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Background: Obesity is a recognized risk factor for low fertility and is becoming
increasingly prevalent in many countries around the world. Obesity changes intestinal
microbiota composition, causes inflammation of various organs, and also reduces sperm
quality. Several microorganisms are present in the testis. However, whether obesity
affects the changes of testicular microbiota and whether these changes are related to
reduced fertility in obese men remain to be elucidated.

Methods: In the present study, a zebrafish obesity model was established by feeding with
egg yolk powder. Sperm motility was measured by the Computer Assisted Sperm
Analysis system, testicular microbial communities was assessed via 16s RNA
sequencing, the immune response in zebrafish testis was quantified by quantitative
real-time polymerase chain reaction and enzyme-linked immunosorbent assay, and the
testicular tissue structure was detected by electron microscopy and hematoxylin—eosin
staining.

Results: Compared with the control group, zebrafish sperm motility was dramatically
reduced, the expression of testicular proinflammatory cytokines in the testes was
upregulated, and the blood-testis barrier structure was disrupted in the obese group.
In addition, testicular microbiome composition was clearly altered in the obese group.

Conclusion: Obesity alters testicular microbiota composition, and the reason behind the
decreased sperm motility in obese zebrafish may be related to changes in the testicular
microbial communities.
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Schematic diagram of normal adult zebrafish testis structure
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GRAPHICAL ABSTRACT | Schematic of zebrafish testis microbiological disturbance and BTB disruption caused by obesity. STII, spermatids at the second phase
of spermiogenesis; SCI, primary spermatocytes; LE, Leydig cells in the interstitium; SE, Sertoli cells. The blue arrow indicates the basement membrane of the
zebrafish testis, and the black stars indicate the breach of the zebrafish BTB and the vascular barrier. Small graphics in the picture represent microorganisms.

HIGHLIGHTS

Changes in the composition of testicular microbiota in
obese zebrafish.

Decreased sperm motility in obese zebrafish.
Defective tight junction of blood-testis barrier in obese zebrafish.
Zebrafish testicular immune response is activated.

Altered testicular microbiota in obese zebrafish are related to
changes in their gut microbes.

INTRODUCTION

In recent decades, the number of obese men of childbearing age
has almost doubled (1, 2). In 2000, 65% of adult men had a body
mass index (BMI) over 25 (overweight), and 30% had a BMI
higher than 30 (obesity) (3). Cohort analysis demonstrated that
the total sperm count and sperm motility were lower in obese
than in healthy donors (4, 5). Endocrine disorders (disorders of
testosterone levels) (6, 7), genetics, autophagy (8), and physical
or chemical factors are all involved in low fertility caused by
obesity in men.

There are approximately 10'°-10'* bacteria in the human
intestine (9). The gut microbiota can regulate liver metabolism
by reducing energy expenditure and promoting obesity (10).
Faecalibacterium prausnitzii, an anti-inflammatory bacterium,
was found to be significantly decreased in the intestine of
morbidly obese diabetic patients (11, 12). In previous studies,
obese mice fed on a high-fat diet (HFD) had increased intestinal
permeability, and the abundance of Bacteroides, Clostridium, and
Bifidobacterium in the intestine of mice decreased by 50% (13,
14). The richness of Enterobacter cloacae strain B29 was
significantly aggrandized in the intestinal microorganisms of
obese individuals (15, 16). The above findings demonstrated
that High-fat-diet reduces the abundance of predominant
bacteria in the intestine and accelerates the richness of
pathogenic bacteria, thereafter the metabolites of the changed
microbiota may contribute to obesity, which destroys the
intestinal vascular barrier. The human testis has tissue-
associated symbiotic bacteria, with Actinomycetes, Bacteroides,
Pachybacteria, and Proteus being the most abundant
microorganisms in the men with testicular tumor (seminoma)
with normozoospermic (17). A study showed that Clostridium
spp. are related to the vitality and morphology of human sperm
(18). Cohort studies have found that an increase in
Actinomycetes and Sclerotinia changes the testicular microbiota
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in male patients with non-obstructive azoospermia. Moreover,
patients with complete germ cell aplasia did not have Clostridia
in their testes (17). All of the above findings suggest that changes
in testicular microorganisms may be associated with decreased
male fertility.

An article found that adult males over 35 years of age may
develop epididymitis caused by intestinal pathogens (19). Studies
have shown that the permeability of the blood-testis barrier (BTB)
is increased and testicular development is altered in obese mice
when their intestinal microbiota composition was changed (20-22).
However, whether obesity changes the testicular microorganism
composition and whether defects in testicular function caused by
obesity are related to changes in testicular microorganism
composition remain to be elucidated. Thus, we constructed a
zebrafish obesity model through HFD feeding. After 8 weeks, the
sperm motility and integrity of the BTB were measured. Based on
16s RNA sequencing, the testicular and intestinal microbial
community composition was analyzed to reveal the association
between obese infertility and testicular microbiota.

MATERIALS AND METHODS

Chemicals and Materials

Egg yolk powder (59% fat, 32% proteins, 2% carbohydrates) with a
purity >98% was obtained from Solarbio (Cat # E8200, China).
Fragments and coverslip for zebrafish sperm motility testing were
purchased from Hamilton Thorne - 203L-72 (Lot # 559599, USA).
Oil Red O was purchased from Sigma (Lot # SLBT6544, USA).

Fish Maintenance and HFD Feeding

Zebrafish embryos were provided by the Institute of Reproductive
Health, Tongji Medical College, Huazhong University of Science
and Technology. Zebrafish were maintained in a flow-through
system containing charcoal-filtered water on a 14 h light/10h dark
photoperiod at 28 + 0.5°C.

AB zebrafish strains were utilized because these strains have
become the most commonly used zebrafish for studying obesity
and obesity-related experiments (22-25). We randomly assigned
80 3-month-old adult zebrafish to two diet groups. One group
(40 per group) was fed with red worms to maintain physiological
energy requirements, whereas the other group was given 30 mg
of egg yolk powder per fish per day while feeding an equivalent
number of red worms. Zebrafish were maintained in 5 L tanks for
every 10 fish and were fed twice daily. They were fasted overnight
and sacrificed in the eighth week (26).

Measurement of Zebrafish Length, Weight,
Blood Glucose, and Cholesterol

The body weight and length of zebrafish were recorded and
calculated to obtain the BMI. We collected blood samples from
the dorsal artery and pooled blood samples for every 8 fish for
one exemplary feeding experiment. Fasting blood glucose was
measured using a glucometer (Safe blood glucose meter,
Sannuo), and cholesterol levels were determined using the
Amplex® Red Cholesterol Assay Kit (Invitrogen) (26).

Histology

Cryosections from zebrafish liver were prepared by embedding
freshly isolated liver tissue in 4% paraformaldehyde (Sigma-
Aldrich, St. Louis, Missouri, USA). The slides were stained at
room temperature with Oil Red O in the dark overnight, and
images were captured under an Olympus microscope (Tokyo,
Japan) (27). Anatomically comparable sections of subcutaneous
fat were stained with hematoxylin-eosin (HE), and microscopic
images were obtained at 40x magnification under an Olympus
microscope (Tokyo, Japan). Put a fresh zebrafish testis sample of
about 1-2 mm? into the electron microscope fixation solution
within 2 minutes, fix it with osmium acid, dehydrate, infiltrate,
and embed it, and cut it into a thickness of 80-100nm (Leica, EM
UC7, Germany), double staining with uranium and lead, and dry
at room temperature Overnight, observe the microstructure of
the tissue under the electron microscope (FEI, Tecnai G2 20
TWIN, American).

Zebrafish Sperm Motility Test

Zebrafish semen was manually squeezed out and placed in a 100
UL Eppendorf tube with 10 uL of D-Hank’s solution. The mixed
droplets of sperm were placed on a 20 um slide and then added
with 5 UL of 0.1% bovine serum albumin solution (activated).
The slide was immediately covered with a coverslip and pushed
under the HT Computer Assisted Sperm Analysis (CASA) II
Animal (Hamilton Thorne, USA). Each group randomly selected
6 fish for sperm motility test, and repeated the test for each fish 5
times, and the average was determined. Sperm motility test for
each fish was completed within 1 h after fresh zebrafish semen
was collected.

Enzyme-Linked Immunosorbent Assay
Serum IL-1P levels were determined by using the Fish IL-1B
ELISA Kit (MyBioSource), and serum testosterone levels were
quantified by using Testosterone ELISA Kit (Cayman) following
the manufacturer’s instructions.

Detection of Gene Expression

Prepare enough sterile dissecting instruments, anesthetize the
zebrafish on ice, and extract fresh zebrafish testis samples in a
sterile ultra-clean bench. Each zebrafish dissection instrument is
not reused. DNA was extracted from the fresh testicular tissue
according to the instructions of the EZNA® Soil DNA Kit
(Omega Biotechnology Company, Norcross, Georgia, USA).
We pooled the bilateral testes of 10 zebrafish in each group
into an experimental group for DNA extraction. Total RNA was
extracted from zebrafish testis by using TRIzol reagent (Takara
Biochemicals, Japan) following the manufacturer’s protocol.
RNA reverse transcriptase reaction was conducted using a
PrimeScript RT kit (Takara, Kusatsu, Japan). Real-time
polymerase chain reaction (RT-PCR) was performed on a
StepOnePlus Real-Time PCR instrument (Applied Biosystems).
The gene expression levels of S-actin, tnf-c, il-1J, and il-8 were
detected via an SYBR Green system (DBI Bioscience) using
oligonucleotide primers (Table 1) (28, 29). Each tested gene
was repeated three times for qRT-PCR.
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TABLE 1 | Sequences of primer pairs used in the real-time quantitative PCR reactions.

Gene Primer sequences (from 5’ to 3’) Size (bp)

B-actin F: ATGGATGAGGAAATCGCTGCC 127
R: CTCCCTGATGTCTGGGTCGTC

tnf-oc F: GGGCAATCAACAAGATGGAAG 250
R: GCAGCTGATGTGCAAAGACAC

i-1B F: TGGTGGATTCAGTGCCGTCT 246
R: AGGCCAGGTACAGGTTACTTTTG

i-8 F: GTCGCTGCATTGAAACAGAA 158

R: CTTAACCCATGGAGCAGAGG

16s RNA Sequencing and Bioinformatics
Analysis

Taking into account that zebrafish are aquatic animals, feces are
not easy to collect, our gut microbes and testis microbe
specimens come from the entire zebrafish intestine or testis
(30). Prepare enough sterile dissecting instruments, anesthetize
the zebrafish on ice, and extract fresh zebrafish testis samples in a
sterile ultra-clean bench. Each zebrafish dissection instrument is
not reused. We pooled the bilateral testes of 10 zebrafish in each
group into an experimental group for DNA extraction. DNA was
extracted from the fresh testicular tissue according to the
instructions of the EZNA® Soil DNA Kit (Omega
Biotechnology Company, Norcross, Georgia, USA), and the
quality of DNA was detected by 2% agarose gel
electrophoresis. The DNA concentration and purity were
determined by using NanoDrop2000. Then, the 16S rRNA V3-
V4 gene (338F 5°-ACTCCTACGGGAGGCAGCAG-3’ and 806R
5-GGACTACHVGGGTWTCTAAT-3’) was amplified by PCR,
and the PCR product was recovered on a 2% agarose gel. The
recovered product was purified by using the AxyPrep DNA Gel
Extraction Kit (Axygen Biosciences, Union City, CA, USA) and
detected by 2% agarose gel electrophoresis using a Quantus™
Fluorometer (Promega, USA). The NEXTFLEX Rapid DNA-Seq
Kit was used to build the library. Sequencing was performed on
the Miseq PE300 platform (Illumina).

Trimmomatic software was used for sequencing the original
sequences for quality control. FLASH software was employed for
splicing. UPARSE software (version 7.1) was applied to cluster
the sequences into OTUs based on 97% similarity and remove
the chimeras. RDP classifier (2.11) was applied to annotate
species classification for each sequence. 16S rRNA sequencing
data were analyzed using QIIME 1.9.1 (31). To minimize the
effects of false sequences, we deleted OTUs that were less than
0.005% of the total number of sequences and performed data
flattening. The sequences were compared using Mothur 1.30.2
for alpha diversity analyses. The genome of the gut microbiome
was deduced from the 16S rRNA sequence by PICRUSt (32).

Data Analyses

Data were quantified as the difference relative to that of the
control group and are shown as mean * standard error of the
mean. The data were verified for normality and homogeneity of
variance using the Kolmogorov-Smirnov one-sample test and
Levene’s test. Intergroup differences were assessed by one-way
ANOVA followed by Dunnett’s post hoc test. All statistical

analyses were conducted by SPSS 18.0. The level of statistical
significance was set at P < 0.05, indicated by an asterisk.

RESULTS

Construction of a Zebrafish Obesity Model
After 8 weeks of HFD feeding, we compared parameters related to
obesity, including body weight, BMI, and condition index. The
presence of early obesity-related metabolic alterations was
investigated by quantifying blood glucose levels and cholesterol
levels to determine whether the modeling was successful. Compared
with the control group, the abdomen of zebrafish in the obese group
was enlarged, as shown by the black arrow in Figure 1A. The
bodyweight increased by approximately 1.4 times, the body length
increased by approximately 1.2 times, and the BMI increased from
27-28 to 32-34 (P < 0.0001) (Figures 1B-D). A significant
enhancement in the number of subcutaneous adipocytes in
zebrafish was observed. The space between subcutaneous muscle
fibers was enlarged by adipocytes, and the volume of each adipocyte
increased by approximately 2-3 times under a 10x microscope
(Figure 1E). Consistent with the expected results, the number of
zebrafish liver fat vacuoles was higher in the obese group than in the
control group (Figure 1F). We detected the expression levels of
cholesterol and glucose in the blood of zebrafish, compared with the
control group, the blood cholesterol level in the obese group
increased (P < 0.01) (Figure 1G), and the blood glucose levels
increased (P < 0.05) (Figure 1H). The above data indicated the
successful construction of the zebrafish obesity model.

Sperm Motility Decline in the Obese
Zebrafish Model

We analyzed the effects of obesity on zebrafish sperm motility.
Figure 2A shows a visual representation of zebrafish sperm motility
within 120 s, where green indicates motile sperm, blue indicates
progressive sperm, purple indicates slow sperm, and red indicates
immobile sperm. In 80 s, the number of stationary sperm was
higher than that of the control group. The zebrafish motile time and
the motile average path velocity (VAP) in the obese group markedly
decreased (P < 0.01) (Figures 2B, C). In addition, the percentage of
zebrafish sperm forward motion and the progressive VAP of
zebrafish sperm were distinctly reduced (Figures 2D, E). Electron
microscopy revealed that the zebrafish sperm heads in the obese
group had lesions, as shown by the red arrow in Figure 2F, and the
count of head lesions of zebrafish sperm in the obese group was
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FIGURE 1 | Successful establishment of the obesity model. (A) Male zebrafish appearance in control and obese groups. A clearly larger abdomen can be seen in
zebrafish in the obese group as shown by the dark blue arrow. (B, C) Measurement of body weight and length of zebrafish before and after exposure. (D) Significant
differences in the BMI index. (E) Expression of subcutaneous fat in zebrafish (scale bar = 100 um). (F) Expression of fat droplets in the liver (scale bar = 100 pm).

(G, H) Determination of cholesterol in the blood and detection of blood glucose. Values are mean + SME (n = 5). The asterisk represents a statistically significant
difference when compared with the controls; *, ** and *** at P < 0.05, P < 0.01 and P < 0.0001, respectively.

obviously increased in the control group (P < 0.001) (Figure 2G).
The above results indicate that diet-induced obesity reduces the
sperm quality of adult zebrafish, which in turn has a negative impact
on the fertility of male zebrafish.

Obesity Destroys Zebrafish BTB Structure
and Accelerates Testicular Inflammation
To investigate whether the testicular tissue structure is affected by
obesity, we compared the HE staining of zebrafish testes. Unlike
mammalian seminiferous tubules, each of the seminiferous vesicles
encased by the Sertoli cells in the zebrafish’s seminary is the same
type of seminiferous cells. In the Figure 3A, as shown by the yellow
stars, each seminiferous vesicle contains equally developed
spermatogenic cells, and the tissue structure of the seminiferous
vesicles and the seminiferous epithelium is clear. The red arrow
indicates the area between the two seminiferous epitheliums.
However, the testes in the obese group had disordered
seminiferous tubules and blurred contour boundaries
(Figure 3A). We examined the BTB structure under an electron
microscope. The control group had a normal BTB physiological
structure, whereas the obese group had a significant disorder. Large
number of vacuoles, irregular arrangement of tight junction in the
gap link between the Sertoli cells and the spermatogenic cells was
observed in the obese group (Figure 3B). Therefore, obesity
increases the permeability of the BTB.

Obesity is related to direct damage to testicular function.
Therefore, we investigated the changes in blood testosterone

levels between the two groups and found that the plasma
testosterone levels in the obese group were dramatically
decreased (P < 0.001) (Figure 3C). Compared with the control
group, the expression levels of il-8, tnf-c, and il-1f3 in zebrafish
testes of the obese group were increased (Figure 3D). and the
protein levels of IL-1B in the plasma of the obese group was
increased (P < 0.01) (Figure 3E). Therefore, our results suggest
that diet-induced obesity contributes to the inflammatory
response in zebrafish testes.

High-Fat Diet-Induced Obesity Changes
the Intestinal Microorganism Composition
Obesity induced by high-fat diet can change the composition of
intestinal microbiota, so we tested the intestinal microbiota in the
zebrafish obesity model. Consistent with our expectations,
the analysis of the intestinal microbial composition revealed
that the abundance of the dominant intestinal bacteria
Plesiomonas (from 26.39% to 3.87%) and Vibrio (from 12.42%
to 6.45%) remarkably decreased, and the pathogenic bacteria
Aeromonas (from 5.35% to 29.49%) dramatically increased in the
obese group compared with the control group (Figure 4A). At the
genus level, the bacterial community compositions in the control
and obese groups were also different in terms of abundance and
diversity. Each group contained unique bacteria. Sixty-eight types
of bacteria and seven species of different bacteria were observed in
the two groups (Figure 4B). In addition, based on the phylum
level abundance indicated that obesity induced by a high-fat diet
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FIGURE 2 | Effects of obesity on the sperm motility of zebrafish. (A) Intuitive CASA image of zebrafish sperm movement under a microscope. (B) Sperm MOT
between the two groups. (C-E) Percentage of motile VAP and progressive VAP (%) of adult zebrafish. (F) Comparison of sperm morphology between the two
groups under the electron microscope. (G) The obese group had lesions on the head of the sperm as shown by the red arrow. Data represent mean + SME (n = 6).

clearly changes the composition of gut microbes, compared with
the control group, Proteobacteria (from 97.49% to 91.27%)
increased in the obese group, while Fusobacteria (from 5.74%
to 0.22%) and Firmicutes (from 2.38% to 0.97%) decreased
(Figure S1). Based on LEfSe multi-level species discriminant
analysis, we observed a conspicuous difference, in which 26
bacterial groups showed self-evident relative abundance in the
obese and control groups (Figure 4C), indicating a palpable
difference in intestinal microbiota after obesity.

High-Fat Diet-Induced Obesity Changes

the Testicular Microorganism Composition
To understand the relationship between the obesity-related
decrease in male fertility and testicular microbial communities,
16s RNA sequencing analysis of the microbial communities was
performed. The testis microbe data from one sample of the obese
group were excluded because they were deemed non-compliant.
The statistical analysis demonstrated that Pseudomonas,
Lactobacillus, and Bifidobacterium are the main genera in the
testis. However, compared with the control group, the relative
abundance of Lactobacillus in the obese group was increased,
whereas the richness of Bifidobacterium decreased (Figure 5A).
On the phylum level abundance indicated that obesity induced
by a high-fat diet changes the testicular microbes, compared with
the control group, Proteobacteria (from 57.93% to 58.56%) and
Firmicutes (from 29.61% to 32.84%) increased in the obese
group, while and Actinobacteria (from 12.39% to 8.36%)

decreased (Figure S2). Alpha diversity analysis of the testicular
microbes revealed that obesity was associated with a reduction in
species diversity in the testis (Wilcoxon rank-sum test, P = 0.03;
Figure 5B). Analysis of the differences in the testicular
microbiota of the two groups screened out an additional
15.28% of Escherichia-Shigella in the obese group. However,
Plesiomonas and Vibrio were not found in the pie chart of the
obese group (Figure 5C). These data indicated that the diversity
of bacteria in the obese group decreased.

In addition, we performed a sample-to-species analysis to
display the distribution ratio of dominant species in each group
of microbiotas and the distribution ratio of predominant species in
different groups (Figure S3). At the genus level, each group
contained unique bacteria. The bacterial community composition
in the control and obese groups was also visibly different in terms of
abundance and diversity (Figure 5D). Fifty-one common bacterial
species were observed in the two groups. The heatmap and sample
cluster tree analyses of 50 species of testicular microorganisms in
different groups (Figure S4) showed significant differences in the
predominant testicular microorganism composition after obesity.

To study the changes in the function and metabolism of the
microbial community in the testis between the obese and control
groups, we deduced the genome from 16S rRNA data and
analyzed the functional potential of the intestinal microbiota
using PICRUS. Differences in 25 related genes were screened. In
the obese group, the functions of signal transduction mechanism,
amino acid transport and metabolism, lipid transport and
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FIGURE 3 | Obesity causes the destruction of zebrafish BTB structure and testicular inflammation. (A) Testicular HE staining in the control and obese groups.
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Yellow stars indicate sperm vesicles of the same type of spermatogenic cells in the zebrafish testis, and the red arrow indicates the interstitial part. Obviously, the
zebrafish spermatogenic cells were disorderly arranged, and the interstitium was thickened. (B) Ultrastructure of zebrafish BTB. Red boxes indicate connections
between Sertoli cells and germ cells in zebrafish testis. In the enlarged image, the BTB structure of the obese group is damaged, as shown by the red arrow.

(C) Detection of testosterone in the blood. The testosterone level of the obese group was markedly decreased (P < 0.001). (D) Effects of ODP exposure on the
mRNA levels of tnf-c, il-1p, and il-8 in zebrafish testis. (E) Detection of IL-1B expression in the blood by ELISA. Data represent mean + SME (n = 5). The asterisk
represents a statistically significant difference when compared with the corresponding controls; *, ** and *** at P < 0.05, P < 0.01 and P < 0.001, respectively.

metabolism, carbohydrate transport metabolism, and coenzyme
transport and metabolism all decreased, especially signal
transduction mechanism and amino acid transport and
metabolism (Figure 5E). 16s RNA functional prediction
analysis data indicate that the changes in metabolic indications
may be related to the decline of sperm motility caused by obesity.

Comparison Between Testicular
Microbiota and Intestinal Microbiota

Our results indicated that testicular and intestinal microbes have
their predominant microbiota. For instance, Plesiomonas (26.39%),

Vibrio (12.42%), and Aeromonas (5.35%) were highly expressed in
the control intestinal microorganisms, whereas Lactobacillus and
Bifidobacterium accounted for 19.94% and 12.19% in the testicular
microorganisms, respectively. Pseudomonas had the highest
composition in the gut and testicular microorganisms regardless
of whether the zebrafish was obese or not (Figure 6A and
Figure S5). Predominant bacteria such as Vibrio, Plesiomonas,
Aeromonas, and Pseudomonas were all expressed in normal
intestinal and testicular microbes. However, after obesity, the
abundance of Vibrio and Plesiomonas was dramatically decreased
in testicular and intestinal microbes (Figure 6B). The expression of
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FIGURE 4 | Differences in intestinal microbial composition after High-fat diet-induced obesity. (A) Composition of intestinal microbial communities in the control and
obese groups. (B) Venn plot population analysis results in gut microbes between the control and obese groups. (C) LEfSe multi-level species discriminant analysis

using non-parametric factorial Kruskal-Wallis rank sum test and LDA to find groups that significantly differ in abundance. Data represent mean + SME (n = 3).

Escherichia-Shigella in the intestinal and testicular microbes of the
control group and intestinal microorganisms of the obese group was
low (less than 0.15%) but accounted for 15.28% in the testicular
microbes of the obese group (Figures 6A, B). The above data
demonstrate that the composition of predominant intestinal and

testicular microorganisms has changed, and there may be a
connection between these changes and obesity.

DISCUSSION

To our knowledge, this study is the first to report on the
relationship between obesity and testicular microorganisms.
Our results demonstrated that the sperm motility index and
blood testosterone levels of the obese group were reduced
compared with the control group. Obesity can cause disorders
in the BTB structure, and the expression of IL-1f protein
remarkably increased in the blood. Based on the above
research, we began to consider the role of testicular microbes
in obesity and their relationship with intestinal microbes, the
changes in testicular microbes, the cause of the changes, and

whether these variables may be related to alterations in
gut microbes.

Frontiers in Immunology | www.frontiersin.org

Previous studies indicate that the permeability of the

testicular BTB was increased in a diet-induced obese mouse
model (33). This is consistent with our research results, obesity
caused zebrafish disordered seminiferous tubules and blurred
contour boundaries, and the structure of the tight junction
protein involved in the gap link between the Sertoli cells and
the spermatogenic cells was destroyed. BTB permeability may
cause testicular inflammation, and cytokines can be employed as
markers of inflammation (34, 35). Our results show, the
expression levels of il-8, tnf-o, and il-1f3 in zebrafish testes of
the obese group were increased, and the protein levels of IL-1P in
the plasma of the obese group was increased in the obese group.
Obesity can lead to hypogonadism (lower testosterone levels) in
men through the effects of enterotoxin (36), and our results
indicated that the zebrafish serum testosterone level decreased
after obesity. The above-mentioned obesity leads to the
destruction of the zebrafish testis structure, increases the
expression of inflammatory factors, and decreases the level
of testosterone.

A growing number of evident have shown that obesity is
regulated by multiple organs. For instance, certain bacteria and
their metabolites may directly target the brain through vagal
nerve stimulation or immune nerves, and the endocrine
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mechanism targets the brain indirectly (37, 38). Chronic kidney
disease (39, 40) and non-alcoholic fatty liver disease (41) can
cause significant changes in the composition and function of
intestinal microbiota, which can cause systemic inflammation.
First, our results demonstrated that Plesiomonas and Vibrio were
the predominant testicular microorganisms in the obese group.
Moreover, the relative abundance of Lactobacillus and
Bifidobacterium was decreased in the testes of the obese group,
indicating that obesity can cause reduced diversity of testicular
microorganisms. Moreover, no rank-c-Cyanobacteria and
Bacteroides are normally expressed in the intestinal microbes
but not in the testicular microbes of the control group. However,
they were observed in the testicular microbes of the obese group.

Of note, the abundance of Escherichia-Shigella was increased by
15.28% in the obese group, whereas it was less than 0.15% in the
control group and intestinal microorganisms. The above findings
indicate that there may be a connection between intestinal and
testicular microorganisms.

Under healthy conditions, there may be bacterial translocation
between adjacent organs, and intestinal microbiota generally
cannot enter other organs under healthy conditions. An article
on HFD-fed mice may provide a mechanism for intestinal
vascular barrier leakage and the passage of macromolecules and
bacteria, due to the translocation of intestinal bacteria transferred
to the liver and the destruction of intestinal vascular barrier by
bacteria or virulent factors (42). However, with the help of the
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pathogenicity island 2-encoded type III secretion system and
reduced intestinal endothelial cell-dependent -catenin signaling,
certain pathogens can penetrate the intestinal vascular barrier to
reach these organs and induce systemic immune response (43).
The leakage of bacteria and their metabolites can also affect the
function of the vascular wall barrier of the brain (44, 45), eyes
(46), and testes (18). Our results indicate that obesity leads to
reduced sperm motility, affects sperm quality, destroys the BTB,
and causes a highly inflammatory state in zebrafish testis.
Endotoxins can dramatically increase the permeability of the
intestinal wall and damage the mucosa to form inflammation
and ulcers (47, 48). Therefore, we speculate that the disturbances
of intestinal microbes may affect testicular microbes through the
leakage of pathogenic bacteria and their metabolites.

A study on intestinal microbes and sperm quality indicated
that endotoxemia and epididymal inflammation are caused by an
imbalance in intestinal microbiota in mice, which are the main
factors attributed to sperm quality and motility. The authors
transplanted intestinal microorganisms from HFD-fed mice to
mice fed with a normal diet. After 15 weeks, the endotoxins in
the blood nearly increased by threefold, and sperm motility was
also affected (49). The results suggested that obesity alters
intestinal microbiota composition and reduces sperm motility.
This finding further validated the speculation that intestinal
microorganisms may be transferred to the testis via the
destruction of the intestinal vascular barrier and through the
blood, thereby affecting testicular microbiota composition.

A study on the intestinal microbiota of individuals with polycystic
ovary syndrome (PCOS) and clinical indicators associated with
imbalanced microbiota found substantial differences in the types of
intestinal microorganisms between PCOS and non-obese control
groups. A positive correlation was observed between the abundance
of Shigella and Streptococcus with testosterone and BMI (50). PCOS is
a systemic disease of the female genital ovaries related to obesity (51).
In male reproductive diseases associated with obesity, Escherichia-
Shigella may be positively correlated with testosterone and BMI.

CONCLUSION

We speculate that the disturbance of intestinal microbes causes the
imbalance of testicular microbiota through the production of
endotoxemia, which increases the richness of Escherichia-Shigella
and causes testicular inflammation. On the one hand, Escherichia-
Shigella promotes the process of endotoxemia, and on the other
hand, it further exacerbates testicular inflammation, leading to
orchitis. Under the action of a large number of inflammatory
factors and toxins, the BTB is damaged. While affecting the
structure of the testis, the physiological functions of the testis were
also adversely affected. Testosterone levels and sperm quality
dramatically decreased. In short, the decline of sperm motility in
obesity may be caused by an imbalance in testicular microbiota,
leading to the destruction of the BTB structure and inflammatory
response in the testis. Despite our findings, this study has some
limitations. For example, our sample size is limited. And because of
the small size of zebrafish (the mean testis weight of zebrafish was 4.7 +
0.2 mg), the microbiological samples we collect are mixed samples.
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Supplementary Figure 5 | Venn plot population analysis results of all samples,
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