antibiotics exposure prior to the
index date.

Genetic Association Tests
The genotyping, imputation and quality control for the genetic data
have been previously described (24) (Figure 1; Supplementary
Methods). Pairs of individuals with first- or second-degree
Frontiers in Immunology | www.frontiersin.org 3
relatedness were identified (Supplementary Figure 1A). Principal
component analyses indicated that the individuals in this study are
of European ancestry (Supplementary Figure 1B). In total,
7,077,672 SNVs from Phase I, 6,683,047 SNVs from Phase II, and
6,497,3696 SNVs from the merged antibiotic-exposed group were
included in the analyses.

BOLT-LMM, a linear mixed model, was adopted to test genetic
associations while accounting for covariates and cryptic relatedness
between individuals (25). In the sensitivity analysis of antibiotics
subgroups, only the patients exposed to antibiotic risk within 7 to 62
days before the index date, were included. The significant covariates
between cases and controls were adjusted. The fixed effect, inverse
variance weighted meta-analyses of Phase I and II summary
FIGURE 1 | Flowchart of the study. Yellow box: Genotyping and imputation was conducted separately for Phase I and II. Blue box: eMERGE CDI algorithm was applied
to identify cases and controls. Clinical information was extracted. Green box: individual GWAS and meta-analyses, followed by a sensitivity analysis and Fine-mapping.
March 2021 | Volume 12 | Article 638913
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statistics were accomplished usingMETAL (26). SAIGE, which uses
the saddle point approximation to calibrate the distribution of score
test statistics, was also applied to account for case-control imbalance
(27). GEMMA was used to test the gene x environment (GxE)
interaction, which employs a linear mixed model to control for the
main effects of SNV and environmental factors while testing for the
interaction effect (28). The odds ratio (OR) was converted from the
regression coefficient b in R (29). Open Targets Genetics was
queried for the top associated SNVs to evaluate whether other
significantly associated phenotypes were present.

Colocalization and Transcriptome-
Imputation Based Gene-Level Association
Statistical fine-mapping using functional genomics data, such as
expression quantitative trait loci (eQTL), has been used to
explore the potential mechanisms of GWAS variants on
diseases. Colocalization is one commonly used method that
integrates GWAS and eQTL data to estimate the probability of
the same variant being causal in both GWAS and eQTL studies
(30). Colocalized signals provide evidence of possible causal
relationships between the target gene of an eQTL and the
GWAS trait. To identify causal genes and target tissues, we
performed colocalization analyses of the four top associated
variants at the MHC region with CDI in the antibiotic
subgroup using eCAVIAR (31). The eQTL data of the whole
blood and the seven gastrointestinal (GI) tissue types (colon
sigmoid, colon transverse, esophageal mucosa, esophageal
muscularis, gastroesophageal junction, small intestine, and
stomach) from GTEx v7 data release (32) were included in the
analyses. The overlapped SNVs in the GWAS and GTEx were
included in the analyses. Fifty SNVs, upstream and downstream
from the GWAS lead SNV in each locus, were included to
calculate the colocalization posterior probability (CLPP)
assuming a maximum of two causal SNVs in each locus. Only
significant eGenes were examined. All SNV-gene pairs eQTL
data for each eGene were then used in the analyses. CLPP
represents the probability that the same variant is causal in
both GWAS and QTLs. We adopted a CLPP > 0.01 as the
colocalization cutoff (31). Variants that have CLPP > 0.01 and
GWAS p-value <10-5 were included to identify target genes. We
Frontiers in Immunology | www.frontiersin.org 4
report the highest probability (max of CLPP value) for each
target gene in the relevant tissue.

S-PrediXcan Transcriptome-Imputation
Based Gene-Level Association
S-PrediXcan is an integrative gene-based association approach
that uses summary data and pre-imputed transcriptome levels
with models trained in a measured transcriptome dataset (such
as GTEx) to identify genes involved in the etiology of the
phenotype (33). In S-PrediXcan, the predicted expression levels
are used to correlate with the phenotype in the gene association
test. In our study, the GWAS summary statistics of the antibiotic
subgroup were used to perform transcriptome imputation and
gene-based association testing by S-PrediXcan using a pre-
trained model based on GTEx v7 data (the GTEx-
V7_HapMap-2017-11-29.tar.gz file in the PredictDB). The
infrastructure described was used to impute gene expression at
the MHC region (Chr6: 28477797~33448354, GRCh37) (33).
The whole blood and the seven GI tissues were also examined.
RESULTS

Characterization of CDI Cohort
Demographics and clinical characteristics of CDI cohorts from
Phase I, Phase II, and antibiotic subgroups for CDI GWAS are
listed in Table 1. CDI cases had older age, higher prevalence of
antibiotic and proton pump inhibitor (PPI) use, and inflammatory
bowel disease (IBD); all of which were known risk factors for CDI.
Other factors such as steroid intake, anti-TNF medication, type 2
diabetes, and transplantation history were only significant in the
phase I cohort, reflecting underlying heterogeneity among cohorts.

GWAS and Sensitivity Analyses of CDI
in the Antibiotic Subgroup
No variants from the meta-analyses of Phase I and II GWAS
reached genome-wide significance (p<5 x10-8). The Manhattan and
QQ plots for Phase I, Phase II GWAS, and the meta-analyses
are displayed in Supplementary Figure 2. The top SNVs with p <
5×10-6 in the meta-analyses are listed in Supplementary Table 1.
TABLE 1 | Demographics and clinical characteristics of cohorts from phase I, phase II and antibiotics subgroup for CDI GWAS.

Phase I (11,786) Phase II (3,518) Antibiotic subgroup (3,753)

Case (946) Control (10840) P value Case (214) Control (3304) P value Case (587) Control (3166) P value

Male Sex, n (%) 414 (43.8) 4126 (38.1) 0.001 68 (31.8) 1079 (32.7) 0.79 245 (41.7) 1040 (32.8) 3.76E-05
Index age, mean ± SD 60.3 ± 17.7 59.0± 19.2 0.041 52.7 ± 18.0 49.0 ± 18.7 0.005 61.0 ± 17.1 55.6 ± 18.9 7.67E-11
Antibiotics, n (%) 480 (50.7) 2294 (21.2) 5.58E-94 107 (50) 872 (26.4) 8.14E-14 / / /
Chemotherapy, n (%) 88 (9.3) 998 (9.2) 0.922 15 (7) 454 (13.7) 0.005 60 (10.2) 535 (16.9) 4.74E-05
PPI, n (%) 398 (42.1) 2944 (27.2) 1.68E-22 67 (31.3) 818 (24.8) 0.032 262 (44.6) 1175 (37.1) 0.001
Steroid, n (%) 288 (30.6) 2137 (19.7) 2.50E-15 51 (23.8) 691 (20.9) 0.311 196 (33.4) 1027 (32.4) 0.651
Anti-TNF, n (%) 16 (1.7) 75 (0.7) 0.001 1 (0.5) 14 (0.4) 0.924 3 (0.5) 15 (0.5) 0.904
Transplant, n (%) 52 (5.5) 432 (4.0) 0.023 3 (1.4) 75 (2.3) 0.403 22 (3.7) 127 (4) 0.764
IBD, n (%) 81 (8.6) 218 (2.0) 1.03E-34 30 (14.0) 60 (1.8) 6.15E-28 36 (6.1) 59 (1.9) 1.46E-09
T2DM, n (%) 370 (39.3) 3685 (34.0) 0.001 42 (19.6) 630 (19.1) 0.84 224 (38.2) 1009 (31.9) 0.003
March 2021 |
 Volume 12 | Artic
ANOVA was adopted to test the significance of index age and Chi-square test was adopted to test all other variables. IBD, Inflammatory Bowel Disease; PPI, proton pump inhibitors;
TNF, tumor necrosis factor; T2DM, Type 2 Diabetes; HIV, human immunodeficiency virus.
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We queried the Open Targets Genetics and GTEx Portal to evaluate
the potential functional impact of these top variants. The variants
rs115062572 (OR = 1.74; 95%CI = 1.41-2.08; p=3.508×10-6) and
rs149917912 (OR = 1.67; 95%CI =1.37-2.00; p=4.017×10-6) showed
evidence of functional impact on the neighboring genes. These two
variants are located in the MHC region and are in partial linkage
disequilibrium (LD) in the population of European ancestry (r2 =
0.594). The rs115062572 SNV is a significant eQTL for Neurogenic
Locus Notch Homolog Protein 4 (NOTCH4) in the whole blood
(p=1.4x10-8) and is a significant splicing quantitative trait loci
Frontiers in Immunology | www.frontiersin.org 5
(sQTL) for MHC Class I Polypeptide-Related Sequence A
(MICA) in the small intestine (p=4.2x10-7) (Supplementary
Figures 3A, B). The SNV rs149917912 is an eQTL for MIR6891
(p=6.3x10-12) and a sQTL for HLA-L in whole blood (p=8.1x10-18)
(Supplementary Figures 3C, D).

A sensitivity GWAS was performed in a subset of patients
with antibiotic treatment to determine whether any of the top
associated variants could be enriched in this high-risk cohort.
The Manhattan and QQ plot for the sensitivity GWAS are shown
in Figure 2. Top associated SNVs (p<1×10-5) are listed in Table 2.
TABLE 2 | Top CDI-associated variants in the antibiotic subgroup.

SNV Coordinate A1/A2 MAF OR (95%CI) P_BOLT P_SAIGE Gene

rs114751021 6:31504194 G/A 0.024 2.41 (1.84, 3.09) 4.50E-08 4.35E-07 SNORD117
rs6948305 7:109757108 G/C 0.014 2.72 (1.95, 3.67) 3.90E-07 3.36E-06 -
rs114995101 13:105278211 G/C 0.020 2.42 (1.8, 3.17) 4.90E-07 1.45E-06 -
rs146508039 6:31065037 T/C 0.025 2.24 (1.7, 2.88) 4.90E-07 2.30E-06 -
rs78701439 7:9147962 A/G 0.017 2.55 (1.86, 3.39) 4.90E-07 3.99E-06 -
rs115062572 6:31862876 T/C 0.022 2.29 (1.7, 2.98) 1.40E-06 5.07E-06 ZBTB12
rs140966705 4:75272518 C/T 0.041 1.85 (1.47, 2.28) 2.10E-06 3.03E-06 -
rs1419054 6:107084941 A/G 0.115 0.59 (0.43, 0.75) 3.80E-06 6.90E-06 QRSL1
rs146471836 6:93817042 T/C 0.026 2.11 (1.59, 2.72) 3.90E-06 6.40E-06 RP1-23E21.2
rs183570761 11:127597987 T/C 0.017 2.38 (1.72, 3.17) 4.10E-06 1.75E-05 -
rs4142260 9:38389514 T/C 0.466 0.74 (0.65, 0.84) 5.10E-06 2.64E-07 ALDH1B1
rs116838950 4:37279460 C/T 0.013 2.65 (1.84, 3.66) 5.30E-06 1.92E-05 KIAA1239
rs56040707 1:159521992 G/A 0.027 2.04 (1.55, 2.62) 5.40E-06 9.79E-06 -
rs3740779 11:76372052 A/G 0.360 0.73 (0.63, 0.84) 5.50E-06 3.84E-06 LRRC32
rs17586705 18:1771063 T/C 0.176 1.42 (1.23, 1.64) 6.80E-06 9.59E-06 CTD-2015H3.2
rs118090546 15:77177855 T/G 0.012 2.65 (1.84, 3.69) 7.20E-06 2.63E-05 SCAPER
rs73462173 18:69354422 G/A 0.114 0.59 (0.44, 0.76) 7.50E-06 7.98E-06 -
rs4294047 6:31101583 A/G 0.103 1.53 (1.28, 1.8) 7.80E-06 1.21E-05 PSORS1C2
rs11121431 1:9556558 G/A 0.033 1.92 (1.48, 2.42) 7.90E-06 2.43E-05 RP13-392I16.1
rs72675948 8:116048007 T/C 0.027 2.07 (1.56, 2.68) 8.10E-06 2.05E-05 -
rs146426342 2:119924607 G/A 0.013 2.54 (1.78, 3.48) 8.20E-06 2.64E-05 RN7SL468P
rs115611612 2:112938351 A/T 0.063 1.66 (1.35, 2) 8.40E-06 1.16E-05 FBLN7
March
 2021 | Volume 12
Variants with p value < 1×10-5 in the antibiotic subgroup after clumping are listed. Genomic coordinates are based on hg19 version. Minor allele (A1) is the effect allele. SNVs locating in the
MHC region are highlighted in red. MAF, minor allele frequency; P_BOLT, p values from BLOT_LMM; P_SAIGE, p values from SAIGE.
FIGURE 2 | Manhattan and QQ plots for GWAS results associated with CDI in antibiotic treated patients with European ancestry. A linear mixed model regression
adjusted for the covariates including sex, cohort, PPI, chemotherapy, T2DM, and Index Age were conducted by BOLT-LMM. Top variants with original p value <
5×10-8 were labeled. The genomic inflation factor, lGC, equals to 1.004, suggesting no evidence for systematic inflation of genome-wide test statistics.
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The rs114751021 variant in the MHC region is the only genome-
wide significant variant associated with CDI (OR = 2.42; 95%CI =
1.84-3.11; p=4.50×10-8). The rs114751021 variant is also a
significant eQTL for NOTCH4 in whole blood (p=5.3x10-14),
and a significant sQTL for MICA in adipose tissue (p=1.6x10-6)
(Supplementary Figures 3E, F). This SNV is in partial LD with
rs115062572 (r2 = 0.593) and rs149917912 (r2 = 0.642), both of
which demonstrated more significant associations with larger
effect-size in the antibiotic subgroup than in the meta-analyses
(p = 1.4×10-6 and 1.0×10-6, respectively). A regional association
plot of the rs114751021 shows the top-ranked SNVs in partial LD
flank a gene-rich region (Supplementary Figure 4). Three other
variants showing independent suggestive association at the MHC
region are identified after clumping (rs146508039, rs115062572,
rs4294047; Table 2). The variants rs115062572 (OR=2.14,
p=3.0×10-14) and rs149917912 (OR=1.53, p=2.0×10-13) were
significantly associated with IBD or ulcerative colitis according
to the UK Biobank (UKB) GWAS results (UKB Neale v2). We
further examined the interaction of these SNVs and IBD but did
not find significant interactions for these two SNVs in the
antibiotic subgroup (p = 0.45 and 0.90, respectively).

Previously reported CDI-associated SNVS were reviewed.
Associations after Bonferroni correction in our study
(p<4.5x10-3, Supplementary Table 2) could not be replicated.
The variants rs4073 and rs2227306 in IL8 showed a nominal
significant association in the Phase I cohort (p=0.036 and 0.017),
but not in the Phase II cohort (p=0.94 and 0.93 with opposite
direction) or the meta-analysis, and the effect size was very small
(beta < 0.01). Further, rs2227306 also showed a nominal
significant association in the antibiotic subgroup (p=0.026).
Another IBD-associated SNV, rs17085007, showed a nominally
significant association after meta-analyses, and a small effect size
(p=0.039, beta=0.008).

Colocalization and Transcriptome
Imputation-Based Gene-Level Association
of the Top Associated SNVs at the MHC
Region
To identify potential causal variant and target genes,
colocalization analyses of the four top loci at the MHC region
with eQTL data were performed. The variants for each lead SNV
that have CLPP >0.01 are listed in Supplementary Table 3. The
lead SNV is the only variant in each locus that has GWAS
p <1x10-5 and CLPP >0.01. The target genes and the relevant
tissues for each locus are visualized in Figure 3A. The genes
TCF19, MICA, ENSG00000272501, and CYP21A1P are potential
target genes for multiple loci in most tissue types. The gene
NOTCH4 is the target gene of two lead SNVs in whole blood,
with large posterior probability (CLPP= 0.99 and 0.98). The gene
C4B is the target gene of rs115062572 in two GI-tissue types.
Several HLA genes are also targeted by specific SNV in
specific tissues.

The transcriptome imputation-based gene-level association
for CDI in the antibiotic subgroup in multiple GI-tract tissues
and whole blood was performed. Genes with a nominal
significance level (p<0.05) are summarized in Supplementary
Frontiers in Immunology | www.frontiersin.org 6
Table 4. Genes with p<0.01 are visualized in Figure 3B.
Expression in eight genes from whole blood are associated with
CDI, of which NOTCH4 showed the greatest association. The
expression of MICA and C4A in multiple GI-tract tissues and
whole blood are significantly associated with CDI. Expression of
HLA-DRB9, -DQB1, -DQA2, -DMA, and -C in some GI-tissues,
but not blood is associated with CDI. MICA, HLA-
DQB1, -DQA2.
DISCUSSION

In this study, we applied the eMERGE CDI algorithm to identify
CDI cases and controls from a de-identified EHR database and
performed GWAS followed by fine-mapping analyses. Although
no genome-wide significant associations were identified after
meta-analysis, the variants at the MHC region were prioritized
with evidence of functional impact on neighborhood genes. The
sensitivity GWAS in a subgroup analysis of high-risk patients
with antibiotic use prior to CDI showed enhanced associations at
the MHC region with the rs114751021 variant reaching genome-
wide significance (p=4.50×10-8, OR = 2.42[1.84-3.11]). Fine-
mapping of the top four lead SNVs at the MHC region by
colocalization analyses and transcriptional imputation
association test identified genes with potential functional
significance in CDI, including MICA, C4A, C4B, and NOTCH4,
in the GI-tissues and whole blood.

The symptomatic severity of CDI is the result of complex
interactions among C. difficile, gut microbiota, and host factors.
Host risk factors, such as older age, certain comorbidities, and
exposure to antibiotics, were observed in this study (Table 1).
The host immune response is another key determinant of CDI
severity. The early immune response to CDI is characterized by
the recruitment of neutrophils that eliminate the bacteria
through phagocytosis. In addition, they secrete cytokines
including IL-1b which contribute to the amplification of the
inflammatory response (8). Our findings in this study may shed
light on the role of the immune response during CDI. The
variants at the MHC region identified in the meta-analyses
showed a stronger association with larger effect size in the
antibiotic subgroup. Through fine-mapping, we identified four
potential target genes: MICA, C4A, C4B, and NOTCH4.

The variant MICA was identified in most of the GI-tissue
types (Figure 3). It encodes the highly polymorphic major
histocompatibility complex class I chain-related protein A,
which serves as one of the ligands for NKG2D, an activating
receptor constitutively expressed on natural killer (NK) cells, gd
T cells and other types of killer T cells (34). As with all other
NKG2D ligands, MICA expression in epithelial cells is induced
by stress signals caused by infection (34). For example,
Escherichia coli increases MICA protein expression levels on
the surface of intestinal epithelial cells by stimulating CD55 (35).
In our study, a negative association of CDI risk and the MICA
expression level in all the GI-tissues and blood (Figure 3B), was
observed, indicating the induction of MICA expression could
play a critical role in the response to C. difficile infection. Failure
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or altered expression of MICA could impose a higher risk
for CDI.

We speculate that the recognition of C. difficile by epithelial
cells induces MICA expression, leading to MICA activation of
the NKG2D on NK cells and gd T cells in the epithelium,
triggering cell-mediated cytolysis in the presence of
proinflammatory cytokines. Studies have found pathogens
especially viruses, have evolved mechanisms to inhibit the
expression of MICA on the infected host cells through
masking, internalization, or retention to escape the attack from
the host immune system (36). Reduction of MICA expression
could be an important cause or contributing factor for CDI and
restoration of MICA expression in the gut could be a treatment
strategy for infection. However, whether C. difficile possesses a
similar mechanism to that of viruses remained to be determined.

The genes C4A and C4B encode for complement factor C4, a
protein belonging to the complement system, which plays an
important role in anti-bacterial response (37). Specifically, C4 is
Frontiers in Immunology | www.frontiersin.org 7
cleaved into a small fragment C4a and a large fragment C4b, the
latter is a key component together with C2a of C3 convertase
(C4b2a) (37). Though the gram-positive cell wall of C. difficile,
composed of a thick peptidoglycan layer that may be resistant to
direct bacterial killing through the formation of a membrane
attack complex (MAC), it can be opsonized to attract phagocytes
and NK cells (38). The complement fragments C4b, C3b, and C1q
are important and serve as opsonins. Once adhered to pathogens,
they can be recognized by the complement receptor 1 which is
expressed on all phagocytes to activate phagocytosis (38).
Inmouse models of CDI, C4b is also important to activate C3,
which participates in the elimination of translocated bacteria
following C. difficile disruption of the colonic epithelium (39).
These findings highlight the important role of C4 in the severity
and outcome of CDI.

The NOTCH4 gene encodes for NOTCH4, a member of the
Notch receptor family. Studies of NOTCH4 in infections are very
limited. A study showed that Notch4-deficient mice and mice
A

B

FIGURE 3 | Fine-mapping of the top loci. X-axis represents the tissue types (black indicates GI-tissue). Y-axis represent the genes. Genes that appear in both
eCAVIAR and MetaXcan are in blood. (A) Colocalization of the 4 lead SNVs at the MHC region. The dot size represents the maximum CLPP values in the
corresponding locus and tissues. The color represents different locus for each lead SNV. (B) MetaXcan associations of the MHC region with CDI in antibiotic
subgroup. The size of the dots represents the significance of the association between predicted expression and the CDI in patients exposed to high-risk antibiotics.
Red indicates positive correlation while blue negative. Darker color indicates larger genetic component and consequently more active regulation in the tissue (R2 is a
model performance measure computed as the correlation squared between observed and predicted expression, cross validated in the training set). Only
associations with p<0.01 were shown.
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treated with Notch inhibitors were more resistant to
Mycobacterium tuberculosis infection (40). Notch4 inhibited M.
tuberculosis–triggered production of proinflammatory cytokines
in macrophages through the inhibition of phosphorylation and
ubiquitination of TAK1 (40). This is consistent with our finding
that upregulatedNOTCH4 is associated with a higher risk for CDI,
indicating Notch inhibitors could be potential treatments for CDI.

Epithelial cells produce pro-inflammatory chemokines such
as IL8, CXCL1, and CCL2, upon stimulation with C. difficile
toxins (8). Previous studies have found that variants in IL8 were
associated with CDI, recurrent CDI, or severe CDI using a
dominant or a genotypic genetic model (15, 16, 41). However,
the sample sizes in previous studies were too small (38, 23, and
18 cases) to achieve sufficient power to detect any associations
with CDI. We did not replicate any of these associations in our
study (Supplementary Table 2).

Although our study represents the largest GWAS for CDI to
date, it has several limitations. The C. difficile strain information,
which can be associated with virulence, was not available for
most of the cohort, since presumptive strain type for the NAP-1
strain was only available after mid-April, 2014. Disruption of the
gut microbiota was difficult to quantify, even though we included
antibiotics and PPIs use–confounders that can interfere with the
balance of gut microbiota. Disruption of gut microbiota was not
routinely reported for most of the cohort, but as the EHR now
contains information on dysbiosis, the future assessment is
possible. In addition, detailed information on the antibiotics
used was not available in the dataset used, so analysis to further
stratify subgroups based on antibiotic exposure was not able to
be performed. The use of different antibiotics could have major
effects on CDI patients such as the gut microbiota and risk of
recurrence. This will be included in the next phase of analysis. A
demographic limitation is that the patients in our study are of
predominantly European descent and from a single healthcare
system. Lastly, replication in a second cohort to validate our
findings was not possible as other publicly available cohorts do
not have all the data elements needed for the analyses, even
though a generalizable phenotyping algorithm was used.

In conclusion, while no genetic variants were identified that met
genome-wide significance, several variants within the MHC region
had suggestive associations coupled with mechanistic plausibility
based on current knowledge of CDI pathogenesis. Fine-mapping
identified the genes MICA, C4A/C4B, and NOTCH4 to be of
potential interest for future studies based on associated evidence
of their relevance to the host response to CDI. These results need to
be validated in future studies in independent and more diverse
cohorts and potential mechanisms require exploration using
complementary and orthogonal investigations.
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